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Management Summary

The two-pass method is a common approach for estimating risk premia and examining fac-
tor pricing models. It consists of a time-series regression (first-pass) and a cross-sectional
regression (second-pass). Two common problems of this approach are the downward bias
of the estimates and the large standard error of the estimates. A previous study showed
through a simulation approach that the problem of the bias can be mitigated by running
at least one of the two regressions without an intercept, whereas the problem of the large
standard error can be mitigated by running the second regression without an intercept.

The previous study used a single factor pricing model as the underlying model for its
simulation. The objective of this thesis was to provide further evidence for this mitigation
method (leaving out the intercepts) by analyzing the mitigating effects in the case of the
Fama and French three-factor model. For this purpose, the simulation was based on the
simulation of the previous study and was extended to suit the properties of the three-
factor model. The simulation comprised two main parts: first, the test data was generated
artificially, then the two-pass method was applied on each set of this generated data.

Similar to the findings of the underlying study, it was found that omitting the intercept
in at least one of the two regressions decreases the bias of the estimated market premium.
Furthermore, omitting the intercept in the cross-sectional regression decreases the standard
deviation of the market premium estimates. However, for the two additionally estimated
risk premiums (size and value), the mitigating effect on the biases is hardly observable,
as the biases of these estimates are already small without omitting the intercept in either
of the two regressions. Moreover, the standard errors of the estimates for the size and
value premiums did not decrease when the intercept was omitted in at least one of the
regressions. In all of the applied variants, the standard error of the estimates for the three
premiums are persistently large. Therefore, even with this partially effective mitigation
method, it remains difficult to draw statistical conclusions from the two-pass method.
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1 Introduction

At the heart of the asset pricing theory lies the question “why some assets pay higher
average returns than others”(Cochrane, 2001, xiii). Within this field of study, linear factor
models are the most commonly used models (Cochrane, 2001, p. 229). In fact, the theory
originates from the introduction of such a linear factor model (Fama & French, 2004,
p. 25). The model in question is the capital asset pricing model (CAPM)1, introduced by
Sharpe (1964) and Lintner (1965). The underlying logic of factor models in asset pricing is
that the exposure (beta) to a risk factor should be rewarded with a corresponding premium
(gamma)(Cochrane, 2001, p. 81). Based on this logic, factor models are commonly used
to estimate risk premiums of stocks and portfolios.

Half a century after its introduction, the CAPM is still one of the most frequently used
factor models (Van der Wijst, 2013, p. 81). Since its introduction, it has been extensively
scrutinized by empirical researches. Over time, more and more studies showed that the
CAPM’s ability to explain variations in average returns across assets is limited (Fama &
French, 2004, pp. 30-37). Starting with Merton (1973), the idea of extending the CAPM
with additional factors emerged (Cochrane, 2001, p. 437). One of the most famous and
widely applied “spin-offs” of the scientific discussion about further explanatory factors
for the CAPM is the three-factor model introduced by Fama and French (1993, 1996).
The big advantage of this newer model is that it includes additional significant risk factors
and therefore explains more of the variations of average returns across assets (Cochrane,
2001, p. 437). Throughout the debate about the different factor models, various methods
and approaches were used to analyze these models.

A typical method for analyzing linear factor models is to run a cross-sectional regres-
sion (Bänziger & Gramespacher, 2015, p. 76). In contrast to a time-series regression, the
cross-sectional regression looks at one point or period in time for several assets, whereas
the time-series regression is run over time for each asset individually (Cochrane, 2001,
pp. 80-81). To put it differently, a time-series regression indicates how much of the vari-
ation of the asset return is explained by the explanatory variables (factors) over time2.
In contrast, the cross-sectional regression indicates how much of the variation of aver-
age returns across assets is explained by the risk exposures (betas). These betas are not
observable and have to be estimated (Cochrane, 2001, p. 235).

For this purpose, the two-passmethod introduced byBlack, Jensen, and Scholes (1972)
as well as Fama and MacBeth (1973) is often applied (Bänziger & Gramespacher, 2015,

1In principle, every asset pricing model is a CAPM. However, financial literature refers to the Sharpe-
Lintner-Black model as “the” CAPM (Fama & French, 2004, p. 25)

2This is the case for the standard formula of time-series regression. Researchers use advanced variants of
time-series regressions, which enable to make inferences about average returns between assets (Cochrane,
2001, p. 231).
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p. 76). As a first step, the risk exposures of all assets are estimated through a time-series
regression (first-pass). In a second step, the derived betas are used as the explanatory
variable in a cross-sectional (second-pass) regression in order to estimate the risk premi-
ums (regression coefficient of second-pass regression). Since the explanatory variables
of the second-pass regression are measured with error, the estimated coefficients of the
second regression are downwards biased (Fama & French, 2004, pp. 30-31). This bias
is commonly referred to as the error-in-variables bias. Black et al. (1972) introduced an
approach to mitigate this bias, which is now considered a standard approach within empir-
ical factor model studies (Fama & French, 2004, p. 31). They used portfolio returns and
estimated portfolio betas instead of single stock betas, since the betas of portfolios can be
measured more precisely. However, as simulation studies by Shanken and Zhou (2007,
pp. 55-64) have shown, the bias is still quite substantial in the case of small sample sizes.
An additional problem of analysing linear factor models with regression analysis are the
large standard errors of the resulting estimates (Bänziger & Gramespacher, 2015, p. 76).

1.1 Research Question

In a recent study, Bänziger and Gramespacher (2015) addressed these two problems. They
tested within a simulation approach whether leaving out the intercepts in at least one of the
two regressions mitigates the problem of the downward bias as well as the large standard
errors of the estimates. Their motivation was the underlying theory of the linear factor
pricing models. This theory suggests that the intercepts of the time-series regression as
well as the constant of the cross-sectional regression (Cochrane, 2001, pp. 231-236) should
be zero.

The main results of their simulation approach were that leaving out the intercept in at
least one of the two regressions decreases the downward bias of the estimates. Moreover,
they found that omitting the intercept of the cross-sectional regression also reduces the
standard error of the estimates. They conclude that the increase of efficiency and accuracy
come at the cost of robustness (Bänziger & Gramespacher, 2015, p. 81).

This thesis aims to provide further evidence on the mitigating effect illustrated by
Bänziger and Gramespacher (2015) by applying the two-pass regression method on a
three-factor model instead of the CAPM. Therefore, the research question of this thesis is
as follows:

“Does, in the case of a multi-factor asset pricing model, leaving out the intercept in at
least one of the two regressions decrease the downward bias of the premium estimates and
does leaving out the intercept in the second-pass regression decrease the standard error of
the premium estimates?”
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In order to answer this question, the simulation approach applied by Bänziger and
Gramespacher (2015) is extended to the properties of the Fama and French (1993, 1996)
three-factor3 model. Furthermore, since Shanken and Zhou (2007) conducted similar two-
pass simulation studies for the three-factor model, but without leaving out the intercepts
in the first or second-pass regression, the simulation within this thesis is also considered
an extension to their research. These two studies form the main theoretical foundation for
the simulation approach of this thesis.

1.2 Aims and Focus of the Thesis

Bänziger and Gramespacher carried out their simulation in the statistical programming
language R. The simulation consists of the data generating part as well as the actual pro-
cessing of the two-pass method. The aim of this thesis, besides answering the research
question, is to provide a comprehensive R-code with detailed descriptions (appendix).
This aim implies the sub goals of a correct implementation of the data generating simula-
tion, the correct processing of the two-pass method, as well as the embedding of the thesis
and its results in the relevant literature4.

The focus of this thesis and its simulation approach lies solely on indicating and dis-
playing the mitigating effects in the case of a three-factor model. No inferences are made
about their statistical significance nor is a hypothesis tested in mathematical terms.

The rest of this thesis is organized in the following way: section 2 describes the most
relevant theoretical framework, which consists of the algebraic description of the two-pass
regression method, the error-in-variables problem, the standard approach of mitigating the
problem of the large standard errors and error-in-variables, as well as the theoretical back-
ground of the multi-factor model to be estimated. Section 3 addresses the methodology
applied, namely the parameters calibrated out of the underlying data, as well as the data
generating process. In section 4, the results are being presented and discussed. Finally, in
section 5, the thesis is summarized and a conclusion is given. In addition, a comprehensive
description of the written R-code is provided in the appendix.

3Any model with three factors could be called the three-factor model. However, similar to the case
of the CAPM the financial literature uses “the three-factor model” as synonym for the Fama and French
three-factor model. This thesis follows this custom.

4The author would like to thank Armin Bänziger for granting him access to their R-code.
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2 Literature Review

In a first step, the theoretical foundation of the two-pass regression and the error-in-
variables-bias problem comprised therein are introduced. Thereafter, a common approach
to mitigate the problem of the large standard errors and bias of the estimates is illustrated.
Finally, the multivariate factor model applied is presented.

2.1 Two-pass regression

The two-pass regression method introduced by Black et al. (1972) as well as Fama and
MacBeth (1973) has become a standard approach for empirical tests (Fama & French,
2004, p. 31). Since its introductions, various researchers have reviewed and applied this
approach. Within this thesis, the description of the two-pass is based on the elaborations of
Bänziger and Gramespacher (2015, p. 77) as well as Shanken and Zhou (2007, p. 43-44).

In the first-pass regression, all factor loadings (betas) of the j factors f for N assets
are estimated by applying the ordinary least square (OLS) method on equation (1). It
describes a multivariate time-series regression model with K regressor.

Ri,t = αi + βi1f1t + ...+ βiK fKt + ϵit, i = 1, ..., N, t = 1, ..., T, (1)

where

Ri,t = return on asset i in period t,

fjt = the value of factor j in period t , j = 1, ..., K,

βi,j = the factor loading of asset i on the jth factor,

ϵit = the random errors, E(ϵi,t) = 0, E(ϵi,s, ϵj,t) = σij for s = t and 0 otherwise5,

T = the number of of time-series observations,

αi = pricing error (Cochrane, 2001, pp. 230-231).

As shown by Wooldridge (2013, p. 802), the estimation of theK coefficients forN assets
by applying OLS to equation (1) can be written as

β̂ = (F ′F )−1F ′R, (2)

where

R = T ×N matrix containing T returns for N assets each,
5As is shown in section 3.3, it is assumed that the error terms are independent over time but not across

assets (Bänziger & Gramespacher, 2015, p. 77)
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F = T ×K matrix containing T sets of K factor values.

Equation (2) results in aK×N matrix of beta estimates (β̂). For the second-pass, model (3)
is estimated by running a second OLS on the regression model (5). The general expected
return equation of a linear regression model is

E(Ri) = γ + γ1β1 + ...+ γKβiK , (3)

where

γj = risk premium of factor fj ,

γ = common constant for all assets,

all other variables defined as in equation (1).

Bänziger and Gramespacher (2015, p. 77) show that through the assumption that a
risk free rate (rf ) exists, regression model (3) is adjusted to model (4). Because γ has
no beta-exposure, it must be risk-free and therefore equal to rf . Thus, model (3) can be
rearranged as follows:

E(Ri) = γ + γ1β1 + ...+ γKβiK ,

E(Ri)− rf = E(Re
i ) = γ1β1 + ...+ γKβiK ,

(4)

whereE(Re
i ) is the expected excess return of asset i. The estimated betas β̂ are used as the

independent variables for the second multivariate OLS applied on equation (5) in order to
derive an estimator of Γ = (γ0, γ1, ..., γK)

′.

R̄e
i = γ0 + γ1β̂i1 + ...+ γK β̂iK + ui, (5)

where

R̄e
i = 1

T

∑T
t=1R

e
it,

β̂ij = the (i, j)th element of matrix β̂,

ui = a random error term,

all other variables are defined as in equation (1).

Two important implications can be drawn from the two-pass method described above:
Shanken and Zhou (2007, p. 43) point out that equation (4) implies that the constant (γ) is
zero. Cochrane (2001, p. 230) further states that the comparison of model (1) and model
(4) implies that α should be zero in the time-series regression. These two implications are
theH0 hypothesis to be imposed within the simulation approach of this thesis. TheH0 for
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the first-pass regression is α = 0. Consequently, the H0 of the second-pass regression is
γ0 = 0.

As before, the estimation of the coefficients Γ can also be derived by using matrix
algebra. Following Cochrane (2001, p. 236) as well as Shanken and Zhou (2007, p. 43),
the OLS estimation of Γ in equation (5) can be described as

Γ̂t = (β̂′β̂)−1β̂′Re, (6)

whereRe denotes a T ×N matrix containing T excess returns forN assets. The resulting
Γ̂t contains K vectors with T estimates of γj each. Rather than running an OLS for T
Vectors withN returns, Re is replaced by R̄e (N -Vector with means of T sample returns).
Therefore, equation (7) results inK estimates (Γ̂ = (γ0, γ1, ..., γK)) for allK coefficients
of the second regression.

Γ̂ =
T∑
t=0

Γ̂t/T = (β̂′β̂)−1β̂′R̄e. (7)

Thus, as can be seen in equations (6) and (7), estimates are being used as explanatory
variables for the second-pass regression.

In short, the two-pass method consists of a first-pass (time series regression) and a
second-pass (cross-sectional) regression. The theory for both regression models state that
the intercept should be zero. These theoretical restrictions pose the basis for the simu-
lation approach within this thesis. Furthermore, it has been shown that the second-pass
regression is carried out with estimates as explanatory variables. The implication of this
circumstance will be discussed in the subsequent section.

2.2 Error-in-Variables

As the explanatory variables (β̂) of the second linear regression are measured with error,
the coefficients of the second regression (Γ̂) are biased (Brooks, 2014, pp. 236-237). While
the direction and magnitude of this bias is determinable through a few steps in the case
of a single factor model, attempting the same in the case of a multivariate regression with
multiple explanatory variables measured with error is a complicated endeavour (Kennedy,
2008, pp. 167-168). Following Wooldridge (2013, pp. 311-312), an algebraic explanation
for the directional bias in the case of a single factor regression model is introduced. His
explanations are similar to what Black et al. (1972) wrote originally, but somewhat more
detailed. However, the notation of Black et al. (1972) is used as the subsequent section
follows their notation.

8
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Therefore, for the sake of consistency, the following example uses β̂ as the explanatory
variable measured with an error. In most of the literature on measurement errors in an
explanatory variable, β is used as the coefficient of the regression model rather than as
the explanatory variable. Moreover, most literature denotes the true unobservable value
with a ∗, whereas Black et al. (1972) simply denote the true value of beta as β and the beta
measured with error as β̂.

In the case of a single factor model (K = 1), the second-pass regression model (5)
simplifies to

Re = γ0 + γ1β1 + u. (8)

Index i is omitted in the elaborations within this section. All equations from (8) to (15)
address the case of a single asset. Instead of the true measure of exposure to risk β1, β̂1 is
plugged into the second-pass regression model (5). β̂1 is β1 measured with an error and
defined in the following way:

β̂1 = β1 − e1, (9)

where e1 is the measurement error of β1. Plugging equation (9) into equation (8), it follows
that

Re = γ0 + γ1β̂1 + (u− γ1e1). (10)

Thus, equation (10) describes the actual properties of the composite error term (u −
γ1e1) of the second-pass regression when the explanatory variable (β̂) contains measure-
ment error e1. Wooldridge (2013) assumes that the measurement errors (e1) are on average
zero across the whole population (E(e1) = 0) and independent of β1. This can be stated
as

Cov(β1, e1) = 0. (11)

Accordingly, Brooks (2014, p. 237) describes e1 as additional noise that is independent
of β1. Moreover, Wooldridge (2013, p. 320) assumes that u is uncorrelated with β1 and
β̂1. If assumption (11) is true and e1 = β1 − β̂1 then e is correlated with β̂. Wooldridge
shows that

Cov(β̂1, e1) = E(β̂1, e1) = E(β1, e1) + E(e21) = 0 + σ2
e1
= σ2

e1
. (12)

Relation (12) suggests that the variance of the measurement error (e1) is equal to the
covariance between β̂1 and e1 if assumption (11) holds. Since u and β1 are uncorrelated,

9
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the covariance between β̂1 and the composite error term (u − γ1e1) can be described as
follows:

Cov(β̂1, u− γ1e1) = −γ1Cov(β̂1, e1) = −γ1σ
2
e1
. (13)

In order to determine the magnitude and direction of the error-in-variables bias for a
simple linear regression, Wooldridge (2013) introduces equation (14), which is the final
formula in the proof that γ̂1 is an unbiased and consistent estimator for γ1 sinceCov(β1, u) =

0 (Wooldridge, 2013, p. 173).

plim γ̂1 = γ1 +
Cov(β1, u)

V ar(β1)
. (14)

However, in the case of the two-pass regression, the aggregated error term of equation
(10) is ui − γe1 rather than solely ui. Therefore, in the case of errors in the explanatory
variables, formula (14) is described in the following way by utilizing equation (12) and
the fact6 that V ar(β̂1) = V ar(β1) + V ar(e1).

plim γ̂1 = γ1 +
Cov(β̂1, ui − γie1)

V ar(β̂1)

= γ1 −
γ1σ

2
e1

σ2
β1

+ σ2
e1

= γ1

(
1−

σ2
e1

σ2
β1

+ σ2
e1

)

= γ1

(
σ2
β1

+ σ2
e1

σ2
β1

+ σ2
e1

−
σ2
e1

σ2
β1

+ σ2
e1

)

= γ1

(
σ2
β1

σ2
β1

+ σ2
e1

)
.

(15)

Therefore, since the term in the brackets of the final line in equation (15) is always
smaller than 1 and decreases the larger e becomes, γ̂1 is more biased the larger the mea-
surement errors (e). Moreover, it becomes evident that the estimation is biased towards
zero. To put it differently, if γ1 is positive, the bias is negative and vice versa (Brooks,
2014, p. 237). Additionally, the “bracket term” shows that the relative size of σe1 to σβ1

is also of relevance. Ceteris paribus, the larger σβ1 the smaller the disturbance through e

within the simple linear regression.

As has been shown, the magnitude and direction of the error-in-variables problem is
6This is true due to the assumption introduced in equation (11).
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discernible within a bivariate linear regression. However, in the case of multivariate re-
gression, the derivation of these dimensions is a complicated endeavour (Kennedy, 2008,
p. 167). Wooldridge (2013, p. 323) points out that assumption (11) does not hold in the
case of a multivariate estimation equation and therefore makes the derivation of impli-
cations of measurement errors very complex. Thus, the derivation of the magnitude and
direction of the error-in-variables bias within a multivariate regression equation with mul-
tiple explanatory variables is beyond the scope of this thesis.

In short, this section has shown the fundamental logic of the error-in-variables problem
and draws attention to the question of how to mitigate the resulting bias. Accordingly, the
relevant theoretical background about a common error-in-variablesmitigationmethodwill
be outlined in the subsequent section.

2.3 A Common Mitigation Method

Since, the focus of this thesis is to extend the simulation by Bänziger and Gramespacher
(2015) in one specific way (multi-factor instead of single-factor model), only approaches
applied by them will be discussed. Bänziger and Gramespacher made use of the method
introduced by Black et al. (1972). It is a very common approach (Fama & French, 2004,
p. 31). The method addresses both, the error-in-variables problem as well as the large
standard deviation of the estimates (Black et al., 1972, pp. 20-21). This section is struc-
tured in the following way: first, the underlying concepts of the method by Black et al. are
outlined. Second, the data snooping bias discussed by Lo andMacKinlay (1990) is briefly
considered, as it addresses the danger of structuring test statistics in a specific way.

The approach comprises two crucial concepts: first, similar to the findings of Blume
(1970), they show that the portfolio beta measurement error is smaller than a single stock
beta measurement error. Therefore, the error-in-variables problem can be mitigated by
using portfolios rather than single stocks. Second, they show that the sampling variability
of the estimates in the second-pass regression is reduced when the betas of the various
portfolios as the explanatory variables are well dispersed in the test statistics. To put it
differently, using stock groups where the individual stock is assigned to a group based
on the stock’s estimated risk exposure, yields consistent estimates for the risk premium
within the two-pass approach (fixed time-series length, increasing number of assets N )
(Black et al., 1972, p. 20). This is not the case if the grouping procedure is not applied
(Shanken, 1992, p. 3-4). In the following the just described will be outlined in detail.

Black et al. (1972) groupN assets intoM equally sized portfolios P . As they empiri-
caly test the case of a single factor model (CAPM), the time-series (first-pass) regression
equation (1) shortens to:

11
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RPt = αP + βP1f1t + ϵPt, i = 1, ..., N, t = 1, ..., T, P = 1, ...,M, (16)

where

RPit = return on asset i in period t within portfolio P ,

fjt = the value of factor j in period t (CAPM: ft = market return of period t),

L = N
M
= number of assets within each portfolio P ,

ϵPt =
1
L

∑L
i=1 ϵPit = error term of the portfolio P ,

RPt = 1
L

∑L
i=1RPit.

RPt denotes the return of portfolio P in period t and is used as the response variable for
the OLS regression applied on (16), which estimates β̂Pit. At this point it should be men-
tioned that a slightly different notation to Black et al. (1972) is used. They denote ϵ as e,
however, since some of the formulas from section 2.2 are reused, e is already assigned to
the measurement error of β in this thesis.

They assume that ϵit are independently distributed and that the variance of ϵ is constant
for all i and t. Therefore, the variance of ϵ for a portfolio is

σ2(ϵPt) =
σ2(ϵ)

L
. (17)

Furthermore, β̂i is an unbiased OLS estimator containing sampling error ei. With the
assumption σ2(ϵi) = σ2(ϵ), it follows that

var(β̂i|βi) = σ2(ei) =
σ2(ϵi)

ϕ
=

σ2(ϵ)

ϕ
, (18)

where

ϕ =
T∑
t=1

(ft − f̄)2, (19)

and therefore in combination with equation (17),

var(β̂K |βK) = σ2(eK) =
σ2(ϵ)

Lϕ
, (20)

thus

σ2(ei) > plimL→∞
σ2(ϵK)

Lϕ
= 0 = σ2(eP ). (21)

Equations (18) to (21) prove the notion that portfolio betas can be estimated more
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accurately as the variance of the measurement error (e) diminishes for the portfolios P
when N grows infinitely, and therefore L as well, ifM is kept constant.

As a recap, in equation (17) Black et al. (1972) show that the variance of the error
term is smaller for a portfolio. This implies that the larger the number of assets L in one
portfolio, the smaller the variance of the error term ϵ of the portfolio in question. Further
on, in equation (18) they state that, with the assumption that the variance of the error
term ϵ is constant and independently distributed, the variance of the error term ϵ divided
by the variance of the explanatory variable f equals the variance of β̂1. This relation is
explained by Newbold, Carlson, and Thorne (2013, pp. 438-439). The properties of (17)
and (18) combined (as in equation (20) and equation (21)) then lead to the conclusion
that the measurement error emoves asymptotically towards 0 for an increasing number of
assets L within one portfolio.

However, the just described logic is only half the story. In order to prove that the form-
ing of portfolios actually improves the γ estimate (γ̂) within the second-pass regression,
Black et al. (1972, p. 49) make use of equation (14) in the following rearranged form:

plim γ̂1 = γ1

(
σ2
β1

σ2
β1

+ σ2
e1

)
=

γ1

1 +
σ2
e1

σ2
β1

. (22)

Plugging in the variables and findings from equation (21), equation (22) can be stated as
follows.

plim γ̂1P =
γ1P

1 +
σ2
e1P

σ2
β1P

=
γ1P

1 +
plim 1

L
σ2(ϵ)

ϕσ2
β1P

. (23)

Thus, as shown in (21) plimN→∞
1
L
σ2(ϵ) = 0 and therefore plimN→∞γ̂1 = γ1. How-

ever, Black et al. (1972, p. 49) stress the importance of the betas of the various portfolios
P being dispersed as much as possible. If this were not the case then

plimN→∞σ2
β1P

= plimN→∞
σ2
β1

L
(24)

would hold and cancel out L in equation (23) and therefore cancel out the convergence of
γ̂1 towards γ1 for large sample sizes.

While Jagannathan, Skoulakis, and Wang (2009, p. 75) acknowledge the effectiveness
of using portfolios in order to get more precise beta estimates, they also point out that one
has to avoid data snooping biases as discussed by Lo and MacKinlay (1990). They point
out the risk of inferences being flawed when properties of the data are used to structure
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the test statistics, which is the case when the portfolios are sorted by the estimated betas.
Black et al. (1972, p. 10-11,48) were already aware of this issue and took it into ac-

count by not using estimated betas of the period under scrutiny to form portfolios. They
used estimated betas from previous time periods, as these betas are assumed to be highly
correlated with the betas of the time period analysed and nevertheless are independent of
the measurement error e (Black et al., 1972, p. 9).

However, the data snooping bias goes beyond the error-in-variables mitigation method
by Black et al. (1972) and is considered to be problem for empirical research on factor
models. White (2000) argues that data snooping occurs when the same data is reused for
various models, eventually leading to a satisfactory result for one of the many models
tested. Within this thesis, the danger of data snooping mentioned by Jagannathan et al.
(2009, p. 75) should not be a concern as the model is not being adjusted within the sim-
ulation. Nonetheless, in the big picture, as White (2000) further elaborates, most of the
models relying on time-series, such as the three-factor model, are probably affected by
the data snooping bias. This problem is more pressing for empirical research as a whole
and not for the particular examination of the intercept restriction within the three-factor
model. Thus, following Black et al. (1972), the logic of the portfolio beta approach is
applied within this thesis.

To sum up, portfolio betas can be measured with less error than single stocks. In a
regression analysis, this effect would be offset if the portfolio betas would not vary across
the formed portfolios. In other words, a high dispersion of the portfolio betas is favourable.
Furthermore, it is important that the stocks are not grouped by the estimated betas of the
time period under scrutiny but rather by some variable highly correlated to the beta but
independent of the measurement error. For example, Black et al. (1972, p. 9) use beta esti-
mates from past data. Moreover, well dispersed betas lead to smaller standard errors in the
second-pass regression. These insights are considered in section 3, where the underlying
data is presented and used for the calibration of the simulation parameters. Before that,
the underlying model for the simulation approach is presented in the subsequent section.

2.4 The Fama French Three-Factor Model

The three-factor model introduced by Fama and French (1993) is one of the most popular
multi-factor models which dominate empirical research (Cochrane, 2001, p. 437). The
well-documented scientific discussion about this model is also the reason why it has been
chosen for the simulation approach in this thesis. The goal of this section is to describe the
characteristics of the three-factor model by contrasting it to the CAPM. As a fist step in
this section, the CAPM will be briefly discussed as it “paved the way” for the three-factor
model.
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The introduction of the CAPMby Sharpe (1964) and Lintner (1965) ignited the empiri-
cal research of asset pricing models (Fama& French, 2004, p. 25). According to Cochrane
(2001), it is “the first, most famous, and (so far) most widely used model in asset pric-
ing” (2001, p. 152). Naturally, due to the long lasting attention given to the CAPM, it has
been scrutinized by various researchers (Fama & French, 2004, pp. 30-37). Within the
extensive scientific discussion about the CAPM, extensional and alternative theories and
models have been introduced.

Among other reasons, the simplicity and intuitive appeal of the CAPM are key fac-
tors for its early popularity (Fama & French, 2004, p. 29). The CAPM equation is most
commonly stated in equivalent return-beta language as

E(Ri) = Rf + [E(RM)−Rf ]βiM , (25)

where it describes the expected return E(Ri) of asset i as a composite of the risk-free rate
Rf and the sensitivity to the market portfolio excess return (βiM ) times the market excess
return [E(RM)−Rf ] (Cochrane, 2001, p. 152).

However, as Fama and French (2004, pp. 35-36) point out, numerous studies question
the validity of the CAPM. Early tests find through

Rit −Rft = αi + βiM [RMt −Rft] + ϵit, (26)

as a regression model for the CAPM equation (25) that the intercept is greater than the
risk-free rate and that the slope of the market excess return (βiM ) is smaller than predicted
by the model (25) (2004, p. 32).

Furthermore, Fama and French (2004) point out that in more recent tests, starting with
Basu (1977) who shows that returns on stocks with a high earnings-price ratio yield higher
returns than predicted by the CAPM, the focus shifts to CAPM’s incapability to explain
variations in these average returns (2004, pp. 34-37). Findings, such as by Rosenberg,
Reid, and Lanstein (1985), who showed that the CAPM does not explain the higher than
average returns of stocks with a high book-to-market equity ratio (B/M), and findings by
Banz (1981), who demonstrated that average returns of stocks with small market capi-
talisation are higher than predicted by the CAPM, were synthesised by Fama and French
(1992). This research laid the foundation for the three-factor asset pricing model, written
as

E(Ri)−Rf = βiM [E(RM)−Rf ] + βiSE(SMB) + βiHE(HML) (27)

and commonly referred to as the Fama and French three-factor model. SMBt denotes the
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“difference between returns on diversified portfolios of small and big stocks” (in terms of
market capitalisation) andHMLt denotes the “returns on diversified portfolios of high and
low B/M stocks”(Fama & French, 2004, p. 38). The two additional betas are interpreted
as exposure to the two additional factors (Cochrane, 2001, p.81).

In order to illustrate that their own factor model is able to explain much of the variation
over time for portfolios with low and high B/M-ratios (value stocks) as well as portfolios
with low and high market capitalisation (size), Fama and French form 25 portfolios sorted
by size and value to get the required dispersion in their test data (1993, p. 10). Fama and
French (1996) ran time-series regression on the excess returns of these portfolios as

Rit = αi + βiM [RMt −Rft] + βS(SMBt) + βH(HMLt) + ϵit. (28)

If (27) perfectly captured the variation in average returns over time for each of the 25
portfolios then the pricing error α should result in 0 through the OLS of (28). Fama and
French reject the hypothesis that α is equal to 0. However, they further show that, based
on the same test statistics, the α of the three factor regression is much smaller (0.093) than
the α of the CAPM (0.286) (1996, p. 71). In other words, the three-factor model may not
be a perfect model, but it nevertheless captures a substantial part of variation of average
portfolio returns and substantially more than the CAPM.

Interestingly, even though they only use time-series regression, Fama and French’s
(1996) inferences are about the explanatory power of the model across assets. What they
show is that their model explains much of the variation of average returns for each of the 25
portfolios, which display substantially different average returns. In other words, they show
that their model is capable of explaining the returns for portfolios sorted by “anomalies”
that the CAPM could not explain, by achieving consistently low alphas, except for one
case (Fama & French, 1996, pp. 59,71)7. However, it seems necessary to point out that the
argument over the theoretical explanation for the empirically found relation between the
size factor, the value factor and the asset return is not settled. Fama and French themselves
describe the three-factor model as a “brute force construct” out of previous research which
indicated anomalies not captured by the CAPM (2004, p. 39).

In short, the Fama-French three-factor model is advantageous in terms of statistical
explanatory power (smaller α) and it is widely used. However, so far, the explanatory
power of the additional factors could not be explained through theoretical approaches. The
theory of the three-factor model implies that α should be zero. Imposing this restriction
on the first-pass regression as well imposing the restriction stated in formula (4) of section
2.1 on the cross-sectional regression are the foundation of this simulation study of which
the methodology is outlined in the subsequent section.

7Fama and French used cross-sectional regression analysis in one of their previous study (1992).
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3 Methodology

In order to study the effects of imposing the H0 restrictions on the three-factor model
within the two-pass approach, a data generating simulation has been carried out. The
concept of this simulation is based on simulations done by Bänziger and Gramespacher
(2015) as well as Shanken and Zhou (2007, pp. 54-57).

In a first step, the parameters for the simulation need to be calibrated. Both of the
aforementioned simulation studies use the 25 book-to-market and size portfolio provided
by French (2016). Once all the parameters have been calibrated, artificial returns are
generated on which the first- and the second-pass regressions are run. The process of
generating artificial returns and running the two regressions is repeated a number of times
(e.g. 10,000 times).

In order to outline this process in detail and to identify potential problems, the rest
of this section is structured as follows: first, the underlying data is presented. Then, the
calibration of the simulation parameters is introduced. Finally, each of the simulation steps
is described.

3.1 The Data

Bänziger and Gramespacher (2015) use the 5x5 value weighted book-to-market and size
portfolios and the excess return of the U.S. stock market portfolio from January 1964 to
October 2014. This data is continuously updated and made available by French (2016).
Within this analysis, 625 monthly average returns (from January 1964 to February 2016)
of the same 25 portfolios are used in order to calibrate the simulation parameters.

French (2016) constructs the data based on the procedure used by Fama and French
(1992, p. 429) when they tested variants of multi-factor models. They use observed factors
(value and size) from 6 months ago in order to assign the assets to the respective portfolio.
Therefore, the previously outlined selection bias is avoided (see Black et al., 1972, p. 9).
By sorting the assets into portfolios based on these historically observed factors, they
create 25 portfolios with dispersed average returns, as they account for the “anomalies”
found by the various researchers mentioned in section 2.4. The motivation of Fama and
French for this portfolio sorting is that they want to have test statistics displaying the
“anomalies” not explained by the CAPM, as they want to show that their three-factor
model captures more of the variations of average returns across assets (1996, p. 68).

In short, the fact that Bänziger and Gramespacher (2015) use the same data set as well
as the fact that the data set is well known (Shanken & Zhou, 2007, p. 54) are the reasons
why they are used within this simulation. In addition to the data used by Bänziger and
Gramespacher (2015), the two additional monthly observed factors are retrieved from the
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database provided by French (2016).

3.2 The Parameters

With the data introduced in section 3.1, the parameters for the simulation are now cal-
ibrated by using the whole observation period. This includes the statement of the true
values of the three factors, the estimation of the betas for the three risk-factors, the esti-
mation of the covariance of the error terms resulting from the beta estimations, as well as
the calibration of the covariance of the three factors. Each of these parameters are now
described in detail within this section.

The true value for the factor risk premium are γ1 = 0.4824 for the market factor,
γ2 = 0.2349 for the size factor (SMB) and γ3 = 0.3404 for the value factor (HML). These
values are simply the mean of the 625 monthly three-factors observed by French (2016).
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Figure 1: Three factor betas dispersion across 25 portfolios.

The estimated betas are illustrated in figure 1. It shows the dispersion of the estimated
betas for the three factors over the whole observation period. These betas are estimated
with an OLS time-series regression through the origin with the excess returns of the 25
portfolios as the regressand and the three factors as the regressor. Leaving out the intercept
for estimating the population betas is done in accordance with Shanken and Zhou (2007,
p. 55). Figure 1 indicates that themarket-beta βM does not capture much of the variation of
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the average portfolio returns (RP ) across the 25 portfolios, as it does not vary substantially
even though the average returns vary across the portfolios. In other words, the market-beta
explains a part of the portfolio return (unless γ1 = 0, which is not the case), but only little
of the variation of average returns across the portfolios. The two additional betas of the
three-factor model on the other hand, notably HML, seem to capture much of the variation
of the average market return across the 25 portfolios.

However, figure 1 also indicates a potential obstacle for the accuracy of the two-pass
method. In the analysis by Bänziger and Gramespacher (2015), where βM is the sole factor
for capturing the relation between the excess return of portfolio i and the excess return of
the market, the dispersion of this factor is substantial (from 0.8 to 1.4) (2015, p. 79).
Within the present analysis, most of the variation in βM is gone - it seems as though the
two additional factor capture the variation across the average portfolio returns (and more)
previously captured by βM . Thus, now that βM hardly varies across the 25 portfolios, it
seems reasonable to expect stronger effects due to the error-in-variables problem outlined
in section 2.3, notably the problem outlined in equation (23) and equation (24) about the
much needed dispersion of the portfolio betas within the second-pass regression.

Through the estimation of the betas, error terms for each of these regressions are ob-
tained. These are used to estimate the covariance matrixE of these error terms. Including
this parameter in the simulation allows to account for problems caused by correlation of
the residuals in the cross-sectional regression (Cuthbertson & Nitzsche, 2004, pp. 201-
202). Fama and MacBeth (1973) were among the first to address this problem with their
“rolling-regression” approach (Fama & French, 2004, p. 31). Fama and French (1992,
p. 39) themselves used a data generating simulation approach also capturing the effects
of residual correlation of cross-sectional regressions. In this sense, Bänziger and Grames-
pacher (2015) use a similar approach to Fama and French (1992), which will elaborated
in detail in section 3.3.

Finally, the covariance of the three factors is derived. This parameter is required to
generate the artificial returns within the simulation. As is described in section 3.3, the
generation of the returns is done by assuming that the three-factor model holds. Therefore,
when generating returns by applying the factor model, data sets of these three factors are
required to resemble the true data.

To sum up, the parameters for the data generating simulation are the true means of
the risk factors, the estimated betas of these factors for every portfolio, the estimated
cross-sectional covariance of the error-terms and the covariance of the three-factors among
themselves. All these parameters are derived out of the whole data set (625 monthly ob-
servations) and form the foundation of the simulation outlined in the subsequent section.
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3.3 The Simulation

The simulation is programmed in the statistical programming language R and can essen-
tially be divided into four parts. First, returns of the sample size T are generated. Second,
the returns are used as the regressand within the first-pass regression. Third, the coef-
ficients resulting from the first regression are used within the second-pass regression as
the explanatory variables and the returns as the regressand. These first three steps are
then repeated 9,999 times. Finally, the statistics are drawn from the 10,000 results. This
simulation can then be repeated for various sample sizes T . After a brief explanation on
the sizes chosen for T as well as the underlying assumptions concerning the distribution
of the artificially generated returns, the rest of this section is structured along the four
aforementioned steps. A detailed description of the R-code is available in the appendix.

As mentioned, the βM properties of the calibrated data are somewhat problematic.
Therefore, in addition to the sample sizes T1 = 60 and T2 = 120 chosen by Bänziger
and Gramespacher (2015), data sets for a sample size of T3 = 360 are simulated as well,
since the problem of error-in-variables should diminish with larger sample sizes (Shanken
& Zhou, 2007, p. 55). However, it is questionable whether the implied assumption that
betas are stationary over 360 months is appropriate (Bänziger & Gramespacher, 2015,
p. 78). Nonetheless, this additional loop of simulations should provide statistics to put
the expected error-in-variables problem of βM into perspective. For each T specification
(T1, T2, T3) 10,000 data sets are drawn.

Furthermore, for the generation of artificial returns, it is assumed that the returns
are normally distributed since Shanken and Zhou (2007, p. 55) as well as Bänziger and
Gramespacher (2015, p. 79) generate normally distributed returns within their simulation.
This assumption is regarded as a standard assumption (Shanken & Zhou, 2007, p. 55).
In addition, as done by Bänziger and Gramespacher (2015), it is assumed that the ob-
served returns are not serially-correlated and that the error variance is not related to the
explanatory variables (assumption of homoscedasticity). Cochrane (2001, p. 285) pro-
vides evidence that simulating returns which do not account for the heteroscedasticity and
auto-correlation of the underyling data is less of a problem when analyzing a factor model
through a two-pass approach8. To put it differently, since the simulation by Bänziger and
Gramespacher (2015) did not take into account these properties of the underlying data
and since there is evidence that the consequences are limited, the same assumptions are
made. Conversely, the cross-sectional correlation of the error terms will be considered
when simulating the artificial returns for the regression analysis.

In order to generate T returns, T sets of the three factors are required. These can be
generated by making use of the mvrnorm function available in the R library MASS. The

8Cochrane (2001, pp. 235-236) refers to the two-pass method as simply the cross-sectional regression.
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inputs are the true values of the three factors (γ1, γ2, γ3 as mentioned in section 3.2) as well
as the covariance among themselves over all 625 observations. The resulting Tx3 matrix
F contains T normally distributed sets of the three factors. F is then used to simulate T
returns for the 25 portfolios.

Moreover, since the returns to be generated are supposed to reflect the properties of
the true data, the previously estimated covariance of the error term is taken into account.
Since the error terms are assumed to be independent over time, the artificial error terms
can be generated through the use of the mvrnorm as well. The resulting TxN matrix S is
created with the estimated covariance of the residuals E and a mean of 0 9. However, by
imposing the assumption of homoscedasticity and non-serial correlation, the test statistics
do not reflect all properties of the observed data. The data generating equation takes the
form

FB′ + S = R, (29)

where B is a 25x3 matrix and contains the estimated betas when estimated for the whole
observation period (as depicted in figure 1). These generated returns R are now being
used within the two-pass approach. A detailed description of the data generating process
is provided in the appendix. Once the returns have been simulated, the two regressions
can be run on these returns.

With the three-factor model as the underlying model, the first-pass regression takes
the form

Ri,t = αi + βi1f1t + βi2f2t + βi3f3t + ϵit, i = 1, ..., N, t = 1, ..., T, (30)

where f1t = return of the market portfolio in excess to the risk-free rate, f2t = the size
factor (SMB) and f3t = the value factor (HML) of period t. All other variables are defined
as in (1). Consequently, the second-pass regression takes the form

R̄e
i = γ0 + γ1β̂i1 + γ2β̂i2 + γ3β̂i3 + ui, (31)

where all variables are defined as in section 2.1.
As two methods are applied for the first-pass regression, two sets of T beta estimates

(loading factors) are generated in the first-pass regression. Thereafter, the resulting two
sets of loading factors are run in the second-pass (cross-sectional) regression, again with
and without the intercept restriction. Thus, four sets of risk premium estimations are gen-
erated for every loop. After storing the derived results in a matrix, the whole process is

9As stated in equation (1) E(ϵi,t) = 0.
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looped 9,999 times. Once this process is finished, the averages of the 10,000 results are
compared with the true values in order to examine whether the various estimation methods
perform well. A detailed description of this process is provided in the appendix.

As outlined in section 3.2, the dispersion of the two additional betas in figure 1 might
lead to small biases. However, it might not be desirable to have small error-in-variables
biases when the goal is to study possiblemitigation effects for them. Or to put it differently,
in order to study the effect on the bias, there has to be a bias. Therefore, in addition to the
standard simulation, one run for the T = 60 sample size is carried out with the estimated
covariance across the residuals multiplied by the factor 100. The magnitude of this factor
is chosen arbitrarily. This should lead to higher measurement errors, since the residual
variance is the cause for the measurement error of the portfolio betas (Cochrane, 2001,
p. 434).

To sum up, within this simulation returns are generated that reflect the true properties
of the observation period in terms of cross-sectional correlation across the error-terms of
the beta estimates. In addition, the covariance of the three factors among themselves is
also taken into account within the data generating process. The data is generated with
the assumption that the returns and error terms are normally distributed. The error terms
are assumed to be independent over time but not across assets. The generated returns and
the underlying calibrated parameters are the foundation to run the first- and second-pass
regression multiple times. This set-up enables the analysis of the effects of imposing the
restriction that α = 0 within the first-pass regression and the restriction γ0 = 0 within the
second-pass regression. In the following section, the results of this simulation approach
are presented.

4 Simulation Results

This section is structured in the following way: in the first part, the findings are sum-
marized. For this purpose, all the estimation results are presented in a tabular structure.
Then, in order to verify whether the simulation results are reasonable, the results of the
case where the first- and second-pass regressions are run with intercepts is analyzed. Com-
prehensive results for this method are made available by Shanken and Zhou (2007). By
comparing the results to their study, it is discussed whether the obtained results in this
thesis are reasonable for the method where no intercepts are omitted . Further on, the ex-
tended simulation results (regression through the origin in at least one of the regressions)
are displayed and contrasted to both Bänziger and Gramespacher (2015) and Shanken and
Zhou (2007). In a second part, the findings are discussed.
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4.1 Findings

The results of the simulation are displayed in table 1. It shows the means of all 10,000
estimates for the intercept (γ0), the market premium (γ1), the size premium (γ2), the value
premium (γ3), as well as all the corresponding standard deviations of these 10,000 esti-
mated coefficients. The simulation was carried out for three different sample sizes (T=60,
T=120, T= 360). The column “Method” states the methods for the first-pass regression
(before the comma in the abbreviation) and the second-pass regression (after the comma
in the abbreviation). “w/” means with intercept and “w/o” means without intercept.

The method “w/, w/” in the first row of table 1 corresponds to the method applied by
Shanken and Zhou (2007, p. 64). The estimation results within this thesis are similar to
their results in terms of direction of the bias and asymptotic behaviour for growing sample
sizes T . The bias of the estimated premiums is the strongest for the smallest sample size
(T=60), of which the market-premium (γ1) contains the most pronounced downward bias.
The average of the 10,000 γ1 estimates is 42% lower than the true value. The other two
premiums are underestimated by 3.04% (γ2) and 4.29% (γ3). These discrepancies decrease
with an increasing sample size T . However, even when the sample period is 15 years (T
= 120), the estimated intercept is still substantially greater than zero.

Unfortunately, Shanken and Zhou (2007) do not fully state their numeric results for
their cross-sectional estimations in the case of three factors. However, they do display the
results for the one-factor case (CAPM) and find that the intercept estimation as well as
the market-premium are qualitatively equal to the findings of the one-factor case. They
observe that the biases are larger in the case of three factors and the standard deviation of
the estimates are smaller than in the case of the CAPM (Shanken & Zhou, 2007, p. 63).
The results presented in the first row of table 1 feature the just mentioned properties when
compared to the one-factor results of Shanken and Zhou (2007, p. 56) as well as to the
results of Bänziger and Gramespacher (2015, p. 80).
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Table 1: Results of Four Estimation Methods

Length of Time Series
T = 60 months T = 120 months T = 360 months

Method Estimate Mean SD Mean SD Mean SD
w/ , w/ γ0 0.21713 0.8021 0.13112 0.62802 0.04901 0.3865

γ1 0.27836 0.8699 0.37019 0.70660 0.43562 0.4443
γ2 0.22775 0.4086 0.23590 0.28711 0.23301 0.1663
γ3 0.32580 0.3708 0.33410 0.26272 0.33832 0.1538

w/o , w/ γ0 -0.00425 0.7180 -0.00048 0.5867 0.00018 0.3683
γ1 0.48377 0.9177 0.49282 0.7148 0.47965 0.4369
γ2 0.23972 0.4130 0.24081 0.2883 0.23467 0.1664
γ3 0.34095 0.3780 0.34277 0.2650 0.34119 0.1540

w/ , w/o γ1 0.48368 0.5781 0.49438 0.4134 0.48201 0.2379
γ2 0.24054 0.4103 0.23954 0.2884 0.23434 0.1669
γ3 0.33530 0.3707 0.33708 0.2624 0.33945 0.1537

w/o , w/o γ1 0.47970 0.5791 0.49240 0.4135 0.48140 0.2377
γ2 0.24187 0.4144 0.24086 0.2894 0.23473 0.1668
γ3 0.34024 0.3779 0.34271 0.2649 0.34122 0.1540

Note: Monthly values in percent - abbreviation “w/” stands for regression with intercept. Abbre-
viation “w/o” stands for regression without intercept. The abbreviation before the comma states
the method for the first-pass regression, the latter the method for the second-pass regression. For
each sample size length, T = 10,000 data sets were generated. SD = standard deviation. The true
values: γ0 = 0, γ1 = 0.4824, γ2 = 0.2349 and γ3 = 0.3404.

Shanken and Zhou (2007, pp. 64-65) display their results for the value premium and
state that the size premium estimation results were qualitatively the same. The results
are similair to the results of this thesis for the value premium (γ3) estimated with the
“w/, w/” method. The relative underestimation of the value premium in the “w/, w/”
method with T = 60 is 0.04% greater than the one of Shanken and Zhou (2007, p. 64).
However, the absolute comparison of these values is probably flawed, as Shanken and
Zhou (2007, p. 55) use substantially different calibration values for their simulation and
observe a slightly shorter time period. Furthermore, they do not give the numerical results
of the size premium, but state that they are qualitatively similar to the value premium
(Shanken & Zhou, 2007, p. 63). This is also the case for the results shown in table 1.

To sum up, the estimations are biased for the “w/, w/” method. The bias is the strongest
for γ1. The bias diminishes with larger sample sizes T . The results are in line with the OLS
method by Shanken and Zhou (2007, pp. 54-64), which is considered a strong indication
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that the simulation within this thesis is well-defined. With this insight, the results of the
extensional methods are now be presented.

Figures 2 through 7 illustrate the rest of the results stated in table 1. They are displayed
in pairs. Each pair presents the results for one type of risk premium. Figures 2 and 3
display the estimations of γ1, figures 4 and 5 display the estimations of γ2 and figures 6
and 7 display the estimations of γ3. The figures on the left of each pair display the results
for the sample size T = 60. Consequently, the three figures on the right display the results
for the sample size T = 120. Each figure depicts the estimations for the four methods.
The results form the T = 360 simulation run are left out, as its main purpose was to
verify whether the simulation would behave, as expected for large sample sizes, which is
the case. Finally, the results for the simulation run with a distorted covariance estimation
of the residuals (multiplied by the factor 100) are graphically displayed in figures 8 and
9. The numeric results for the latter are not shown. The rest of the findings presentation
follows the order of these 8 depictions.
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Figure 2: γ1 estimate, sample size T = 60.
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Figure 3: γ1 estimate, sample size T = 120.

Figures 2 and 3 illustrate three things prominently: first, they highlight the strong
downwards bias of γ1. Second, similar to Bänziger and Gramespacher (2015, p. 80),
forcing at least one of the regression through the origin decreases the bias of the average
simulation estimate substantially. And finally, estimating the factor-risk premium without
an intercept in the second-pass regression decreases the standard deviation of the estimate

25



Estimating Multi-Beta Pricing Models Simulation Results

●
●

●
●●●
●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●
●
●●●

●●

●●

●
●
●

●

●●●

●

●●
●●●

●
●

●

●

●
●

●●

●●

●●●
●
●●●

●●

●

●

●
●

●

●

●

●●●

●

●

●●●

●

●

●

●●●
●
●

●●

●●

●●

●

●

●

●

●

●●

●
●●●●

●●

●●

●
●
●

●

●●●

●

●●●●●

●
●
●

●
●

●●

●
●

●●●●
●●●

●●

●

●

●
●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●●●
●
●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●
●
●
●●

●●

●●

●
●
●

●

●
●

●

●●●
●●

●
●

●

●
●

●●

●●

●●

●●●
●

●

●

●●

●●
●

●
●

●

●

●

●●

●

●

●●●

●

●

●●

●●●
●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●●●●

●●●

●●

●
●
●

●

●
●

●

●●●●●

●
●
●

●
●

●●

●

●●●
●

●

●

●●

●●

●

●

●
●
●

●

●

●

●●

●

●

●●●

w
/, 

w
/

w
/o

, w
/ 

w
/, 

w
/o

 

w
/o

, w
/o

 

−4

−2

0

2

4
T = 60 , NumSim = 10000

γ 2
 (i

n 
%

)

0.23

Figure 4: γ2 estimate, sample size T = 60.
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Figure 5: γ2 estimate, sample size T = 120.
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Figure 6: γ3 estimate, sample size T = 60.
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Figure 7: γ3 estimate, sample size T = 120.
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Figure 8: γ2 estimate, sample size T = 60 with
distorted residual covariance.
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Figure 9: γ3 estimate, sample size T = 60 with
distorted residual covariance.

substantially. In other words, the mitigating effects shown by Bänziger and Gramespacher
(2015) also occur for the market risk premium, even when it is not the only explanatory
factor within the second-pass regression.

Figures 4 to 7 highlight similar patterns for γ2 and γ3. The four figures show that the
standard deviation of the estimates diminishes with larger sample sizes (T ). However,
these premium estimations seem to be indifferent to forcing the first- or second-pass re-
gression through the origin. No clear reduction of a downward bias can be observed nor
does leaving out the intercept in the cross-sectional regression lead to a smaller standard
deviation for the estimates. However, the numeric display of the results in table 1 show
small reductions in the bias when the constant in the first- or second-pass regression is
omitted. This could be an indication that if the bias of the two additional premium esti-
mates would be larger the mitigating effect on the bias would be clear. In contrast, the
numeric results in table 1 do not yield evidence for a mitigating effect on the standard
errors of the two additionally estimated premiums.

Figures 8 and 9 depict the case of exaggerated cross-sectionally correlated error terms.
Strong limitations for this extra simulation are given in the discussion and the conclusion.
Nonetheless, it indicates that when a clear bias exists, leaving out the intercept in the
cross-sectional regression leads to substantially more accurate estimations. However, the
estimates of γ3 does not improve within the method “w/, w/o” whereas this is the case for
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the estimates of γ2. Furthermore, no indication is visible that leaving out the intercept in
the second-pass regression leads to smaller standard errors of the estimates.

In short, the results indicate that omitting the intercept in at least one of the two regres-
sions decreases the bias of the γ1 estimates. Furthermore, leaving out the intercept in the
second-pass regression leads to a smaller standard deviation for the γ1 estimates. The mit-
igating effect of omitting the constants in at least one of the two regressions is less clear for
the size and value premium estimation, since the estimation bias of these two premiums
is already small without omitting the intercept in either of the regressions. Moreover, the
standard errors of the size and value premium are not reduced when omitting the intercept
in at least one of the two regressions. Lastly, in accordance with the studies of Bänziger
and Gramespacher (2015) as well as Shanken and Zhou (2007), the bias in the estimates
and the standard errors of the estimates diminish for larger sample sizes.

4.2 Discussion of the Simulation Results

This simulation is an extension to the simulation by Bänziger and Gramespacher (2015)
in terms of factor and it is an extension to the simulation by Shanken and Zhou (2007)
in terms of estimating the first- and second-pass regression without constants. In order
to contrast the findings of this thesis with the two aforementioned studies, this section is
structured in the following way: first, the “w/, w/” method is discussed. Then, the findings
are discussed in the order of figure 2 to figure 9.

The comparison between the “w/, w/” results and the results of Shanken and Zhou
(2007) indicate that the simulation is set-up properly. The results vary in the same way
for different sample sizes T and the relative magnitude of the bias are alike. For example,
the downward bias of γ1 is by far the most serious bias and all the biases diminishes for
larger sizes of T . Furthermore, the comparison of the results to the results of Bänziger and
Gramespacher (2015) shows that the bias of γ1 is substantially larger for the three-factor
model than for the CAPM, which is in line with the findings of Shanken and Zhou (2007).
However, the similar results for the same method are no proof that the simulation is well
specified. Nonetheless, it is considered a strong indication for this notion.

The estimation results of γ1 (depicted in figures 2 and 3) are qualitatively similar to the
findings of Bänziger and Gramespacher (2015). The market premium estimation bias de-
creases for larger sample sizes T and leaving out the intercept in one of the two regressions
leads to substantially more accurate estimates for γ1. Furthermore, if the cross-sectional
regression is estimated without a constant, then the standard deviation of the estimates of
γ1 decrease considerably.

An explanation for the stronger downwards bias of γ1 within the three-factor model
might be the insufficient dispersion of the market beta shown in figure 1. As mentioned
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earlier, Black et al. (1972, p. 49) stressed the importance of the betas of the various portfo-
liosP being dispersed as much as possible, as otherwise forming portfolios and generating
more accurate beta measures for the individual portfolios are in vain. Within this simu-
lation, there is still some variation across the market betas of the portfolios; however, the
reduced variation might have caused the bigger downward bias for the γ1 estimate. How-
ever, with the logic of the little dispersion, the question arises why the standard deviation
of the market premium estimates are not larger than in the results of Bänziger and Grames-
pacher (2015), since by the logic of Black et al. (1972), outlined in section 2.3, one might
expect the standard errors to be larger when the dispersion of the beta in question is lower.
This thesis does not provide an answer on this. A possible explanation could be that within
this simulation the interdependence of the three factor might have mitigated this problem.

Yet again, these elaborations are solely an attempt to explain the results rather than
a proof. In other words, as shown in section 2.3, the lower dispersion most likely has
an impact on the directional bias, but other effects are not ruled out by this. Overall, the
estimation results for γ1 behave similarly to the results of Bänziger and Gramespacher.

The case for the estimation of the two additional risk premiums (depicted in figures
4 to 7) is different. The results do not show a mitigating effect on the standard error of
the estimates by running the cross-sectional regression without an intercept. Furthermore,
the error-in-variables bias is already hardly observable for the “w/, w/”; therefore, the
observation whether omitting the intercept in at least one of the regressions leads to less
biased estimates of γ2 or γ3 is less clear. It seems as though the trade-off described by
Cochrane (2001, p. 26) between efficiency and robustness does not apply for these two
additional factors. In other words, the reduction in robustness by imposing the restriction
that the constant should be zero does not yield more efficient estimates.

Figures 8 and 9 illustrate that leaving out the intercept in the second-pass regression
decreases the bias of the estimates in a similar fashion to the case of the estimations for γ1
when the bias is stronger. However, the case of γ3 with the “w/, w/o” estimation method
does not match the other observations. A possible explanation approach could be the fact
that only one simulation parameter has been meddled with. Therefore, many interdepen-
dencies of the various parameters and estimations are distorted with impacts not detected
in this simulation. At this point, no explanation has been found for this different estima-
tion result between the two risk premiums. In general, this additional simulation bases
on a extreme manipulation of one factor, therefore these additional results can at most be
considered as an indication.
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5 Conclusion

Within this simulation, further evidence is provided on the effects of running the first-
and/or the second-pass regression of the two-pass method without a constant. The simu-
lations carried out by Bänziger and Gramespacher (2015) are extended with two additional
risk factors. Instead of the CAPM, the Fama and French three-factor model has been esti-
mated. Furthermore, the simulation can also be considered an extension to the simulations
made by Shanken and Zhou (2007). In fact, one of the methods simulated is very close to
one of their simulations. The comparison of the results of the method used in this thesis
with the results of Shanken and Zhou (2007) indicates that the simulation is well specified,
at least for the method in question.

Similar to Bänziger and Gramespacher (2015), the estimation results suggest that leav-
ing out the intercept in at least one of the regressions decreases the bias of the market-risk
premium estimates, as well as their standard deviation. However, the results for the size
and value factor premiums are less clear. The biases of these two factors seem to be
substantially smaller than the bias of the market-risk premium. Since the average of the
estimates is already close to the true value (small bias) for the two additional factors, the
additional simulation methods did not yield clear evidence for a smaller bias in the estima-
tion of the size and value premium when leaving out intercepts. Moreover, the standard
deviation of the size and value premium estimates does not decrease when omitting the
intercept in either of the two regressions.

In order to retrieve more pronounced results for the mitigating effect on the bias, future
research could achieve stronger biases in their test statistics by using different underlying
data. As Cochrane (2001, p. 443) points out, there is no particular reason for choosing the
portfolios used within this thesis despite its popularity. As outlined in section 2.4, a factor
model should be able to explain any kind of dispersion of average returns across different
portfolios. Different data might lead to less well dispersed betas for the three factors and
therefore might lead to stronger biases in the estimates of the size and value risk premium.
This would make meddling with the simulation parameters in order to get stronger biases
obsolete.

As for the standard error reduction, one might consider trying to explain why the stan-
dard deviation of the γ2 and γ3 estimates do not decrease when the cross-sectional regres-
sion is run without a constant. The answer might lie in the fact that the two additional
factors were, unlike the market premium, found empirically (as outlined in section 2.4).
Therefore, by intuition, it could be questionable whether factors which were found when
empirical researchers “hunted” for factors that fit a model with theH0 assumption ofα = 0

are even sensitive to imposing this restriction.
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All in all, this thesis provides evidence, that leaving out the intercepts within the two-
pass approach is hardly beneficial in terms of reducing the bias in the estimates for the
size factor premium or the value factor premium, since the biases are already relatively
small without omitting the intercepts. The theoretical attempt to explain the smaller bi-
ases is that the data used within this simulation exhibits well dispersed betas for the two
additional factors, which is beneficial to the accuracy of their measurement within the
simulation. Furthermore, omitting the intercepts does not lead to smaller standard errors
of the estimates for the size and value premium. Even if leaving out the intercept is not
necessary in order to get better measurements for the two additional factors, in the big
picture, omitting the intercept when estimating the three-factor model through a two-pass
approach could be a viable option, as the bias of the market factor premium estimate de-
creases substantially for small sample size estimates. However, the trade-off mentioned
by Bänziger and Gramespacher (2015) between efficiency and robustness still applies. In
fact, the “deal” became worse in the case of the three-factor model, since the estimates of
the two additional premiums became less robust without any clear efficiency gain. In the
end, similar to Bänziger and Gramespacher (2015), the standard errors of the estimates are
substantial in all of the methods applied. Therefore, drawing statistical conclusions from
the two-pass method continues to be a delicate task.
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Appendix: R-Code Simulation
In this section, the R-code of the simulation is described in detail. It is the complete
simulation code. First, the input format of the data as well as the required inputs are briefly
described. Next, the initialization of the simulation properties as well as the calibration
of the parameters is outlined. In a third step, the data generating process is displayed in
detail, followed by the description of the two regression steps. Finally, for the sake of
completeness, the code utilized for visualizing the results is added. However, since the
focus lies on the simulation part, the last part is only accompanied by in-code comments.

As the underlying data, the 5x5 portfolio return data10 as well as the corresponding
factor data11 for the three-factor model provided by French (2016) is used. In order to get
the code working, one should store a CSV table of the 5x5 portfolio data which solely
contains the observation dates (e.g. “012016” for January 2016) in the first column and
the return data of the N(= 25) portfolios in columns 2 to 26. It is important that the
headers be included and equal to the headers chosen by French (2016). The code below
indicates what simulation inputs have to be chosen. T denotes the sample size to be drawn
NumSim times. For example, within this thesis 10,000 data sets have been generated for
three sizes of T . It is important that

T > (N +K)

holds, else the matrix inversions such as on code-line 116 will return an error.

Listing 1: Data and Initializing

1 #*************************************#
2 #Data:
3 #*************************************#
4
5 environmentName ( ” Globa l Envi ronment ” )
6 # Dataset: 01 - 1964 - 02 2016
7 # 25 Portfolio Data retrieved from http: / / mba.tuck.dartmouth.edu / pages /

faculty / ken.french / ftp / 25_Portfolios_5x5_CSV.zip
8 # The downloaded file contains more data than necessary , all data

should be deleted apart from the "Average Equal Weighted Returns --
Monthly" for each of the portfolios and the timeline in the first

row and the headers for the 25 portfolios are kept.
9 Data5x5 <− r e ad . csv ( ” Data / 25_ P o r t f o l i o s _5x5 . csv ” ,TRUE)

10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/25_Portfolios_5x5
_CSV.zip

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data
_Factors_CSV.zip
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10
11 #Data retrieved from http: / / mba.tuck.dartmouth.edu / pages / faculty / ken.

french / ftp / F-F_Research_Data_Factors_CSV.zip
12 #The same is repeated for the 3 Factor , all data should be deleted

apart from the monthly factors , the time line in the first row and
the headers of the three -factor columns.

13 #If the header of the each column are stored with the original column
headers then:

14 #Data3x3$Mkt.RF refers to the 625 observations of the market factor ,
15 #Data3x3$SMB refers to the 625 observations of the size factor and
16 #Data3x3$HML refers to the 625 observations of the value factor.
17 Data3x3 <− r e ad . csv ( ” Data / F−F_Resea r ch _Data _ F a c t o r s . c sv ” ,TRUE)
18
19
20 #*************************************#
21 #Initialisations:
22 #*************************************#
23
24 #NumSim denotes the number of data sets to be drawn within one complete

simulation.
25 NumSim <−10^4
26
27 # T denotes the sample size of the NumSim drawn data sets.
28 T <−60
29
30 #N number of portfolios to be analized.
31 N <− 25
32
33 #Initializing matrix F, it is used to store the T sets of generated

factors with the mvrnorm function.
34 F <−ma t r i x ( 0 ,T , 3 )
35
36 #Initializing result matirces for gamma 0 (if applicable), 1,2 and 3
37 #The first "c or o" indicates whether the first -pass regression is run

with constant (c) or without (o).
38 mat .Gamma . mean . cc <− ma t r i x ( 0 , NumSim , 4 )
39 mat .Gamma . mean . oc <− ma t r i x ( 0 , NumSim , 4 )
40 mat .Gamma . mean . co <− ma t r i x ( 0 , NumSim , 3 )
41 mat .Gamma . mean . oo <− ma t r i x ( 0 , NumSim , 3 )
42
43 #Matrix to store all betas estimated over the whole observation period.
44 #Referred to as matrix "B" in the text.
45 B = ma t r i x ( 0 ,N, 3 )
46
47 #Matrix where all the residuals of the beta estimation over the whole
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observation period is stored
48 #Referred to as matrix "E" in the text
49 Res = ma t r i x ( 0 , NROW( Data3x3 ) , N)
50
51 #mat.3F denotes the observed covariance between the 3 factor for the

whole observation period.
52 mat . cov3F <−ma t r i x ( 0 , 3 , 3 )

The parameters to be calibrated are:

• True values of γ1, γ2, γ3: The true mean of the whole observation period of the three factors
(mean of the market portfolio excess return (Mu_f = true γ1), mean of the size factor
(Mu_smb= true γ2) and the mean of the value factor (Mu_hml = true γ3) as shown in
code-lines 58 to 64).

• The covariance of these three factors is evaluated and stored in the matrix mat.3F (code-
lines 67,68).

• B: The estimation of the betas of the three factors for the whole observation period. This
is achieved by running a time-series regression on the return data-series for each portfolio
with the observed factors as the explanatory variables. For this purpose, the function lm()

is applied within a 1 to N loop to estimate the betas for every single portfolio and to store
the results in matrix B (code-line 78). This function slows the whole simulation down
substantially compared to applying pure matrix algebra, as it calculates many more results
besides the coefficients. However, speed is not of concern for this simulation. One might
adjust this if more than 100,000 simulation sets should be drawn. Furthermore, as mentioned
in section 3.2, the estimation of the betas without an intercept is done in accordance to the
two underlying simulation studies.

• E: The just mentioned regressions are also used to derive the residuals of each estimation.
Of these residuals the covariance among them is estimated and stored in matrixE as shown
in code-line 87.

Listing 2: Calibration of Parameters

53 #*************************************#
54 #Calibration of the Parameters:
55 #*************************************#
56
57 # Mean of market portfolio return.
58 Mu_ f <− mean ( Data3x3 $Mkt . RF)
59
60 # Mean of value factor.
61 Mu_hml <−mean ( Data3x3 $HML)
62
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63 # Mean of size factor.
64 Mu_smb <−mean ( Data3x3 $SMB)
65
66 # Deriving covariance matrix of the three factors Excess return of

market portfolio , size factor and value factor.
67 mat . 3 F <− ma t r i x ( c ( Data3x3 $Mkt . RF , Data3x3 $SMB, Data3x3 $HML) ,NROW( Data3x3

) , 3 )
68 mat . cov3F <− cov ( mat . 3 F )
69
70 #Estimation of the true portfolio betas for all 25 portfolios:
71 #Loop to estimate the "true" beta of the three factors for each

individual portfolio.
72 #Portfolio number = i + 1, since the first column of Data5x5 contains

dates. (eg. 20162)
73 f o r ( i i n 1 :N) {
74 #Running time-series regression on whole observation period to

estimate the three betas.
75 lm . r e s u l t <− lm ( Data5x5 [ , ( i +1) ] ~0 + Data3x3 $Mkt . RF + Data3x3 $SMB +

Data3x3 $HML)
76
77 #Storing the estimated betas for the N portfolio in matrix B.
78 B[ i , ] <− c ( lm . r e s u l t $ c o e f f i c i e n t s [ [ 1 ] ] , lm . r e s u l t $ c o e f f i c i e n t s [ [ 2 ] ] ,

lm . r e s u l t $ c o e f f i c i e n t s [ [ 3 ] ] )
79
80 #Storing the residuals of the Beta-estimates for the 25 portfolio in

matrix Res.
81 Res [ , i ]<−lm . r e s u l t $ r e s i d u a l s
82 }
83
84 # Estimating the covariance of of the residuals across the N Portfolios

.
85 # Storing the result in matrix "E"
86 # Uncomment "*100" in order to create distorted data sets.
87 E <− cov ( Res ) #*100

Once all the parameters are calibrated, the return data R is generated. In order to generate
T returns, T sets of the three factors are required. These can be generated by making use of the
mvrnorm function available in the libraryMASS12. The inputs are the true values of the three factors
as well as the covariance among themselves (mat.3F ) over all 625 observations. The resulting
Tx3 matrix F (code-line 101) contains T normally distributed sets of the three factors. F is then
used to simulate T returns for the 25 portfolios in the following way.

FB′ + S = R, (32)
12This library is a part of the environment of the R-project programming language.
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To illustrate that this return generating process is well defined, the matrix algebra for equation
(32) is explained in (33) to (34) by following Wooldridge (2013, p. 802). This algebra corresponds
to the code-lines 88 to 108.

FB′ =


f11 f12 f13

f21 f22 f23
...

...
...

fT1 fT2 fT3

 ∗


β11 . . . β1N

β21 . . . β2N

β31 . . . β3N

 =

 ∑3
k=1 fikβkn

 (33)

Where

i = 1, ..., T and n = 1, ..., N

fi1 = ith generated market factor

fi2 = ith generated size factor

fi3 = ith generated value factor

β1n = observed market beta of nth portfolio

β2n = observed size beta of nth portfolio

β3n = observed value beta of nth portfolio∑3
k=1 fikβkn is the (i, n)th element of the TxN matrix FB’ and equals to the ith simulated

return of portfolio n without an error term.

For example, the element (1, 1) of the FB′ matrix equals

3∑
k=1

f1kβ1n = f11β11 + f12β21 + f13β31, (34)

At this point, the FB′ matrix contains T generated portfolio returns for N portfolios. How-
ever, so far, the simulated returns do not contain any error terms, which would be an unrealistic
assumption for the test statistics since in the underlying data, error terms most likely exist and they
are cross-sectionally correlated. Therefore, randomly normally distributed error terms are gener-
ated by using themvrnorm function again. The means are 0 and they covary as estimated in matrix
E. The output of the function is the matrix TxN matrix S, which contains the T cross-correlated
error terms e forN portfolios. Thus, the final generated returns of matrixR in equation (29) denote
as

R =

 ∑3
k=1 fikβkn

+ S =

 (
∑3

k=1 fikβkn) + ein,

 (35)

where all the previous variables are defined as in equation 33 and ein is the (in)th element of the
matrix S. In other words, ein is the error term for the ith generated return of the nth portfolio.
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Since for the second-pass regression, the averages of the T generated returns for all N portfolios
are used instead of the N return vectors, R̄ is computed (as shown in line 108).

Listing 3: Generation of Returns

88 #*************************************#
89 #Simulation:
90 #*************************************#
91 #In order to be able to make use of the mvrnrom function the MASS

library has to be loaded.
92 l i b r a r y (MASS)
93
94 #Running NumSim loops
95 f o r ( k i n 1 :NumSim) {
96
97 #------------------------------#
98 # Generating Returns:
99

100 # Generating T artificial samples of multivariate normally
distributed risk-factors , taking into account the observed
covariance of these three factors among themselves.

101 F <− mvrnorm (T , c (Mu_ f ,Mu_smb ,Mu_hml ) , mat . cov3F )
102
103 # Generating artificial samples of multivariate normally distributed

error -terms , taking into account the observed covariance of these
error terms accros the N portfolios with mean = 0.

104 S <− ( mvrnorm ( n = T , r ep ( 0 ,N) , E ) )
105
106 # Generating T artificial returns for N portfolios based on the

previously generated factors and the true betas and adding
artificially generated error terms which are correlated accros
the 25 portfolios.

107 R <− ma t r i x ( F%*%t (B) +S , T ,N)
108 R . ba r <− ma t r i x ( app ly (R , 2 , mean ) ,N, 1 )

Now that T returns with cross-sectional correlation in the residuals are generated for the N
portfolios, the first-pass (time-series) regressions are run on the returns in matrix R, with and
without the intercept restriction. Therefore, for every drawn data set, the betas are estimated in
two ways. If the betas are to be estimated without a constant, F takes the form


f11 f12 f13

f21 f22 f23
...

...
...

fT1 fT2 fT3

 , else the form


1 f11 f12 f13

1 f21 f22 f23
...

...
...

...
1 fT1 fT2 fT3

.
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The corresponding adjustment of the F - matrix is displayed on code-lines 114 and 120. The betas,
as the OLS estimator, of the first-pass regression can be derived in the following way in the case
of a multivariate OLS regression (Wooldridge, 2013, p. 802).

β̂ = (F ′F )−1F ′R (36)

The matrices F and R are defined as before. Generally speaking, the resulting β-estimate
matrix takes the following form (N = 25,K = 3).

β̂o =


β̂11 β̂12 β̂13

β̂21 β̂22 β̂23
...

...
...

β̂31 β̂32 β̂NK

 or, β̂c =


c1 β̂1,1 β̂1,2 β̂1,3

c2 β̂2,1 β̂2,2 β̂2,3
...

...
...

...
c25 β̂25,1 β̂3,2 β̂NK

 .

They contain the estimates of the three factor betas for the N portfolios estimated on T simu-
lated returns inR of the corresponding portfolio. β̂o is computed in code-line 116 (mat.beta.est.o123)
and β̂c is computed in code-line 124 (mat.beta.est.c123). Both of the matrices had to be trans-
posed in order to have the right dimensions for the second-pass regression.

Listing 4: Estimation of Betas

109 #------------------------------#
110 #Estimating Betas With and Without
111
112 #Estimating betas with an intercept.
113 #Re-assigning F matrix in order to make sure that it has the right

porperties to run the first -pass OLS regression without an
intercept.

114 F <−ma t r i x ( F , T , 3 )
115 #Regression on T artificially generated returns R for N portfolios ,

with the T generated sets of the 3 factors stored in matrix F.
116 mat . b e t a . e s t . o123 <− t ( ma t r i x ( ( s o l v e ( t ( F )%*%F ) )%*%t ( F )%*%R, 3 ,N) )
117
118 #Estimating betas without an intercept
119 #Re-assigning F matrix in order to make sure that it has the right

porperties to run the first -pass OLS regression without an
intercept.

120 F <− ma t r i x ( c ( r ep ( 1 ,T ) , F ) ,T , 4 )
121
122 #Regression on T artificially generated returns R for N portfolios ,

with the T generated sets of the 3 factors + a constant (1) stored
in matrix F.

123 #Only the coefficients of this regression are stored in mat.beta.est.
c123, the intercept is not stored.

124 mat . b e t a . e s t . c123 <− t ( ma t r i x ( s o l v e ( t ( F )%*%F )%*%t ( F )%*%R, 4 ,N) [ c ( 2 , 3 , 4 )
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, ] )

Now that the beta estimates have been computed, the cross-sectional regression can be run on
the two different sets of beta estimates. Again, the OLS regression are once run with and once
without the intercept restriction. Therefore, four final result sets are computed. For this purpose,
as done with matrix F , the matrices of the explanatory variables have to be adjusted accordingly.
The OLS estimators (Γ̂) are derived by applying the matrix equation described by Wooldridge
(2013, p. 802). Thus,

Γ̂ = (C ′C)−1C ′R̄, (37)

where C denotes 25 sets of the three factor betas estimated with a constant. In code-line 131 it is
extend on the left with a vertical vector of constants in order to run equation (37) with a constant
(method “w/, w/”). Additionally, instead of C, O is plugged into (37) to estimate (Γ̂) with betas
which themselves have been estimated without a constant in the first-pass regression. As C, O is
adjusted in code-line 131 (Method “w/o, w/”) and 153 (method “w/, w/”) depending on whether
(Γ̂) shall be estimated with or without a constant.

For every method applied, the resulting vector Γ̂ is stored in the previously initialized result
matrices on code-lines 38 to 41. In the case of the methods “w/, w/” and “w/o, w/” Γ̂ = γ0, γ1,
γ2, γ3 else Γ̂ = γ1, γ2, γ3. Once the last mean of out of the four variants is stored in these result
matrices, the whole simulation, starting with the artificial generation of returns up until the storing
of the mean estimates out of the drawn sample is returned NumSim − 1 times (e.g. within this
thesis the whole process is looped 9,999 times). As soon as these loops are through, the results are
plotted as shown in the last snippet of code within this appendix.

Listing 5: Estimation of Gammas

124 #------------------------------#
125 #Estimating gamma for the four different Methods
126 #The matrices C and O are used to run the variants of these second -pass

regressions on R.
127 #C indicates that the betas in the matrix of were measured with a

constant.
128 #O indicates that the betas in the matrix of were measured without a

constant
129 #G, a TxN matrix , contains the resulting Gamma estimates for the N

portfolios.
130
131 #Method w / , w /
132 #Estimating gamma 0,1,2,3 out of estimated betas with an intercept
133 C <− ( ma t r i x ( c ( r ep ( 1 ,N) , mat . b e t a . e s t . c123 ) ,N, 4 ) )
134 #Run the regression on R.bar with C as the explantory.
135 G <− s o l v e ( t (C)%*%C)%*%t (C)%*% R . ba r
136 #Store the mean of the T estimated gammas in the corresponding result

vector.
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137 mat .Gamma . mean . cc [ k , ] <− G
138
139 #Method w / o, w /
140 #Estimating gamma 0,1,2,3 out of estimated betas without an intercept
141 O <− ( ma t r i x ( c ( r ep ( 1 ,N) , mat . b e t a . e s t . o123 ) ,N, 4 ) )
142 #Run the regression on R.bar with O as the explantory.
143 G <− s o l v e ( t (O)%*%O)%*%t (O)%*% R . ba r
144 #Store the mean of the T estimated gammas in the corresponding result

vector.
145 mat .Gamma . mean . oc [ k , ] <− G
146
147 #Method w / , w / o
148 #Only estimating gamma 1,2,3 out of estimated betas with an intercept
149 C <− ( mat . b e t a . e s t . c123 )
150 #Run the regression on R.bar with C as the explantory.
151 G <− s o l v e ( t (C)%*%C)%*%t (C)%*% R . ba r
152 #Store the mean of the T estimated gammas in the corresponding result

vector.
153 mat .Gamma . mean . co [ k , ] <− G
154
155 #Method w / , w /
156 #Only estimating gamma 1,2,3 out of estimated betas without an

intercept
157 O <− ( mat . b e t a . e s t . o123 )
158 #Run the regression on O.bar with C as the explantory.
159 G <− s o l v e ( t (O)%*%O)%*%t (O)%*% R . ba r
160 #Store the mean of the T estimated gammas in the corresponding result

vector.
161 mat .Gamma . mean . oo [ k , ] <− G
162
163 #Repeat Loop NumSim -1 times. (e.g. 9,999 times)
164 }

For the code to display the results, the comments are only made in-code, as it is not part of the
simulation. In general, the result matrices in code-lines 38 to 41 containNumSim (=10,000) esti-
mates for 3 or 4 gammas (depending on the method). The results are displayed through boxplots.
Each boxplot represents one column in the four result matrices. All the graphs plotted are auto-
matically stored in the working directory of the user. The graphs do not automatically show in the
plot field of R-Studio.

Listing 6: Display of Results

165 #*************************************#
166 #Display of Results:
167 #*************************************#
168
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169 # The graphs are automatically stored as a PDF in the working directory
of the code.

170 # They are named by their premium + sample size
171 # The graphs are not automatically shown in R-Studio
172 # To display a graph in R-Studio call dev.new() and do not call dev.off

()
173 h <− 5 #set hight of the to be stored graphs
174 w <− 3 . 5 #set width of the to be stored graphs
175 NameVar <− ” d i s t o r d e d ” #Choose a caption in order to give the to be

named graph a unique name.
176 o p t i o n s ( s c i p e n =10)
177
178 #Create Boxplot for Gamma 0 for the cases "w / w / " and "w / ow" and store

it in the working directory.
179 name <− p a s t e ( c ( ”gamma0_” ,NameVar , T , ” . pdf ” ) , c o l l a p s e = ” ” )
180 pdf ( name , wid th = w, h e i g h t = h )
181 boxp l o t ( mat .Gamma . mean . cc [ , 1 ] , mat .Gamma . mean . oc [ , 1 ] ,
182 y l ab=” ” ,
183 yl im=c (−4 ,4) ,
184 l a s =2 ,
185 mgp=c ( 2 , 1 , . 5 ) ,
186 names=c ( ”w/ , w/ ” , ”w/ o w/ ” ) )
187 mtex t ( p a s t e ( ”T =” , T , ” , NumSim =” , NumSim) )
188 a b l i n e ( h =0 . 0 , c o l = ” b l a c k ” , l t y = ” dashed ” , lwd =1 . 5 )
189 t i t l e ( y l a b =bquo t e ( gamma [ 0 ] ~ ” ( i n %)” ) , l i n e =1 .55 , cex . l a b =1 . 2 )
190 dev . o f f ( )
191
192 #Create Boxplot for Gamma 1 and store it in the working directory.
193 name <− p a s t e ( c ( ”gamma1_” ,NameVar , T , ” . pdf ” ) , c o l l a p s e = ” ” )
194 pdf ( name , wid th = w, h e i g h t = h )
195 boxp l o t ( mat .Gamma . mean . cc [ , 2 ] , mat .Gamma . mean . oc [ , 2 ] , mat .Gamma . mean . co

[ , 1 ] , mat .Gamma . mean . oo [ , 1 ] ,
196 y l ab=” ” ,
197 yl im=c (−4 ,4) ,
198 l a s =2 ,
199 names=c ( ”w/ , w/ ” , ”w/ o , w/ ” , ”w/ , w/ o ” , ”w/ o , w/ o ” ) )
200 mtex t ( p a s t e ( ”T =” , T , ” , NumSim =” , NumSim) )
201 a b l i n e ( h=Mu_ f , c o l = ” r ed ” , l t y = ” dashed ” , lwd =1 . 5 )
202 a b l i n e ( h =0 . 0 , c o l = ” b l a c k ” , l t y = ” dashed ” , lwd =1 . 5 )
203 t i t l e ( y l a b =bquo t e ( gamma [ 1 ] ~ ” ( i n %)” ) , l i n e =1 .55 , cex . l a b =1 . 2 )
204 a x i s ( 2 . 0 , a t =c ( round (Mu_ f , 2 ) ) , l a s =1 , l a b e l s =FALSE , l i n e = −0.75)
205 a x i s ( 2 . 0 , a t =( round (Mu_ f , 2 ) ) , l a s =1 , l a b e l s =TRUE, l i n e = −0.75 )
206 dev . o f f ( )
207
208 #Create Boxplot for Gamma 2 and store it in the working directory.
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209 name <− p a s t e ( c ( ”gamma2_” ,NameVar , T , ” . pdf ” ) , c o l l a p s e = ” ” )
210 pdf ( name , wid th = w, h e i g h t = h )
211 boxp l o t ( mat .Gamma . mean . cc [ , 3 ] , mat .Gamma . mean . oc [ , 3 ] , mat .Gamma . mean . co

[ , 2 ] , mat .Gamma . mean . oo [ , 2 ] ,
212 y l ab=” ” ,
213 yl im=c (−4 ,4) ,
214 l a s =2 ,
215 names=c ( ”w/ , w/ ” , ”w/ o , w/ ” , ”w/ , w/ o ” , ”w/ o , w/ o ” ) )
216 mtex t ( p a s t e ( ”T =” , T , ” , NumSim =” , NumSim) )
217 a b l i n e ( h=Mu_smb , c o l = ” g r een ” , l t y = ” dashed ” , lwd =1 . 5 )
218 a b l i n e ( h =0 . 0 , c o l = ” b l a c k ” , l t y = ” dashed ” , lwd =1 . 5 )
219 t i t l e ( y l a b =bquo t e ( gamma [ 2 ] ~ ” ( i n %)” ) , l i n e =1 .55 , cex . l a b =1 . 2 )
220 a x i s ( 2 . 0 , a t =c ( round (Mu_smb , 2 ) ) , l a s =1 , l a b e l s =FALSE , l i n e = −0.75)
221 a x i s ( 2 . 0 , a t =( round (Mu_smb , 2 ) ) , l a s =1 , l a b e l s =TRUE, l i n e = −0.75)
222 dev . o f f ( )
223
224 #Create Boxplot for Gamma 3 and store it in the working directory.
225 name <− p a s t e ( c ( ”gamma3_” ,NameVar , T , ” . pdf ” ) , c o l l a p s e = ” ” )
226 pdf ( name , wid th = w, h e i g h t = h )
227 boxp l o t ( mat .Gamma . mean . cc [ , 4 ] , mat .Gamma . mean . oc [ , 4 ] , mat .Gamma . mean . co

[ , 3 ] , mat .Gamma . mean . oo [ , 3 ] ,
228 y l ab=” ” ,
229 yl im=c (−4 ,4) ,
230 l a s =2 ,
231 names=c ( ”w/ , w/ ” , ”w/ o , w/ ” , ”w/ , w/ o ” , ”w/ o , w/ o ” ) )
232 mtex t ( p a s t e ( ”T =” , T , ” , NumSim =” , NumSim) )
233 a b l i n e ( h=Mu_hml , c o l = ” g r een ” , l t y = ” dashed ” , lwd =1 . 5 )
234 a b l i n e ( h =0 . 0 , c o l = ” b l a c k ” , l t y = ” dashed ” , lwd =1 . 5 )
235 t i t l e ( y l a b =bquo t e ( gamma [ 3 ] ~ ” ( i n %)” ) , l i n e =1 .55 , cex . l a b =1 . 2 )
236 a x i s ( 2 . 0 , a t =c ( round (Mu_hml , 2 ) ) , l a s =1 , l a b e l s =FALSE , l i n e = −0.75)
237 a x i s ( 2 . 0 , a t =( round (Mu_hml , 2 ) ) , l a s =1 , l a b e l s =TRUE, l i n e = −0.75)
238 dev . o f f ( )
239
240
241 #Plot beta distribution of the 25 portfolios + the average of the

montly returns of the 25 portfolios.
242 BR <− cb ind (B , ( app ly ( Data5x5 [ , 2 : 2 6 ] , 2 , mean ) ) )
243 pdf ( ” b e t a . pdf ” , w id th = 9)
244 ma t p l o t (BR, t ype =c ( ”b” ) , l t y =c ( 1 : 2 , 4 : 5 ) , pch =1 :4 , c o l =1 ,
245 y l ab = ” Beta ” ,
246 x l ab = ” P o r t f o l i o ” )
247 l e g end ( ” t o p r i g h t ” , l e g end = c ( e x p r e s s i o n ( b e t a [M] ) , e x p r e s s i o n ( b e t a [SMB] )

, e x p r e s s i o n ( b e t a [HML] ) , e x p r e s s i o n (R[ P ] ) ) , c o l =1 , pch =1 : 4 )
248 dev . o f f ( )
249
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250 #Output of table 1 data
251 app ly ( mat .Gamma . mean . oo , 2 , mean )
252 app ly ( mat .Gamma . mean . oo , 2 , sd )
253
254 app ly ( mat .Gamma . mean . co , 2 , mean )
255 app ly ( mat .Gamma . mean . co , 2 , sd )
256
257 app ly ( mat .Gamma . mean . oc , 2 , mean )
258 app ly ( mat .Gamma . mean . oc , 2 , sd )
259
260 app ly ( mat .Gamma . mean . cc , 2 , mean )
261 app ly ( mat .Gamma . mean . cc , 2 , sd )
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