
Linking energy scenarios and waste storylines for prospective environmental 1 

assessment of waste management systems 2 

3 

4 

Grégoire Meylana,*, Melanie Hauptc, Mert Duyganb, Stefanie Hellwegc and Michael 5 

Stauffacherb 6 

aCenter for Business in the Americas, School of Management and Law, ZHAW Zurich 7 

University of Applied Sciences, 8401 Winterthur, Switzerland 8 

bTransdisciplinarity Lab, Department of Environmental Systems Science, ETH Zurich, 9 

8092 Zurich, Switzerland 10 

cChair of Ecological Systems Design, Institute for Environmental Engineering, ETH 11 

Zurich, 8093 Zurich, Switzerland 12 

13 

14 

15 

To be submitted to: Waste Management 16 

8/3/2018 17 

18 

* Corresponding author: Tel.: +41 44 632 32 98. Email address:
g.meylan@usys.ethz.ch; Full postal address: Grégoire Meylan, ETH Zurich, CHN K 76.2,
Universitaetstrasse 22, 8092 Zurich, Switzerland

*Revised Manuscript (clean copy)
Click here to view linked References

http://ees.elsevier.com/wm/viewRCResults.aspx?pdf=1&docID=27900&rev=1&fileID=652687&msid={14B59A96-F76E-4EAC-9441-BC10E3C880EF}


Linking energy scenarios and waste storylines for prospective environmental 
assessment of waste management systems 

2 

Abstract 19 

Multiple international and supranational organizations call upon changes in current 20 

waste management practices to play a key role in developing more sustainable 21 

economies. Life cycle assessment (LCA) is a popular method used to assess the 22 

sustainability of future waste management options. The uncertainties about future 23 

energy systems and waste compositions, however, may lead to ambiguous LCA 24 

results. One way to deal with this challenge is the development of joint energy and 25 

waste scenarios to investigate the robustness of waste management options. To date, 26 

joint energy and waste scenarios rely on the integration of large economic and 27 

engineering models. Complex models can hamper the transparency required for 28 

decision-makers to understand and implement LCA recommendations. Here we 29 

present the alternative of combining diverse energy scenarios and stakeholder-based 30 

waste storylines. This is a more qualitative approach than previous sustainable 31 

energy/waste evaluations and has a  double aim: to address upfront the energy and 32 

waste composition sensitivity and enhance transparency by both relying on well-33 

documented energy scenarios and involving stakeholders in the waste storyline 34 

formulation. We apply the approach to the Swiss municipal solid waste (MSW) 35 

management system in the context of the energy transition away from nuclear power. 36 

Three energy scenarios capture how radical the transition might be, while the 37 

storylines reflect societal developments and waste policies leading to low, high, and 38 

average MSW amounts. The approach delivers feasibility spaces of energy systems 39 

and waste compositions as input to the LCAs. It ensures a high level of transparency, 40 
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which, in conjunction with the participation of decision-makers, has the potential to 41 

increase the chances of implementation of the recommendations based on LCA 42 

results.  43 
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municipal solid waste, Storyline and Simulation Approach (SAS)  45 
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1 Introduction 46 

Any decision affecting the far future, such as an investment in long-term 47 

infrastructure or the enactment of a new regulation, requires (i) scrutinizing various 48 

options and (ii) assessing these options against various criteria, which may include 49 

environmental impacts, economic benefits and costs, and social acceptance (Füssel, 50 

2007; Lempert, 2003; Trutnevyte et al., 2012). Waste management is a typical case in 51 

which decisions are made with implications reaching far into the future. Waste 52 

treatment infrastructure, such as incineration plants with a lifetime of some 25 years 53 

(DEFRA, 2014) and longer, are key components of waste management. Different levels 54 

of authorities enact waste management regulations that are intended to last for 55 

several decades for the sake of legal certainty. Revision of these regulations comes 56 

from the need to adapt to changing circumstances such as the emergence of new 57 

technologies or due to pressure exerted by developments in other sectors like the 58 

energy transition, climate change, etc. (Allen et al., 2011; Geels and Schot, 2007). 59 

In the years to come, many countries should see a stark increase of long-term 60 

decisions in the field of waste management, as this sector will play an important role 61 

in the initiated and upcoming transitions to low-carbon and sustainable economies. 62 

The Intergovernmental Panel on Climate Change (IPCC) indicated in its Fourth 63 

Assessment report that the contribution of waste management to reducing global 64 

greenhouse gas (GHG) emissions so far had been underestimated due to poor data 65 

(Bogner et al., 2008). The IPCC named waste prevention, material recovery (i.e., reuse 66 

or recycling) and energy recovery (e.g., incineration and industrial co-combustion) as 67 
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important mitigation measures in terms of indirect reduction of GHG emissions (e.g., 68 

through improved energy efficiency), energy benefits, and fossil fuel use offsets. More 69 

recently, the United Nations Environment Programme (UNEP) heralded the potential 70 

contribution of waste management towards meeting the Sustainable Development 71 

Goals (SDGs) (Wilson, 2015). Waste management is present in more than half of the 72 

17 SDGs, making it a key aspect for sustainable development. To support its case for 73 

improving waste management, UNEP claims that 10-15% of global GHG emissions 74 

could be avoided through improved solid waste management. Waste prevention could 75 

cause this figure rise to 20% (Wilson, 2015). 76 

Life cycle thinking allows one to assess the long-term impacts of different options in 77 

various fields, including waste management. Such studies focus on different 78 

assessment criteria depending on their goal and scope. In a prospective life cycle 79 

assessment (LCA), the analyst models future changes of environmental flows in all life 80 

cycle stages of a product or service arising from a decision (or no decision) and 81 

assesses the resulting environmental impacts (Frischknecht et al., 2005; Guinée et al., 82 

2011; Hellweg and Milà i Canals, 2014; Pennington et al., 2004; Rebitzer et al., 2004). 83 

Complementing the environmental perspective of LCA, prospective life cycle costing 84 

(LCC) and social or societal life cycle assessment (sLCA) focus on future economic 85 

costs and social impacts, respectively (Hunkeler, 2006; Hunkeler et al., 2008). 86 

Prospective LCA has become a popular method amongst decision-makers to assess 87 

future waste management options. In the UNEP report cited above, LCA was used to 88 

estimate the GHG savings. Likewise, the IPCC recommends the use of LCA to quantify 89 
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the contributions of waste management to GHG emissions reductions. The EU uses 90 

LCA as a key decision-support tool in waste management, as its Waste Directive 91 

(European Parliament and Council, 2008) allows member-states to depart from the 92 

long-established waste hierarchy (prevention, reuse, recycling, energy recovery, 93 

landfilling) if clear-cut LCA results support doing so in a given context. Ongoing 94 

debates make it clear that LCA will continue to play an important role in the EU’s 95 

revised Waste Directive, which integrates the concept of Circular Economy (Haupt and 96 

Zschokke, 2017). 97 

The current practice of LCA in waste management, however, suffers from a number of 98 

deficits that need to be tackled if the method is to adequately inform long-term 99 

decisions. Laurent and colleagues reviewed 222 LCAs of solid waste management 100 

systems. They compared these studies and their results (Laurent et al., 2014a), 101 

identified common inconsistencies and malpractices, and provided corresponding 102 

guidance (Laurent et al., 2014b). The comparison showed that waste management 103 

LCA findings strongly depend on the energy system (see also Boesch et al. (2014)) and 104 

on the waste composition. In their review (Laurent et al., 2014b), Laurent and 105 

colleagues noted a lack of transparency in modeling energy credits. Energy credits are 106 

the benefits that arise from recovering heat and electricity created by waste 107 

incineration and replacement of the corresponding amounts of energy converted from 108 

primary fuels. Heat and electricity credits used in the reviewed studies reflected 109 

either the national electricity and heat supply mixes or a marginal energy supply. In 110 

the latter case, heat from waste incineration displaces the specific heat system that is 111 
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expected to be reduced. Most of the 222 LCAs did not justify the choice of national 112 

electricity and heat supply mixes or marginal energy supply, with 25% not even 113 

indicating the data types used for energy credit modeling. It appears that LCA 114 

practitioners often resort to average or marginal data without justifying their choice, 115 

although the results of waste management LCAs are highly sensitive to energy 116 

systems. Laurent et al. (2014b) further highlighted the poor description of waste 117 

composition in LCAs of solid waste management systems and the lack of transparency 118 

with respect to waste composition data sources. Yet different waste stream 119 

parameters such as nutrient contents, material quality, and heating values are of 120 

paramount importance for the proper modeling of energy and material credits. 121 

Given the importance of LCA for decisions in future infrastructure investment like 122 

waste management, it is urgent to tackle the fundamental challenge of adequately 123 

addressing the sensitivity to future energy mixes and waste composition. Münster et 124 

al. (2013) demonstrate how the construction of joint scenarios of energy and waste 125 

sectors constitutes a viable approach to deal with this challenge. They recommend 126 

that such scenarios reflect those dimensions most important to the LCA results. 127 

Arushanyan et al. (2017) implemented this approach for the case of all wastes in 128 

Sweden in the project Towards Sustainable Waste Management (TOSUWAMA). In 129 

TOSUWAMA, qualitative scenarios of societal development with researcher and 130 

stakeholder inputs served as input to a model of the Swedish economy (Tyskeng and 131 

Dreborg, 2008). This Computable General Equilibrium (CGE) model was in turn soft-132 

linked with a systems engineering model of Swedish waste management (Ljunggren 133 



Linking energy scenarios and waste storylines for prospective environmental 
assessment of waste management systems 

9 

Söderman et al., 2016). The output of the systems engineering model was assessed by 134 

means of LCA. Also, TOSUWAMA evaluates the impact of various policy measures on 135 

waste management performance. The study authors name complexity and uncertainty 136 

of the models as the main limitations to TOSUWAMA. Pfenninger et al. (2014) argue 137 

that model complexity is an obstacle to transparency. The economic and engineering 138 

models entail many implicit assumptions hardly accessible to decision-makers. Yet, 139 

such assumptions lead to the energy credits and waste compositions used in ensuing 140 

prospective LCAs. 141 

The goal of this paper is to present a methodological approach for developing energy 142 

and waste scenarios that enable both a robust and transparent modeling of energy 143 

credits and waste composition in prospective waste management LCAs. A robust 144 

approach is defined as having the primary aim of the explicit use of diverse future 145 

energy credits and waste compositions. Transparency is realized through the use of 146 

well-documented, existing energy scenarios to derive energy credits as well as the 147 

involvement of stakeholders in the process of developing assumptions for future 148 

waste compositions. We illustrate the approach with a demonstrative case study of 149 

municipal solid waste (MSW) management in Switzerland. We close the paper with a 150 

systematic comparison of our approach and that used by Arushanyan et al. (2017). 151 

  152 
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2 Methodological approach: Combining existing energy scenarios and 153 

storylines of waste composition 154 

2.1 Rationales 155 

2.1.1 Existing energy scenarios: Transparency, robustness, consistency 156 

Scenarios of energy systems on the global, continental, national, and regional scales 157 

are numerous and the practice of energy system scenario construction goes back 158 

several decades. The International Energy Agency (IEA, 2016) and Greenpeace, with 159 

its country scenarios “energy [r]evolution” (Teske and Klingler Heiligtag, 2013), are 160 

just some of the multilateral and non-governmental organizations developing such 161 

scenarios, while governmental agencies develop scenarios for national energy 162 

policies. Today, decision-makers mainly rely on energy system scenarios for climate 163 

policy. Scenarios inform decision-makers of the implications of potentially conflicting 164 

goals on the energy system, including energy supply security and mitigation of nuclear 165 

power risks. Energy scenarios are of predictive, explorative or normative types 166 

(Börjeson et al., 2006; Münster et al., 2013). Once the scenario type is defined, 167 

scenario analysts rely on different frameworks, mainly optimization or simulation, to 168 

model supply and demand of electricity and heat. Providing a broad review of existing 169 

scenarios, their type, or their modeling frameworks, goes beyond the scope of this 170 

paper. Instead, we refer the interested reader to existing reviews (Craig et al., 2002; 171 

Hughes and Strachan, 2010; Trutnevyte et al., 2016). 172 
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In order to fulfill the criterion of transparency sought after by Laurent and colleagues 173 

(Laurent et al., 2014a; Laurent et al., 2014b), energy scenarios used in prospective 174 

LCAs must fulfill the following conditions: disclosure of scenario types, modeling 175 

frameworks, and assumptions regarding socio-economic drivers of energy systems 176 

(e.g., population growth) as well as availability of detailed modeling results. Full 177 

disaggregation of fuels, heat, and electricity supply by energy carrier and energy 178 

conversion technology allows justifying the choice of marginal data for energy credit 179 

modeling. For instance, in Greenpeace’s energy [r]evolution scenarios, countries no 180 

longer rely on fossil fuels by the end of the scenario period, so that natural gas no 181 

longer competes as a marginal heat supplier with waste management. Existing energy 182 

scenarios may provide the required transparency thanks to extensive reporting. 183 

The range of possible, future energy states – feasibility space – eventually also allows 184 

LCA practitioners to test the robustness of waste management options to potentially 185 

very different energy credits (Münster et al., 2013). In other words, the use of 186 

different energy studies allows one to address the sensitivity of LCA results to future 187 

energy systems. For a given geographical unit and time horizon, scenarios of different 188 

studies define a range of possible future states, reflecting different modeling types and 189 

frameworks as well as assumptions, goals, and constraints. Worldviews and personal 190 

judgment of scenario analysts strongly influence scenario characteristics (Metzger et 191 

al., 2010). 192 

Finally, in addition to transparency and robustness, the use of existing energy 193 

scenarios in waste management LCAs increases the internal consistency of the LCA 194 
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model, i.e., the consistency between future levels of different variables of the LCA 195 

model (Scholz and Tietje, 2002). Many assumptions or model results of existing 196 

energy system scenarios concern variables that are relevant to waste management 197 

LCAs. For instance, the future population growth of the investigated spatial unit is a 198 

key assumption in both energy and waste modeling. With regard to the latter, future 199 

population is one driver for the total waste amounts generated within a spatial unit. 200 

Moreover, energy scenario analysts typically model transportation in great detail and 201 

in doing so provide the information required to model waste logistics in LCA. By using 202 

the assumptions or model results from energy scenarios in the LCA model, LCA 203 

practitioners achieve consistency across economic sectors concerned by, or 204 

influencing, waste management decisions. Ultimately, ensuring consistency between 205 

the energy and waste sectors answers the call by Harrison et al. (2016) to capture 206 

cross-sector interactions and thereby appropriately model environmental impacts of 207 

individual sectors. 208 

2.1.2 Waste storylines: Combination of qualitative and quantitative elements, 209 

involvement of experts and stakeholders, appraisal of robustness 210 

The Story and Simulation (SAS) approach is a method for constructing possible, future 211 

scenarios (Alcamo, 2001, 2008). It consists of an iterative process of knowledge 212 

integration to produce storylines describing the future system, feed the storylines into 213 

models to assess, for example, the performance of the future system, and refine the 214 

storylines based on the model results. Knowledge integration for storyline 215 
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development relies on a close, structured exchange between stakeholders and experts 216 

of the investigated system as well as scenario analysts. 217 

The SAS approach well suits the purpose of developing waste composition scenarios. 218 

Waste composition is driven by various developments, such as waste prevention 219 

policies (e.g., a ban on polyvinyl chloride bottles), societal megatrends (e.g., soaring 220 

consumption of convenience food leading to more plastic waste, changes of consumer 221 

awareness or environmental sentiments), technological change (change in nature of 222 

packaging) or national traditions (Worrell, 2014). In other words, waste composition 223 

reflects complex societal developments (Hoornweg et al., 2013; JICA, 2005). The SAS 224 

approach enables one to link societal developments to quantitative estimations of 225 

waste stream amounts and their contents that then feed into a prospective waste 226 

management LCA. Moreover, the SAS approach allows further qualitative and 227 

quantitative elements to be integrated into storylines besides waste amounts and 228 

composition (Wiek et al., 2006a). In particular, elements of existing energy scenarios 229 

such as total population can be integrated into the waste storylines. 230 

The involvement of experts and stakeholders in the formulation of storylines is a key 231 

aspect of the SAS approach and has several functions (Alcamo, 2008). Storylines 232 

represent the complex views of individual experts and stakeholders who are able to 233 

identify societal megatrends that significantly affect waste production and 234 

composition. In addition, involving stakeholders and opening up scenarios to these 235 

individuals can enhance the legitimacy of scenarios and acceptance in the circles the 236 
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involved stakeholders represent (Wiek et al., 2006a) such as authorities, industry, 237 

consultancy, and non-governmental organizations. 238 

Finally, the SAS approach, through its inherent openness to views of different 239 

stakeholders and experts, allows for building fundamentally different waste scenarios. 240 

Just as in the case of energy scenarios, we are looking for diverse waste amounts and 241 

compositions in order to cover a range of possible developments and test the 242 

robustness of waste management options against waste composition. 243 

2.2 The approach: Energy Scenarios and Waste Storylines (ESWS) 244 

Here we present the approach to link energy scenarios and waste storylines into 245 

umbrella scenarios. The approach consists of three stages: (1) a selection of three 246 

existing energy system scenarios for the investigated spatial unit and time horizon, 247 

(2) the development of three waste storylines according to the SAS procedure and (3) 248 

the combination of existing energy scenarios and waste storylines into umbrella 249 

scenarios (Figure 1). The three scenarios and storylines are meant to cover the 250 

feasibility space (JRC, 2007) and include both a business-as-usual scenario as well as a 251 

base case storyline (Münster et al., 2013). The umbrella scenarios, with future levels 252 

for input variables (e.g., energy credits, waste composition, population, available 253 

technologies for recycling and thermal treatments), provide the information required 254 

for a prospective LCA. Within the developed umbrella scenarios, sensitivity analyses 255 

with regard to, for example, material distributions to the available treatment 256 

technologies can then be performed. Table 1 details each step to derive the energy 257 
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scenarios (1) and waste storylines (2) with respect to rationale, applied method, and 258 

involved researchers and/or stakeholders. 259 

Insert Figure 1 here 260 

Figure 1 The Energy Scenarios and Waste Storylines (ESWS) approach 261 

yielding umbrella scenarios to be used in prospective life cycle assessment of 262 

waste management (box with dashed border). 263 

  264 
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Table 1 Details of steps for selecting three energy scenarios and 265 

constructing three waste storylines 266 

Insert Table 1 here 267 

In the third stage, the energy scenarios and waste storylines are combined pairwise. 268 

The resulting umbrella scenarios form a feasibility space feeding into the prospective 269 

waste management LCA. The LCA is performed for each combination of energy 270 

scenarios and waste storylines. In each combination, the variables shared by energy 271 

scenarios and waste storylines, e.g., population, transport modal split (i.e., shares of 272 

rail, road, and waterway transport), or energy prices, are set to the levels of the 273 

energy scenario. In the case at hand, this combination approach implies no further 274 

influence of the energy sector on the waste sector. For instance, the influence of 275 

energy pricing on waste management infrastructure is disregarded in the case study 276 

(see explanation in Section 4). Such an influence could be easily implemented by 277 

analyzing the consistency between future levels of energy scenarios and waste 278 

storylines (Brand et al., 2013). Taking into account the variables defined within each 279 

umbrella scenario, sensitivity analyses can be calculated to compare the materials 280 

distribution to the waste treatment processes under all umbrella scenarios. For 281 

example, the influence of the recycling rate on the environmental performance in 282 

different energy systems can be calculated. Ultimately, we look for the waste 283 

management options yielding environmental benefits in all umbrella scenarios 284 

according to the prospective LCA.  285 
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3 Case study results 286 

3.1 Goal and scope of the prospective waste management LCA 287 

Switzerland’s debate on its future energy system took a dramatic turn in 2011 with 288 

the Fukushima reactor disaster, resulting in the formulation of the Energy Strategy 289 

2050 by the Swiss government1: withdrawal from nuclear energy and promotion of 290 

energy efficiency and renewable energy technologies. The government also launched 291 

national research programs (NRPs) to generate the knowledge required for 292 

implementation of the Energy Strategy 2050. The “wastEturn” project, within the NRP 293 

70 on the energy transition, investigates the potential contribution of Swiss waste 294 

management to the Energy Strategy 20502,3. One of the main research questions 295 

posed in wastEturn was how to optimize Swiss MSW management to support the 296 

energy transition. The case study presented here is embedded in wastEturn and 297 

closely related to this research question, as it describes the formulation of umbrella 298 

scenarios used in a prospective LCA of Swiss MSW management options for the time 299 

horizons 2020, 2035, and 2050 (Haupt et al., in prep.). 300 

Switzerland has a well-functioning MSW management with one of the highest per 301 

capita and per year generation rates of MSW in Europe (EEA, 2013). In 2012, each 302 

inhabitant of Switzerland generated some 700 kg MSW/cap/a (Haupt et al., 2016). 303 

                                                        

1 https://www.uvek.admin.ch/uvek/en/home/energy/energy-strategy-
2050.html?_organization=801&_pageIndex=0 
2 http://www.nfp70.ch/en 
3 http://www.nfp70.ch/en/projects/industrial-processes/waste-management-for-
energy-turnaround 
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About 52% of that mass, composed mainly of paper and cardboard, glass, 304 

polyethylene terephthalate (PET) bottles and metals, was separated at the source and 305 

further processed for material recovery (Haupt et al., 2016). The rest was thermally 306 

treated in 29 MSW incinerators with energy recovery in the form of electricity and 307 

heat. Ferrous and non-ferrous metals were recovered from bottom ash and partly also 308 

from filter ash resulting from incineration. MSW is relevant to the Swiss energy 309 

transition for two main reasons: First, the 2012 average net energy efficiency (NEE) of 310 

Swiss MSW incinerators, i.e., the ratio of energy contained in waste fed to incinerators 311 

to energy produced by incinerators and used as electricity or heat elsewhere, was 312 

57% (Rytec, 2016), and therefore lower than NEE averages found in other European 313 

countries with well-developed MSW incinerator infrastructure (Fruergaard and 314 

Astrup, 2011). The reader can find a detailed an explanation of NEE in the Appendix. A 315 

second reason is related to the notion of grey energy. Some of the incinerated waste 316 

could be separated at the source for material recycling and serve as substitute for 317 

primary raw materials. Depending on the waste stream, replacing primary through 318 

secondary raw materials can achieve substantial energy savings (Haupt et al., 2018). 319 

3.2 Maximally diverse energy scenarios 320 

Eight scenarios recently reviewed by the Paul Scherrer Institute (PSI) (Densing et al., 321 

2016) fulfilled the criteria required for inclusion in the energy scenario selection by 322 

providing detailed results for the entire energy system in 2020, 2035, 2050, and were 323 

therefore preselected (Step 1.1 in Section 2.2). Figure 2 shows the final energy 324 

consumption mixes of the three maximally diverse scenarios (Step 1.2): Greenpeace’s 325 
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energy revolution (e[r]) (Teske and Klingler Heiligtag, 2013), the Business-as-usual 326 

(BAU C) and New Energy Policy (NEP C) of the Swiss Federal Office of Energy (SFOE) 327 

(Prognos, 2012). In BAU C and NEP C, C stands for centralized natural gas turbine 328 

combined cycle (GTCC) power plants. The three scenarios present rather similar end 329 

energy consumptions in 2020, both in terms of total amounts and mix. The year 2035 330 

presents a different picture with a drop of 20% in final energy consumption compared 331 

to 2020 in e[r] as demand for fossil fuels drops. Still in e[r], renewable electricity is 332 

deployed to cover the phase-out of nuclear power plants. In NEP C, the final energy 333 

consumption decreases to similar levels as e[r] and GTCCs power plants compensate 334 

for the loss of nuclear power. BAU C sees its total final energy consumption decrease 335 

only slightly. Its mix remains similar except for the phase-out of nuclear power. In 336 

2050, the final energy consumption of e[r] is only 65% of what it was in 2020. By then, 337 

fossil fuels will have almost disappeared from the mix, which is not the case for NEP C, 338 

although similar levels of total consumption are again reached. BAU C continues on 339 

the same trend observed between 2020 and 2035. 340 

One should note that all preselected energy scenarios rely on the same population and 341 

gross domestic products (GDP) forecasts. The population forecast is the average 342 

scenario (A-00-2010) by the Swiss Federal Statistical Office (BFS, 2010). The GDP 343 

scenario is the base scenario (A00) produced in a study commissioned by the Swiss 344 

Federal Statistical Office (Ecoplan, 2011). Such identical assumptions pose a serious 345 

limitation to the diversity of waste storylines that is desired, as population influences 346 

total waste amounts. Also, Berntsen and Trutnevyte (2017) demonstrated that the 347 
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SFOE’s scenarios did not cover the entire feasibility space, limiting the diversity in 348 

terms of energy credits applied in a prospective LCA. 349 

Insert Figure 2 here 350 

Figure 2 Final energy consumption of the maximally diverse Swiss energy 351 

scenarios in 2020, 2035, and 2050 (E: electricity, er = energy revolution by 352 

Greenpeace, BAU C = Business as usual by SFOE, NEP C = New energy policy by 353 

SFOE) (Source: Teske and Klingler Heiligtag (2013) and Prognos (2012)).  354 

3.3 Waste storylines 355 

The Scenario Team is composed of five researchers from wastEturn from the fields of 356 

environmental engineering and science with experience in the fields of scenario 357 

analysis and LCA (see Step 2.1 in Section 2.2). The Scenario Panel is made up of 358 

members of the wastEturn Advisory Board. The Advisory Board is composed of 359 

representatives of national and local environmental protection agencies, waste 360 

management organizations, and the private sector, e.g., the cement industry. 361 

Once established, the Scenario Team met on several occasions to define and refine the 362 

required input variables of the prospective LCA (Step 2.2): 363 

 MSW composition and amounts per capita 364 

 total Swiss population (figures provided by selected energy scenarios) 365 

 future capacity of MSW incinerators 366 

 energy recovery efficiencies in MSW incinerators (heat and electricity) 367 

 material recovery efficiencies in MSW incinerators (bottom ash and filter ash) 368 
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 capacity of the domestic cement industry to utilize plastics as alternative fuels 369 

and raw materials 370 

Different options for processing separately collected waste (e.g., plastics and biogenic 371 

waste) will be investigated in the ensuing LCA itself. The future levels of the input 372 

variables identified in Step 2.2 were defined jointly with members of the Scenario 373 

Panel according to their expertise and by reviewing relevant literature (Step 2.3). The 374 

Scenario Team quantified the future levels of input variables in the three time 375 

horizons in Step 2.4 by relying on an extensive analysis of official MSW statistics and 376 

other information. Below, we present the 2020, 2035, and 2050levels for waste 377 

composition and the 2035 levels for all other input variables for the sake of 378 

conciseness. All results are available in the Appendix. 379 

MSW amounts and composition 380 

Past trends of waste streams most important in terms of mass and possible policies 381 

serve to quantify the future levels corresponding to low, high and base case MSW 382 

amounts (Figure 3). In the storyline with low MSW amounts, the reduction of biogenic 383 

waste achieved by 2035 corresponds to reductions both in kitchen waste and garden 384 

waste. Kitchen waste was assumed to decrease by 60% based on the reduction targets 385 

set by in the EU action plan for Circular Economy for 2030 (-50%) (EC, 2015) and the 386 

high amount of avoidable food waste found in Switzerland (Beretta et al., 2013). The 387 

continuation of current government action in the form of fostering stakeholder 388 

dialogue and supporting research (Projektgruppe Food Waste des Bundes, 2015) and 389 

the up-scaling of grass-root initiatives make this reduction possible. A reduction of 390 
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20% is assumed in garden waste, as the densification of human habitat leads to a 391 

decrease of private and public green areas (Haaland and van den Bosch, 2015; Lin et 392 

al., 2015). Trends of paper and cardboard consumption observed between 2003 and 393 

2015 endure until 2035. The cardboard consumption statistics do not include 394 

imported cardboard through online shopping, which was assumed to be negligible in 395 

this scenario. The quantification leads to a total amount of 481 kg MSW/a/cap. 396 

In the storyline with high amounts, the trend of biogenic waste observed between 397 

2000 and 2013 is applied to household food waste, while garden waste is kept at the 398 

2012 level. Paper waste amounts remain constant as well, while cardboard waste 399 

amounts are assumed to drastically increase due to an increase in imported 400 

cardboard, possibly related to an increase of online shopping. To derive 401 

corresponding future amounts, we extrapolate the trend of cardboard waste amounts 402 

observed between 2003 and 2015, which include imported cardboard through online 403 

shopping. The quantification leads to a total amount of 869 kg MSW/a/cap. 404 

The MSW amount in the base case is 716 kg MSW/cap/a as in 2012 (Haupt et al., 405 

2016). 406 

Insert Figure 3 here 407 

Figure 3 Waste amounts and composition of the three waste storylines in 408 

2020, 2035, and 2050. 409 

Future capacity of MSW incinerators 410 
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The Scenario Team grouped the current 29 MSW incinerators into five clusters 411 

reflecting different energy production characteristics and designed future levels 412 

depending on MSW amounts. Each of these five clusters has a different treatment 413 

capacity. Details of each of the clusters are described below. 414 

 Five MSW incinerators are optimized to supply mainly steam to industrial 415 

processes all year around. Heat for district heating networks and electricity are 416 

regarded as “by-products”. 417 

 Four MSW incinerators provide the base load of district heating networks for 418 

residential areas and office spaces. The highest efficiencies of these plants are 419 

reached in winter. Seasonal variation of heat recovery efficiency can be large if 420 

heat is mostly used for heating. Electricity production remains low in all 421 

seasons.  422 

 Eight MSW incinerators are optimized for heat recovery and power generation 423 

(CHP plants) with low energy recovery efficiencies. These MSW incinerators 424 

focus on heat in winter and electricity in summer resulting in seasonal 425 

variations for heat and electricity (opposed).   426 

 Three MSW incinerators are optimized for heat recovery and power generation 427 

(CHP plants) with high energy recovery efficiencies. These MSW incinerators 428 

focus on heat in winter and electricity in summer resulting in seasonal 429 

variations for heat and electricity (opposed).   430 
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 Nine MSW incinerators are optimized for the production of electricity from the 431 

recovered energy. From the leftover energy, heat or steam is produced and 432 

delivered to the neighborhood.  433 

In a highly centralized storyline with low waste amounts, only 10 plants, having a total 434 

capacity of 2 million tons of MSW, are in operation. Decommissioning incinerators 435 

with low energy recovery efficiency achieves the necessary decrease in treatment 436 

capacity. A second storyline includes more moderate centralization and operates 437 

under similar waste amounts as today. This storyline reflects foreseeable or planned 438 

infrastructure change. One incinerator is planned to close, while two others are 439 

examining the possibility of a common site from 2030. In the case with higher waste 440 

amounts, 29 plants are operated and located at the same sites as in 2012. 441 

The third storyline includes foreseeable or planned infrastructure change to 27 442 

incinerators. One incinerator will close, while two others are examining the possibility 443 

of a common site as from 2030. 444 

Energy recovery efficiencies of MSW incinerators 445 

For a storyline with low energy recovery efficiencies, quantification of small increases 446 

in energy recovery efficiency occurs through new waste legislation. The Ordinance on 447 

Waste Prevention and Treatment (Schweizerischer Bundesrat, 2016) prescribes a 448 

minimum NEE of 55%, however there is not yet a binding implementation deadline. In 449 

this storyline, all MSW incinerators reach a NEE of 55% by 2035. Some MSW 450 
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incinerators already reach or surpass 55% in 2012, so that the overall NEE in this 451 

storyline is 57%. 452 

In the storyline with optimization of energy recovery, the new NEE is the result of the 453 

centralization of MSW incinerators and a focus on district heating. Also, the electricity 454 

and heat recovery efficiencies of district heating plants increase according to the 455 

highest improvements observed in the past years in Switzerland and abroad. Such 456 

developments lead to an overall NEE of 83%. In the base case, the NEE is 62%, which 457 

reflects average improvements observed in the past years in Switzerland. 458 

  459 
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Material recovery efficiencies at MSW incineration plants 460 

In the base case of material recovery efficiencies, small increases of material recovery 461 

efficiencies correspond to the continuation of current trends of increasing material 462 

recovery. By 2035, all MSW incinerators will be connected to a bottom ash treatment 463 

system or recover the valuables from bottom ash at the incinerator site. Ferrous 464 

metals and a non-ferrous metal concentrate will be recovered. In a storyline with high 465 

material recovery efficiencies, the implementation of current technological 466 

developments (e.g., Supersort (DHZ, 2016), ZAV Recycling AG (Morf et al., 2013)) in 467 

bottom ash treatment at several MSW incinerators enables the optimization of 468 

material recovery at the national scale. Beside ferrous metals, aluminium, copper, and 469 

other heavy non-ferrous metals, glass is recovered as well from most bottom ashes. 470 

As for the filter ash, a new waste regulation will make the recovery of metals from fly 471 

ash mandatory (Schweizerischer Bundesrat, 2016). Therefore, all fly ash from the 472 

MSW incinerators (ZAR, 2014, 2016) will be washed with acids to retrieve a metal 473 

containing hydroxide sludge. The metal recovery will take place either in a centralized 474 

recycling plant in Switzerland or in a Waelz process with subsequent processing of the 475 

zinc concentrate in a zinc smelting plant elsewhere in Europe. 476 

Alternative fuels and raw materials (AFR) capacity of Swiss cement industry 477 

The energy scenarios provided part of the information necessary to define the future 478 

levels of AFR capacity in the Swiss cement industry. As stated in Section 3.2, all 479 

selected energy scenarios rely on the same GDP forecast, the base scenario (A00) 480 
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produced in a study commissioned by the Swiss Federal Statistical Office (Ecoplan, 481 

2011). In this scenario, the mineral sector, including the cement industry, is 482 

forecasted to shrink. A cement industry representative on the Scenario Panel believes 483 

such a decline would lead to a -20% decrease of AFR capacity in comparison to the 484 

2012 level. 485 

With regard to the recycling processes, no future levels were defined in the umbrella 486 

scenarios, as the distribution of recyclables to recycling or other dedicated waste 487 

treatments is not directly linked to the energy system and can be assessed in separate 488 

sensitivity analyses. Compared to thermal processes, the treatment capacity in the 489 

recycling sectors can vary faster due to a shorter life time of the equipment and is not 490 

defined on a national level, as recyclables are treated internationally. We therefore 491 

assume that the necessary treatment capacity for 2035 can be constructed or found 492 

abroad, if such a capacity is found to be environmentally beneficial in the prospective 493 

LCA. 494 

Table 2 summarizes the input variables of the prospective LCA and their 2035 levels. 495 

Box 1 provides the storyline “low MSW amount” as an example. The two other 496 

storylines, “high MSW amounts” and “base case” can be found in the Appendix.  497 
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Table 2 Future levels of waste storylines4 498 

Insert Table 2 here 499 

                                                        

4 To be used in prospective LCA of Swiss MSW management 
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 500 

  501 

Municipal solid waste (MSW) amounts decrease from 716 kg per capita per year 
in 2012 to 481 kg per capita per year in 2035. Efforts by the Confederation in 
the form of fostering stakeholder dialogue and promoting research to reduce 
food waste and various grass-root initiatives pay off with a 60% reduction in 
food waste, an amount corresponding to avoidable food waste. Additionally, 
there is a strong reduction in paper and cardboard consumption as 
digitalization reduces paper use and shipping packaging use is avoided because 
of the trend to buy local. 

The reduced MSW amounts lead to a reorganisation of MSW incineration 
infrastructure. From the existing 29 MSW incinerators in 2012, only 10 plants 
continue to operate with a treatment capacity of some 2.1 million tons in 2035. 
These 10 plants have high NEE mainly thanks to district heating and thus allow 
for a strong increase in energy recovery efficiency. The reorganisation of 
MSW incineration also enables a strong increase in material recovery 
efficiency. The current technological developments (SuperSort, ZAV Recycling 
AG) lead to a substantial increase in material recovery from bottom ash on a 
national scale. Beside ferrous metals, aluminium, copper and other heavy non-
ferrous metals, glass as well is recovered from most bottom ashes. Ferrous 
metals are sent to a Swiss steel company that recovers steel scrap by relying on 
an electric-arc furnace or foreign plants. Non-ferrous metals are sent to a metals 
recycling plant abroad. Due to quality issues, glass recovered from bottom ash is 
used to produce the insulation material in building foundations. A centralized 
recycling plant in Switzerland or Waelz kilns with subsequent processing of 
the zinc concentrate in a zinc smelting plant elsewhere in Europe recover zinc 
metal from sludge produced by acid washing of fly ash in the MSW incinerators. 

MSW incinerators compete with cement plants for specific MSW fractions, for 
instance for residues from plastics recycling. However, clinker production will 
decrease by 2035 leading to a drop in capacity for processing alternative 
fuels and raw materials by 20%. The drop in clinker production reflects 
decreasing population growth and structural change in the Swiss economy, in 
which energy intensive economic sectors are replaced by sectors with lower 
energy demand. 

Box 1 Storyline “low MSW amounts”, future levels of input variables are 
highlighted in bold. 
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Validation of waste storylines 502 

The Scenario Team presented the quantified waste storylines at a meeting of the 503 

wastEturn Advisory Board (validation Step 2.5 in Section 2.2). The Scenario Panel 504 

intensively discussed the plausibility of centralizing MSW incinerators. Swiss waste 505 

management is organized in a decentralized fashion and it is difficult to close down 506 

MSW incinerators supplying energy to local users. Also, in the eyes of some members 507 

of the Scenario Panel, the demand for district heating from MSW incinerator should 508 

decrease in the future in contrast to some of the energy scenarios. They argue that 509 

heat demand for office space and residential heating should decrease due to better 510 

insulation of buildings and increasingly be met by heat pumps, solar thermal, etc. 511 

Members of the Scenario Panel advised to carefully scrutinize these issues in the 512 

ensuing LCA. 513 

3.4 Combination of energy scenarios and waste storylines 514 

The three selected energy scenarios are combined with the three storylines developed 515 

for waste composition and related waste input variables. The resulting umbrella 516 

scenarios provide, in a transparent way, future values of variables required to conduct 517 

the prospective LCA, such as population, the split between different modes of 518 

transportation, or the NEE of MSW incinerators. Transport activities in waste 519 

management are modeled consistently with coupled energy scenarios. All 520 

combinations represent a feasibility space allowing the appraisal of robustness of 521 

waste management options against future energy systems and waste compositions. 522 
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3.5 Integration of umbrella scenarios in LCA 523 

The umbrella scenarios will be operationalized within a consequential LCA 524 

framework based on Haupt et al. (2018). The modular LCA structure facilitates 525 

adapting waste treatment technologies, and their related life cycle inventories, and 526 

integrating new treatment technologies. Furthermore, the knowledge on the energy 527 

scenarios allow for defining the marginal energy technologies and analyzing the 528 

interactions between the incineration sector and the background energy sector.  529 

4 Discussion 530 

Prospective LCA requires addressing the sensitivity of results to future energy credits 531 

and waste composition in order to identify robust waste management options in long-532 

term decision-making. Constructing joint scenarios of energy and waste scenarios is a 533 

promising path forward. At the same time, such an approach should be 534 

understandable and accessible to those using the LCA results so as to ensure full 535 

transparency. In warranting transparency, decision-makers are given the possibility 536 

to bring in their knowledge and expertise as well as to challenge assumptions and 537 

other characteristics of scenarios. We believe the approach presented in this paper 538 

(ESWS) is overall better than the one applied in the TOSUWAMA project presented in 539 

the Introduction (Arushanyan et al., 2017), because it addresses upfront the 540 

important sensitivities and maximizes transparency. The discussion starts with a 541 

review of differences between the ESWS approach and the approach of the 542 

TOSUWAMA project, which relied on integrated, large economic and engineering 543 
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models (Ljunggren Söderman et al., 2016). The comparison enables for a discussion of 544 

the advantages and disadvantages of both approaches. We close by providing the 545 

limitations of the presented approach and indicating avenues for further research. 546 

ESWS considers the energy scenarios and waste storylines with the largest differences 547 

for the purpose of robust decision-making. The energy scenarios are selected from a 548 

pool of scenario studies representing different worldviews (Hamarat et al., 2013). The 549 

waste storylines have diverging MSW amounts and compositions as a starting point. 550 

In TOSUWAMA, societal developments such as increased globalization or 551 

regionalization are the qualitative input to models yielding, among others, future 552 

energy systems and waste compositions. Different societal developments might lead 553 

to similar energy systems or waste compositions. In other words, ESWS tackles 554 

sensitivity of LCA results upfront in contrast to TOSUWAMA. 555 

TOSUWAMA has the advantage of always ensuring consistency of joint energy and 556 

waste scenarios as both sectors are integrated in the same models (Harrison et al., 557 

2016). In contrast, ESWS would require a consistency analysis (Brand et al., 2013) on 558 

the existing energy scenarios and waste storylines. Such a consistency analysis was 559 

not conducted in the present case application for two reasons. Firstly, in the case 560 

application of ESWS (MSW in Switzerland) and in contrast to TOSUWAMA (waste in 561 

Sweden), the energy system seems to have no or little influence on waste flows 562 

through oil prices, the carbon permit price, and the energy system performance. Price 563 

influences would in practice mean that one cannot develop waste storylines 564 

independently from existing energy scenarios and require a consistency analysis. Yet, 565 
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the composition of packaging, one of the components of MSW, seems to depend 566 

mainly on national traditions in packaging, policies, technology, and economic 567 

developments (Worrell, 2014). Secondly, one could ask whether energy recovery 568 

efficiencies of MSW incinerators depend on energy prices. In Switzerland, in the 569 

context of a CO2 emissions market, Liechti (2012) argues that such an influence does 570 

not exist, because MSW incinerators, having a monopoly of waste incineration in a 571 

catchment area, could simply pass any additional costs arising from CO2 emissions 572 

onto customers. However, one could imagine MSW incinerators upgrading for energy 573 

efficiency to secure a comparative advantage against more CO2 intensive heat sources. 574 

An end to the so-called disposal monopoly for municipal solid waste in Switzerland – a 575 

situation prevailing in the EU (European Parliament and Council, 2000) – could 576 

trigger new dynamics, including but not limited to an increase in energy efficiency 577 

stimulated by CO2 taxation. Indeed, another consequence could be the drastic 578 

reduction of the number of MSW incinerators in favor of those offering the most 579 

attractive prices for waste treatment. 580 

Both societal developments (e.g., the dramatic increase in online shopping reflecting 581 

increased globalization) and policy (e.g. the government action on food waste), 582 

explain the differences in waste composition in ESWS. TOSUWAMA investigates the 583 

effect of a single policy measure on waste management and its environmental impacts 584 

at the time horizon of interest. ESWS allows for narrating a dynamic interplay 585 

between waste flows and policy measures, better reflecting the sociotechnical nature 586 



Linking energy scenarios and waste storylines for prospective environmental 
assessment of waste management systems 

34 

of waste management and the co-evolution of society and technology (Meylan et al., 587 

2013; Raven, 2007; Spoerri et al., 2010). 588 

ESWS and TOSUWAMA are similar in their lack of scenarios of material substitution. 589 

TOSUWAMA used the same avoided production in all scenarios. In ESWS, the waste 590 

storylines did not include future levels of material substitution. The substitution 591 

benefits, for instance the environmental benefits of substituting mineral fertilizers 592 

through products of biogenic waste treatment, however, should be included in the 593 

prospective LCA because of their relevance for the LCA results (Bjorklund and 594 

Finnveden, 2005; Blengini et al., 2012; Knoeri et al., 2013; Vadenbo et al., 2016). The 595 

question here is whether energy and material credits should be defined at the same 596 

stage of a scenario analysis. The energy system, including the direct energy recovery 597 

from waste, is characterized by long-term infrastructure in a very much national 598 

context of energy supply security (Turton and Barreto, 2006). In contrast, secondary 599 

resources from MSW and competing primary resources are found on international 600 

markets that, if not global, are at least continental in scale (Meylan et al., 2013; 601 

Nakatani et al., 2010). Also, in contrast to heat and electricity, institutional and 602 

consumer-related factors play an important role in material substitution (Vadenbo et 603 

al., 2016). As a consequence, within the same energy scenario, different material 604 

substitution sub-scenarios (Münster et al., 2013) are conceivable. 605 

Finally, waste storylines in ESWS heavily depend on input from experts and 606 

stakeholders, an important difference to TOSUWAMA, which relied on such input only 607 

for constructing the scenarios of societal developments. The stakeholder process 608 
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leads to mutual learning (Wiek et al., 2006b) as researchers learn more from the case 609 

and stakeholders and experts have the possibility to reflect on the(ir) case(s) in new 610 

ways. For instance, stakeholders have the opportunity to think in terms of scenarios 611 

instead of forecasts (Kahane, 1992; Meristö, 1989) in such complex instances as long-612 

term developments of waste management. Participation in ESWS increases the uptake 613 

chances of recommendations of waste management LCAs by decision-makers (Joos et 614 

al., 1999; Krütli et al., 2010). 615 

Participation allows for moving the discussion to the limitations of ESWS, besides 616 

those inherent to the use of existing energy scenarios (Section 3.2). The reverse side 617 

of the benefits of participation is the lack of reproducibility of waste storylines (Kok et 618 

al., 2006). Each stakeholder process is unique in its participants, dynamics, and 619 

context of events. Reproducing the same waste storylines is highly unlikely, which is 620 

why great care must be given to the selection of Scenario Panel and Scenario Team 621 

members and to the management of the ensuing process to reach a high level of 622 

process credibility and of results validity. Another limitation consists in the arbitrary 623 

limitation to three energy scenarios and three waste storylines. While the idea is to 624 

capture a base case and two extremes, an energy scenario presenting particular 625 

characteristics might be overseen, or the Scenario Panel might be interested in 626 

developing a fourth storyline reflecting a newly emerging societal trend. An 627 

implementation of the ESWS approach as online tool could help reduce the time 628 

required to construct these additional scenarios. 629 

  630 
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5 Conclusions 631 

The current practice of waste management LCA suffers from a lack of transparency, 632 

ultimately threatening implementation of recommendations by decision-makers. We 633 

presented a methodological approach tackling this challenge. It allows constructing 634 

energy and waste scenarios for prospective LCAs of waste management and was 635 

applied to the case of Swiss MSW management. The approach aims at supporting long-636 

term decisions in the context of the strong sensitivity of waste management LCAs to 637 

energy credits and waste composition. The approach relies on existing energy 638 

scenarios and a participatory process for constructing waste storylines in order to 639 

ensure transparency. Likewise, decision-makers are as well part of the process and 640 

thus implementation is secured. 641 
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Table 1 Details of steps for selecting three energy scenarios and constructing 

three waste storylines 

Steps Rationale Method Involved 
researcher or 
stakeholder 

1.1 Preselect 
existing energy 
scenarios 

Identify scenarios with sufficient 
and transparent reporting 

Review based on 
conditions provided in 
Section 2.1.1 

Scenario analyst 

1.2 Selection of 
existing energy 
scenarios 

Select scenarios showing large 
differences 

Maximally diverse 
scenarios (Trutnevyte et 
al., 2012) based on split 
of final energy amounts 
produced with various 
energy carriers 

Scenario analyst 

2.1 Scenario 
Team and 
Scenario Panel 

Establish a Scenario Team of 
scenario analysts and LCA 
researchers and a Scenario Panel 
including representatives of society 
knowledgeable on waste 
management (can be extended 
depending on ensuing steps, e.g., for 
storyline validation, 2.5) 

Storyline and Simulation 
(SAS) approach (Alcamo, 
2008) 

Scenario analyst 

2.2 Goals and 
outline of 
storylines 

Define which input variables must 
be included into the storyline 
development besides waste amounts 
and composition (i.e., functional unit 
of the prospective LCA) 

SAS approach (Alcamo, 
2008) (step conducted in 
parallel to the conceptual 
development of the LCA 
model to facilitate 
identification of input 
variables) 

Scenario Team 

2.3 Zero order 
draft of 
storylines 

- The Scenario Panel revises goals 
and outline of scenarios 
- Team and Panel define future 
levels of the input variables 
- Team and Panel discuss how future 
levels of input variables could 
influence one another to inform the 
elaboration of waste storylines. 

SAS approach (Alcamo, 
2008) (bearing in mind 
business-as-usual, 
maxima, and minima of 
input variables to 
appraise robustness) 

Scenario Team 
and Scenario 
Panel in joint 
meeting and/or 
interviews 

2.4 
Quantification of 
input variables 

Quantification of future levels based 
on official statistics, legislation, 
scientific literature, or business, 
industry, market reports, for 
example 

SAS approach (Alcamo, 
2008) (in SAS 
terminology, input 
variables are called 
driving forces) 

Scenario Team 

2.5 Validation of 
quantified 
storylines 

Discuss possible inconsistencies in 
storylines prior to running LCA 

Additional step compared 
to SAS approach in order 
to check validity of 
storylines prior to 
performing the 
prospective LCA 

Scenario Tam and 
Scenario Panel in 
joint meeting 

 

 

Table 1



Table 2 Future levels of waste storylines1 

Input variables Unit Explanation 2035 levels 
MSW amount 
and composition 

kg/cap/a Amount of MSW generated 
by households and other 
entities producing similar 
types of waste. Composition 
refers to the materials (e.g., 
glass, metal, plastic) used in 
packaging. 

- 481 (low MSW 
amounts) 
- 716 (base case) 
- 869 (high MSW 
amounts) 
 
For composition, see 
Error! Reference 
source not found. 

Energy recovery 
efficiency at 
MSW 
incinerators 

% Refers to the net energetic 
yield (electricity and heat) of 
MSW incinerators (Morf, 
2011). 

- 83 (low MSW amounts) 
- 62 (base case) 
- 57 (high MSW amounts) 
 

Centralization of 
MSW 
incinerators 

Number of MSW 
incinerators in 
Switzerland 

Today, there are 29 MSW 
incinerators treating Swiss 
MSW. The future might see a 
lower amount of MSW 
incinerators due to lower 
total MSW amounts. 

- 10 (low MSW amounts) 
- 27 (base case) 
- 29 (high MSW amounts) 

Material 
recovery 
efficiency at 
MSW 
incinerators 

Technology used Refers to the recovery of 
metals and inert materials in 
incineration residues. 

- Nationwide adoption of 
new technologies (e.g., 
Supersort, ZAV Recycling 
AG) (low MSW amounts) 
- Business-as-usual 
technologies (base case, 
high MSW amounts) 

AFR capacity of 
Swiss cement 
industry 

% change in absolute 
capacity 

Refers to the absolute 
capacity of Swiss cement 
plants to use alternative 
fuels and raw materials 
(AFR) in 2035, incl. MSW. 

- 20 (all storylines) 

 

 

                                                        
1 To be used in prospective LCA of Swiss MSW management 

Table 2
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Appendix 

1 Explanation of net energy efficiency 
 
Energy recovery efficiency is measured by the net energy efficiency (NEE), which 
is the ratio of energy entering a MSW incinerator over energy leaving the 
incinerator in a useful form and is calculated as follows (Morf, 2011): 
 

𝑁𝐸𝐸 =
ቀா౛౮౦ି൫ா೑ାா೔൯ቁ

଴.ଽ଻×൫ாೢାா೑൯
        Eq. 1 

 
𝐸ୣ୶୮ = 2.6 × 𝐸ୣ୶୮ ௘ + 1.1 × ൫𝐸ୣ୶୮ ௦௧ + 𝐸ୣ୶୮ ௛൯     Eq. 2 
 
Eexp is the net exported energy. Eexp e is the exported electrical energy. Eexp st is heat 
exported as process steam. Eexp h is heat exported for district heating. Ef and Ei 
correspond to additional fuels for steam production and other purposes, 
respectively. Ew is the energy contained in waste, measured as lower heating 
value. A factor of 0.97 is used to take into account slag and radiation losses in the 
boiler. 

2 Future levels of MSW amounts and composition 
 
Figure A 1 shows the waste composition of MSW in Switzerland for the three time 
horizons of the case study (2020, 2035, and 2050). The following subsections 
describe the development of the scenarios “low MSW amounts” and “high MSW 
amounts” for the waste fractions for which future scenarios were modelled. As 
“base case” scenario, the waste composition of 2012 was assumed (Haupt et al., 
2017; Steiger, 2014). For all fractions not described below, it was assumed that 
the amounts stay constant until 2050. Furthermore, the amount of direct 
deliveries to the MSW incinerator (i.e., commercial waste which is not collected 



 2 

by the municipality) was kept at 150 kilograms per person and year until 2050.In 
2012, the per capita ratio of waste over real gross domestic product was 10.4 kg 
MSW/kCHF2010. By 2035, the scenario “low MSW amounts” corresponds to a 
strong decoupling with 6.2 kg MSW/kCHF2010, while the base case represents a 
slight decoupling with 9.1 kg MSW/kCHF2010. The scenario “high MSW amounts” 
implies a slight increase in waste intensity per gross domestic product with 11.1 
kg MSW/kCHF2010. 
 
The statistical analyses described in the following paragraphs are based on the 
Swiss waste statistics on separate collection and the residual, mixed MSW 
composition (surveyed by the Swiss Federal Office of the Environment (Steiger, 
2014)). While the separate collected fractions are reported for all years, the MSW 
composition is surveyed only every ten years and was interpolated linearly. The 
numbers for 2012, i.e., the base case, are taken from Haupt et al. (2017). 
 

 
Figure A 1 Waste composition in the waste storylines “low MSW amounts”, “base case”, and “high 

MSW amounts” for the three time horizons 2020, 2035, and 2050. 

 

2.1 Paper and Cardboard 
The annual Swiss paper and cardboard consumption from 2003 to 2015 is 
reported in the annual report of the association of the cellulose, paper, and 
cardboard industries (ZPK, 2003-2014). Previous studies show that the waste 
statistics are not sufficient to identify the total cardboard consumption (Haupt et 
al., 2017). The information about paper and cardboard consumption is therefore 
compared to the waste statistics regarding paper and cardboard to identify the 
non-reported fractions from, for example, online shopping of private consumers 
and the related shipping activities. Figure A 2 shows the consumption as provided 

0

100

200

300

400

500

600

700

800

900

1000

low MSW
amount

base case high MSW
amount

low MSW
amount

base case high MSW
amount

low MSW
amount

base case high MSW
amount

2020 2035 2050

w
as

te
 a

m
ou

nt
 [k

g/
ca

p*
a]

WEEE + batteries +
hazardous waste
textiles

minerals

org. natural products
+ composites
plastics

metals

PET

glass

cardboard

paper

biogenic household
waste
direct deliveries



 3 

by national statistics as well as the waste amounts reported and the respective 
trend lines. 

 
Figure A 2 Paper and cardboard consumption based on waste and consumption statistics (source 

of data is indicated in brackets) and respective trend lines. 

Low MSW amounts: A continuous reduction of the paper and cardboard usage 
according to the Swiss consumption statistics was assumed. 
High MSW amounts: It was assumed that the difference between consumption 
and waste statistics arise only due to online shopping and the related shipping 
activities (cardboard boxes are not included in consumption statistics). The 
difference between these statistics showed that since 2009, the consumed 
amounts were underestimated. A trend line from 2009 to 2015 was used to 
calculate the cardboard consumption in 2035. 
 

2.2 Biogenic waste 
Biogenic waste from households includes kitchen as well as garden waste. In 
Switzerland, 66% of the biogenic waste from households is assumed to be kitchen 
waste (assumption based on total amount of biogenic waste separately collected 
(Dettli, 2014) and of kitchen waste separately collected (K. Schleiss, October 2015, 
personal communication; Frischknecht et al., 2014; Kohler, 2015)). Kitchen waste 
from households is assumed to be 86% avoidable and 14% unavoidable food 
waste based on Beretta et al. (2013). Within the EU, a food waste reduction target 
of 50% has been set for 2030 (EC, 2015). 
 
Low MSW amounts: Kitchen waste was assumed to decrease by 60% based on 
the reduction targets of the EU action plan for Circular Economy (-50%) (EC, 
2015) and the high amount of avoidable food waste found in Switzerland (Beretta 
et al., 2013). Garden waste is assumed to decrease by 20% in 2035 due to a 
reduction in (urban) farming related to a densification within populated areas. 
High MSW amounts: Increase of kitchen waste as observed between 2000 to 
2012 (linear trend assumed; 2013 to 2015 were excluded due to the large 
increase of biogenic waste which could not be explained and might be related to 
altered data collection methods). Garden waste is assumed to stay at 2012 levels. 
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2.3 Aluminium 
The consumption of aluminium has increased by 370% in the last 15 years. 
Possible drivers for this increase are the growing consumption in the public space 
(e.g. take-away) and the rise of energy drinks in the last years. 
 
Low MSW amounts: It is assumed that the consumption continuous to grow and 
levels at 2 kilogram per person and year.  
High MSW amounts: An increasing use of aluminium as light packaging material 
results in a growth corresponding to a linear trend based on the data from 2000 
to 2015. This leads to a 250% increase of the aluminium consumption by 2035. 
 

2.4 Tinplate 
The consumption of tinplate has been decreasing since 1992, which can be 
explained by reduced stock keeping in households and an increasing use of 
aluminium in the packaging industry. An exponential decay fits the data (R2 = 
0.96). 
 
Low MSW amounts: The trend of the last 23 years is expected to continue 
resulting in a further decrease of the tinplate consumption. 
High MSW amounts: The decay is assumed to slow down and the consumption 
therefore is projected to stay at 2 kilogram of tinplate per person and year.  
 

2.5 PET bottles and mixed plastic 
The amount of mixed plastic in mixed waste fractions has decreased over the last 
years but numbers for separate collection systems are not available. Large 
consumer trends (e.g., shift towards glass/cotton containers, zero-waste 
shopping) as well as industry initiatives (e.g., reduction of plastic packaging) 
could not be modelled. Therefore, it was assumed that the amount of mixed plastic 
(incl. plastic bottles other than PET) would stay constant. The PET consumption 
reached a plateau in 2009 and has ever since stayed between 5.6 and 5.9 kilogram 
per person and year. However, current market developments could lead to both 
an increase or a decrease of the PET consumption. 
 
Low MSW amounts: A decrease in consumption based on current “zero waste” 
movements is assumed and the PET consumption therefore decreases to 4 
kilogram per person and year (-30% by 2035). 
High MSW amounts: A current trend to substitute other plastics with PET 
(identified in discussion with experts from the respective industries) is assumed 
to increase the PET consumption to 7 kilograms per person and year in 2035 
(+20%). 
 

2.6 Glass 
After a rise in glass consumption between 1992 and 1998, the amounts oscillated 
between 48 and 52 kilograms per person and year between 1998 and 2015. Since 
2010, a decreasing tendency can be seen. However, no long-term trend can be 
observed based on the data. 
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Low MSW amounts: The trend to lighter packaging is expected to lead to lower 
glass consumption in the future (decrease is based on the trend line between 2010 
and 2015). 
High MSW amounts: The trend to reusable packaging material is assumed to lead 
to an increased consumption of glass until the amounts stabilize at 60 kilograms 
per person and year in 2035. 

3 Storylines 
 
“High MSW amounts” 
 
MSW amounts increase from 716 kg per capita per year in 2012 to 869 kg per 
capita per year in 2035. Current trends in cardboard and paper consumption 
endure until 2035. The cardboard fraction soars due to global markets with 
increased shipping activities. The lack of measures and initiatives leads to an 
increase in biogenic waste. The amount of paper is assumed to stay on the level 
of 2012. 
 
The MSW incineration infrastructure of 2012 is maintained to cope with these 
large quantities. Twenty-nine MSW incinerators have a treatment capacity of 
some four million tons in 2035. In terms of energy recovery efficiency, all MSW 
incinerators fulfil the minimal requirement of 55% of net energy recovery 
efficiency laid out by the Ordinance on waste prevention and treatment, Article 
32. As some incinerators are above that threshold, the average energy recovery 
efficiency is 57%. The retrofit of existing combined heat and power plants yields 
the energy efficiency improvement. Current trends to increased material 
recovery continue until 2035. By 2035, all MSW incinerators are connected to a 
bottom ash treatment system or recover the valuables from bottom ash at the 
incinerator site. Ferrous metals and a non-ferrous metal concentrate are 
recovered. Ferrous metals are sent to a Swiss steel company that recovers steel 
scrap by relying on an electric-arc furnace or foreign plants. Non-ferrous metals 
are sent to a metals recycling plant abroad. A centralized recycling plant in 
Switzerland or Waelz kilns with subsequent processing of the zinc concentrate 
in a zinc smelting plant elsewhere in Europe recover zinc metal from sludge 
produced by acid washing of fly ash in the MSW incinerators. 
 
MSW incinerators compete with cement plants for specific MSW fractions, for 
instance for residues from plastics recycling. However, clinker production will 
decrease by 2035 leading to a drop in capacity for processing alternative fuels 
and raw materials by 20%. The drop in clinker production reflects decreasing 
population growth and structural change in the Swiss economy, in which energy 
intensive economic sectors are replaced by sectors with lower energy demand. 
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“Base case” 
 
MSW amounts and composition remain at levels of 2012: 716 kg per capita per 
year. More than half (55%) of MSW is made of biogenic waste (24%), paper 
(21%), and cardboard (9.7%). 
 
The MSW incineration infrastructure of 2012 is maintained with two exceptions. 
As planned, a small plant in Canton Zurich is closed and two plants in a 
neighbouring canton are merged. The net energy efficiency is 62%, which reflects 
average improvements observed in the past years in Switzerland. Current trends 
to increased material recovery continue until 2035. By 2035, all MSW 
incinerators are connected to a bottom ash treatment system or recover the 
valuables locally. Ferrous metals and a non-ferrous metal concentrate are 
recovered. Ferrous metals are sent to a Swiss steel company that recovers steel 
scrap by relying on an electric-arc furnace or foreign plants. Non-ferrous metals 
are sent to a metals recycling plant abroad. A centralized recycling plant in 
Switzerland or Waelz kilns with subsequent processing of the zinc concentrate 
in a zinc smelting plant elsewhere in Europe recover zinc metal from sludge 
produced by acid washing of fly ash in the MSW incinerators. 
 
MSW incinerators compete with cement plants for specific MSW fractions, for 
instance for residues from plastics recycling. However, clinker production will 
decrease by 2035 leading to a drop in capacity for processing alternative fuels 
and raw materials by 20%. The drop in clinker production reflects decreasing 
population growth and structural change in the Swiss economy, in which energy 
intensive economic sectors are replaced by sectors with lower energy demand. 
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