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ABSTRACT

Luminescence sensors are based on the determination of emitted intensity or decay time when a luminophore is
in contact with its environment. Changes of the environment, like temperature or analyte concentration cause
a change in the intensity and decay rate of the emission. Typically, since the absolute values of the measured
quantities depend on the specific sensing element and scheme used, a sensor needs an analytical model to
describe the dependence of the quantity to be determined, for example the oxygen concentration concentration,
from sensed quantity, for example the decay time. Additionally, since the details of this dependence are device
specific, a sensor needs to be calibrated at known reference conditions. This work explores an entirely new
artificial intelligence approach and demonstrates the feasibility of oxygen sensing through machine learning. The
new developed neural network is used for optical oxygen sensing based on luminescence quenching. After training
the neural network on synthetic data, it was tested on measured data to verify the prediction of the model. The
results show a mean deviation of the predicted from the measured concentration of 0.5 % air, which is comparable
to many commercial and low-cost sensors. The accuracy of the model predictions is limited by the ability of
the generated data to describe the measured data, opening up future possibilities for significant improvement
by performing the training on experimental data. In this work the approach is tested at different temperatures,
showing its applicability in the entire range relevant for biological applications. This work demonstrates the
applicability of this new approach based on machine learning for the development of a new generation of optical
luminescence oxygen sensors without the need of an analytical model of the sensing element and sensing scheme.

Keywords: artificial intelligence; neural network; machine learning; oxygen sensor; luminescence; optical sensor;
luminescence quenching; phase fluorimetry

1. INTRODUCTION

The measurement of oxygen concentration is of great interest in many fields ranging from biomedical imaging,
environmental monitoring, process control, and chemical industry, to mention only a few. Among the different
optical methods, the quenching of luminescence by the oxygen molecules is an established method both for
laboratory and for industrial sensors.1,2

A dye molecule, called in this work indicator, is embedded in a matrix permeable to oxygen. Its luminescence
is quenched due to the dynamical collisions with molecular oxygen. This process leads to a reduction by an
amount which depends on the oxygen concentration of both the intensity and decay time of the luminescence.3–5

The luminescence quenching measurement principle has been succesfully commercialized since several years and
has replaced other oxygen sensing technologies.6

Sensors based on luminescence quenching are based on an empirical and often only approximate multi-
parametric model to capture the dependence of the sensing quantity (e.g., intensity or decay time) on influencing
factors. These include, for example, the temperature, which strongly influences both the luminescence and the
quenching mechanism, the quenching rate constant of the indicator, or the solubility of oxygen in the matrix
which serves as a solvent for it. The resulting analytical model is therefore highly specific of the system used.7–10

This specificity and variations due to hardware-related tolerances are usually accounted for by a device-specific
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calibration. Therefore, the complexity of the model, the lengthy calibration, and the potential changes during
the application in the field, possibly neglected in the model, make an alternative approach highly interesting.

This work explores a new machine learning approach based on the development of a neural network model
which learns to relate the sensed quantities to an oxygen concentration value. To the best of the author’s
knowledge, machine learning was never applied to phase-fluorimetry based luminescence sensing, only to time-
resolved luminescence data.11 Due to the lack of enough experimental data the training was performed with
an artificially-created training dataset. The results show that the current network already achieves results
comparable with many high-concentration commercial and compact sensors based on classical approaches.6,12

In this work the robustness of the approach at different temperatures was investigated to test the feasibility
for field applications. Potential for improvement is also identified, showing how this approach may allow a new
generation of sensors.

2. MODEL FOR OXYGEN SENSING VIA LUMINESCENCE QUENCHING

The measurement of the oxygen concentration is performed thanks to the change of the luminescence intensity
and decay time of a specific indicator in presence of O2. The collision of the indicator with molecular oxygen act
as a radiationless deactivation process resulting in a quenching of the luminescence. In the case of homogeneous
media characterized by an intensity decay which is a single exponential, the decrease in intensity and lifetime
are both described by the Stern-Volmer (SV) equation3,4

I0
I

=
τ0
τ

= 1 +KSV · [O2] (1)

where I0 and I, respectively, are the luminescence intensities in the absence and presence of oxygen, τ0 and τ
the decay times in the absence and presence of oxygen, KSV the Stern-Volmer constant and [O2] indicates the
oxygen concentration.

In many cases when the indicator is embedded in a substrate, the SV curve does not display a linear behavior
as in equation (1).1 Possible reasons may be, for example, heterogeneities of the micro-environment of the
luminescent indicator, or the presence of static quenching. To describe this behavior a common model is the
multi-site, or for two sites the two-site model,13 in which the the SV curve is the sum of at least two contributions,
characterized by different quanching rates, and written as

I0
I

=

(
f1

1 +KSV 1 · [O2]
+

f2
1 +KSV 2 · [O2]

)−1
(2)

where I0 and I, respectively, are the luminescence intensities in the absence and presence of oxygen, f1 and
f2 = 1− f1 are the fractions of the total emission for each component under unquenched conditions, KSV 1 and
KSV 2 are the associated Stern-Volmer constants for each component, and [O2] indicates the oxygen concentration.
Since f1 + f2 = 1, the following notation will be used in this work: f1 = f and f2 = 1− f . Although this model
was introduced for luminescence intensities, it is frequently also used to describe the oxygen dependence of the
decay times.

The measurement of the luminescence decay time can be conveniently and cost-effectively realized in the
frequency domain by modulating the the intensity of the excitation. In this method, also known as phase
fluorimetry, the emitted luminescence light is also modulated but shows a phase shift θ due to the finite lifetime
of the excited state. For a single-exponential decay, the relation between these quantities is

tan θ = ω τ (3)

where ω is the angular frequency and τ is the luminescence decay time. For a multi-exponential intensity decay,
is not meaningful to define a single decay time and the relationship between phase shift and decay times must
be calculated through the sine and cosine transforms of the intensity decay.4,14–17 However, to overcome the
eccesive complexity of an implementation, it is typical to introduce an apparent decay time and to relate it to
the oxygen concentration as

tan θ0
tan θ

=

(
f

1 +KSV 1 · [O2]
+

1− f
1 +KSV 2 · [O2]

)−1
(4)
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where θ0 and θ, respectively, are the phase shifts in the absence and presence of oxygen, f and 1 − f are
the fractions of the total emission for each component under unquenched conditions, KSV 1 and KSV 2 are the
associated SV constants for each component, and [O2] indicates the oxygen concentration. The quantities f ,
KSV 1, and KSV 2 may result frequency dependent, an artifact of the approximation of the model. The equation
(4), although only an approximation, was used in this work to generate the synthetic data for the training due
to its simplicity.

3. EXPERIMENTAL SETUP

The sample used for the characterization and test was a commercially available Pt-TFPP-based oxygen sensor
spot (PSt3, PreSens Precision Sensing GmbH, Regensburg, Germany). To control the temperature of the sam-
ples, these were placed in good thermal contact with a copper plate, placed in a thermally insulated chamber.
The temperature of this plate was adjusted at a fixed value between 0 ◦C and 45 ◦C using a Peltier element and
stabilized with a temperature controller (PTC10, Stanford Research Systems, Sunnyvale, CA USA). The ther-
mally insulated chamber was connected to a self-made gas-mixing apparatus which enabled to vary the oxygen
concentration between 0 % and 20 % vol O2 by mixing nitrogen and dry air. In the following, the concentration
of oxygen will be given in % of the oxygen concentration of dry air and indicated with % air. This means, for
example, that 20 % air corresponds to 4 % vol O2 and 100 % air corresponds to 20 % vol O2. The absolute error
on the oxygen concentration adjusted with the gas-mixing apparatus is estimated to be below 1 % air.

The optical setup used in this work for the luminescence measurements is shown schematically in Fig. 1.
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Figure 1. Scheme of the optical experimental setup. Blue is the excitation, red the luminescence optical path. PD:
photodiode; SP filter: short pass filter; BP filter: band pass filter; TIA: trans-impedance amplifier.

The samples were excited with a 405 nm LED (VAOL-5EUV0T4, VCC Visual Communications Company),
whose light was filtered by an OD5 short pass filter with cut-off at 498 nm (Semrock 498 SP Bright Line HC short
pass) and focused on the surface of the samples with a collimation lens. The luminescence light was focused by a
lens on a photodiode (SFH 213 Osram). The luminescence emission was filtered by a band pass filter composed
of an OD5 long pass filter with cut-off at 594 nm (Semrock 594 LP Edge Basic long pass) and an OD5 short
pass filter with cut-off at 682 nm (Semrock 682 SP Bright Line HC short pass) to suppress stray light and light
reflected by the sample surface. Both the LED driver and the trans-impedance amplifier (TIA) are self-made.
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For the frequency generation and the phase detection a two-phase lock-in amplifier (SR830, Stanford Research
Inc.) was used. The modulation frequency was varied between 200 Hz and 20 kHz.

4. MACHINE LEARNING APPROACH

The machine learning approach of this work consist in using a tuned feed-forward neural network, which learns
to relate an input measured quantity to an output quantity from a large number of examples, making the
mathematical description of the luminescence decay irrelevant.18 The method consists in taking a large number
m of measurements of the ratio of equation (5)

r(ω, T, [O2]) ≡ tan θ(ω, T, [O2])

tan θ(ω, T, [O2] = 0)
(5)

at 16 known values of the modulation frequency and for a set of values of the oxygen concentration uniformly
distributed in the range of interest, and use it to train a neural network. Since a large volume of data was not
available, synthetic data were generated and used for the training of the network. The method and the study of
the network architecture are described in detail in a previous work and will not repeated here.19

The steps of the method19 are shown in the flowchart of Fig. 2. The steps are the following:

(i) Data acquisition for different values of frequency, temperature, and oxygen concentration.

(ii) Determination of a numerical approximation, via interpolation, of the quantities KSV1(ω), KSV2(ω), and
f(ω) at the chosen temperature T1.

(iii) Creation of the dataset S with m synthetic measurements using the numerical approximation.

(iv) Split of the dataset S into a training dataset Strain composed of 80 % of the observations, and a development
Sdev dataset composed of 20 % of the observations.

(v) Training of several neural network models on the artificial training dataset Strain.

(vi) Check for a high-variance (or overfitting) using Strain and Sdev datasets.

(vii) Application of the trained neural network model to the experimental dataset to predict the oxygen con-
centration and comparison with the measured [O2] quantities.

For the analysis performed in this paper a network with 3 layers and 10 neurons in each layer has been
used. Increasing the effective network complexity after a certain level does not improve the performance of the
network because of the differences between experimental measured and synthetically generated data including
the experimental error.19 Therefore, in this work the network was not modified.

The metric used to check the model performance is the absolute error (AE). This is defined, as the ab-
solute value of the difference between the predicted and the measured [O2][j] value for a given observation j
corresponding to a given value of [O2]

AE[j] = |[O2]
[j]
pred − [O2][j]meas|. (6)

A further metric calculated for a given temperature T is the mean absolute error (MAE) and calculated as

MAE(Stest) =
1

|Stest|
∑

j∈Stest

|[O2]
[j]
pred − [O2][j]meas|. (7)

where with Stest indicates the dataset used for the validation of the neural network model. Stest contains the 10
experimental observations measured at a given temperature for the different values of the oxygen concentration
[O2].

The neural network model have been developed with PythonTM, in particular with the packages scipy20 and
TensorFlowTM.
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Figure 2. Schematic overview of the steps of the machine learning approach.19

5. RESULTS

Fig. 3 shows the dependence of the phase shift from the the oxygen concentration and temperature. Here the
phase shifts measured at a fixed modulation frequency of 6 kHz are plotted as tan θ0/ tan θ for three selected
temperatures. The measurements in Fig. 3 show that, since the functional form of the tan θ0/ tan θ is the same
for all temperatures, the artificial intelligence approach is expected to work similarly well for all the temperatures
in the range studied. The performance of the neural network for the different temperatures measured, evaluated
as the absolute error defined in equation (6) is shown inf Fig. 4. For each temperature the absolute error is
calculated for the available oxygen concentrations and displayed as a box plot, where the median is visible as a
red line.

The results of Fig. 4 show that the machine learning approach works very well for all the temperatures,
predicting the oxygen concentrations below 100 % air with an absolute error below 1 % air and a median
absolute error of the order of 0.5 % air. The prediction of the concentration corresponding to 100 % air is shown
in Fig. 4 as a separate dot because characterized by a higher absolute error, around 2 % air, little dependent on
the temperature.

The distribution of the absolute error with the oxygen concentration at a single temperature is shown as
example for 25 ◦C in 5. From the figure is clearly visible that the AE, which is below 0.5 % air for lower oxygen
concentrations, increases for [O2] above30 % air. Again, the AE reaches the highest concentration at 100 % air.
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Figure 3. Phase shift measured for a modulation frequency of 6 kHz at the temperatures 5 ◦C, 25 ◦C, and 45 ◦C as a
function of the oxygen concentration.

The origin of the strongest deviation for concentrations of 100 % air was investigated in detail and found to
be due to the approximation of the conventional model describing the quenching of the luminescence of equation
(4), which was used to generate the training data.19 In other words, the training was performed with synthetic
data which do not approximate well enough the experimental measurements. So the network learned from a
dataset with slightly different functional shape than the experimental dataset. Thus, the absolute error could
be reduced using experimental measures as a training dataset, allowing to achieve even better predictions of the
oxygen concentration.
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Figure 4. Performance of the neural network: absolute error distribution for different concentrations calculated at the
temperatures of 5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, and 45 ◦C. The absolute error corresponding to 100 % air is shown separately
as circle.
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Figure 5. Absolute error of the neural network model prediction applied to the experimental data at the temperatures 25
◦C.

6. CONCLUSIONS

This work investigates the applicability of a novel machine learning approach and demonstrates its relevancy for
optical oxygen luminescence sensing. The optimized neural network learns to relate the measured quantity, the
phase shift, to the oxygen concentration, without the need of an analytical model describing the quenching of
luminescence and its dependence from the parameters of interest. The proposed artificial intelligence approach
has therefore the advantage to be applicable even if the observed Stern-Volmer curves deviate from the common
multi-parameter approximate models, which is the case with many commercial and low-cost sensors. The sensor-
specific deviations, which may be caused, for example, by the sensing element and the immobilization of the
indicators in the substrate, or even by sensor-specific hardware-related component, like absorption filters or glues,
do not play any role in the described approach because they can be learned by the neural network.

The neural network is characterized by a feed-forward architecture, and learns effectively to predict the oxygen
concentration with a median absolute error of 0.5 % air. The results show that the absolute error increases with
higher concentrations, going from below 0.5 % air to a maximum of 2 % air at 100 % air. The main contribution
to the absolute error was identified in the poor agreement of the conventional model describing the quenching
of the luminescence, which was used to generate the training data. The performance of the network is expected
to increase significantly by performing the training on experimental data, achieving an even better agreement
of the prediction with the measurements. The analysis was carried out at different temperatures in the range
between 5 ◦C and 45 ◦C, which is the range relevant for biophysical applications. The results show the approach
works well for all the temperatures studied.

In conclusion, this work shows that, a feed-forward neural network is capable to capture the effects of
the relevant influencing parameters studied in their entire range of application: modulation frequency, oxygen
concentration and temperature. Once the sensor hardware is given, that is all the optical, electronic, mechanical
and chemical components are assembled, a neural network can be trained to learn to predict one, or possibly
more, quantities of interests, in this work the oxygen concentration. The new approach opens up new possibilities
in sensor development because all the device-specific characteristics can be accounted for by the trained neural
network.
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