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Abstract: In this work, we prove a Nekhoroshev-type stability theorem for the Toda lattice with
Dirichlet boundary conditions, i.e., with fixed ends. The Toda lattice is a member of the family of
Fermi-Pasta-Ulam (FPU) chains, and in view of the unexpected recurrence phenomena numerically
observed in these chains, it has been a long-standing research aim to apply the theory of perturbed
integrable systems to these chains, in particular to the Toda lattice which has been shown to be a
completely integrable system. The Dirichlet Toda lattice can be treated mathematically by using
symmetries of the periodic Toda lattice. Precisely, by treating the phase space of the former system as
an invariant subset of the latter one, namely as the fixed point set of an important symmetry of the
periodic lattice, the results already obtained for the periodic lattice can be used to obtain analogous
results for the Dirichlet lattice. In this way, we transfer our stability results for the periodic lattice to
the Dirichlet lattice. The Nekhoroshev theorem is a perturbation theory result which does not have
the probabilistic character of related theorems, and the lattice with fixed ends is more important for
applications than the periodic one.

Keywords: perturbation theory; integrable systems; Fermi-Pasta-Ulam chain

1. Introduction

In this paper, we consider perturbations of the Toda lattice with two different kinds of boundary
conditions, namely periodic and Dirichlet (fixed ends) boundary conditions. The periodic case is
the structurally fundamental one, whereas the Dirichlet case is more imporant for applications;
in particular, the famous numerical experiments of Fermi, Pasta, and Ulam with the family of “FPU
chains” (see [1]), of which the Toda lattice is a special case, were performed with Dirichlet boundary
conditions.

Among the entire family of FPU chains, the Toda lattice has especially strong integrability
properties, which makes it possible to obtain results not only in a neighborhood of the equilibrium
point, but on the entire phase. This makes it possible to rigorously prove certain stability properties
also far away from the equilibrium, i.e., for high energies of the system.

The Toda lattice however should not only be considered as a member of the family of FPU chains;
on the contrary, it has been investigated mostly independently from the FPU framework, since it is,
as a recent review article [2] states, “a wonderful case study in mechanics and symplectic geometry”
with ramifications ranging from representation theory [3] to numerical analysis [4]. Moreover, the Toda
lattice is a model with has numerous applications in the physical sciences, ranging from solid state
physics [5] and quantum field theory [6] to DNA transcription [7], to mention just a few. Some review
articles on the history of the research on the Toda lattice have been published very recently [8–10].

On the other hand, the research on general FPU chains also has its own rich history since the
numerical experiments of Fermi, Pasta, and Ulam; since the present paper does not discuss general
FPU chains, we refer to the literature for further references, e.g., the overview article [11].

The goal of this paper is the proof of a Nekhoroshev-type result for the Dirichlet Toda lattice.
Even though we have already obtained a result of this type for the periodic lattice, we consider the result
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for the lattice with Dirichlet boundary conditions to be of additional interest, since, as just mentioned,
most applications of this type of chains have Dirichlet boundary conditions. Besides these two types of
boundary conditions, there also exists a rich literature on the infinite Toda lattice, i.e., the lattice with an
infinite number of particles without periodicity. For results on the long-time asymptotics of this kind of
Toda lattices, using in particular tools from inverse scattering transform and Riemann-Hilbert theory
see e.g., [12] and the references therein. The inverse scattering transform as a tool to investigate the
dynamics of nonlinear systems was originally developed for the Korteveg-de Vries (KdV) equation [13].

Finally, we consider this result to be an interesting case study for the Nekhoroshev theorem,
a major perturbation theory result for integrable systems. It is well-known that the Toda lattice with
both types of boundary conditions is an integrable system (for the periodic case see [14–16], for the
Dirichlet case see [15]). The Toda lattice is one of a small number of physical examples outside of the
realm of celestial mechanics, where the prerequisites of the Nekhoroshev theorem have actually been
checked. A better-known stability result for integrable systems is the KAM theorem (see e.g., [17]),
whose applicability to this system we have already shown for both types of boundary conditions [18,19];
however, the Nekhoroshev theorem has the advantage of being free from probabilistic elements–recall
that the stability statements of the KAM theorem only hold for a majority of initial conditions.

We accomplish our task by embedding the Dirichlet lattice into a periodic lattice of a higher
dimension, and the idea is to use the results on the periodic lattice already obtained. However,
we cannot directly apply this previous work to the Dirichlet case, since the image of the phase space
of the Dirichlet lattice under this embedding is contained in a subset of the periodic phase space not
covered by the previous result. Therefore, we have to adapt some of the previous results to the new
circumstances. For most of the auxiliary facts needed for our final result, they can be obtained in
a similar way as before, and we do not reformulate everything explicitly in the present paper and
sometimes refer to the work already done.

2. Results

To formally state our results, we first need to introduce the mathematical model of the Toda lattice
with various types of boundary conditions. In the periodic case, the lattice with N particles (N ≥ 2) is
given by the Hamiltonian

HToda =
1
2

N

∑
n=1

p2
n + α2

N

∑
n=1

eqn−qn+1 (1)

where α is a positive parameter, α > 0, and the boundary conditions

(qn+N , pn+N) = (qn, pn) ∀ n ∈ Z. (2)

In the Dirichlet case, the lattice with N′ particles (N′ ≥ 2) is given by the Hamiltonian

H(D)
Toda =

1
2

N′

∑
n=1

p2
n + γ2

N′

∑
n=0

eqn−qn+1 , (3)

where γ again is a positive parameter, γ > 0, and the boundary conditions

q0 = qN′+1 = p0 = pN′+1 ≡ 0. (4)

We will show in Section 3 how the aforementioned embedding of the model (3) into the model (1)
can be accomplished explicitly (for a suitable N depending on the chosen N′).

The main result of this paper is the following:

Theorem 1. There exists an open and dense subset of the phase space of the Toda lattice with Dirichlet
boundary conditions on which Nekhoroshev’s theorem applies to sufficiently small perturbations of the Dirichlet
Toda Hamiltonian.
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We describe the general set-up and give the precise formulation of Nekhoroshev’s theorem in
Appendix A, thereby closely following [20]; see also the references given in [21]. Nekhoroshev’s original
work can be found in [22,23] . Its main prerequisites are the construction of action variables on the
phase space and the convexity of the Hamiltonian with respect to these action variables. We accomplish
the tasks of constructing action variables and proving the convexity of the Hamiltonian in Theorems 2
and 3, respectively. We proved the following Theorem in [18]:

Theorem 2. For any fixed γ ∈ R and N′ ≥ 2, the Dirichlet Toda lattice admits a Birkhoff normal form.
More precisely, there are (globally defined) canonical coordinates (xk, yk)1≤k≤N′ so that H(D)

Toda, when expressed

in these coordinates, is a function of the action variables Ik = (x2
k + y2

k)/2 (1 ≤ k ≤ N′) alone, H(D)
Toda = Hγ(I).

Technically, the main result of this paper states that the Hamiltonian Hγ is a convex function of
the actions variables (Ik)1≤k≤N′ .

Theorem 3. In the open quadrant RN′
>0, the Hamiltonian Hγ(I) introduced in Theorem 2 is a strictly convex

function of the action variables (Ik)1≤k≤N′ . Precisely, for any compact subset U ⊆ RN′
>0 and any compact

interval [α1, α2] ⊆ R>0, there exists m > 0, such that

〈∂2
IHγ(I)ξ, ξ〉 ≥ m‖ξ‖2, ∀ξ ∈ RN′ (5)

for any I ∈ U, and any α1 ≤ γ ≤ α2.

The convextiy statement (5) shows that the prerequisites of Nekhoroshev’s
general theorem (see Theorem A1 in Appendix A) are satisfied in the present case.
Therefore Theorem 3 implies that Nekhoroshev’s Theorem holds for the Dirichlet Toda lattice
on P• :=

{
(q, p) ∈ R2N′ | In(q, p) > 0 ∀ 1 ≤ n ≤ N′

}
, an open and dense subset of R2N′ by Theorem 2.

This then proves our main result, Theorem 1.
To prove Theorem 3, we use the Birkhoff normal form of the Dirichlet Hamiltonian Hγ near I = 0,

also established in [18].

Theorem 4. Near I = 0, the function Hγ(I) introduced in Theorem 2 admits an expansion of the form

(N′ + 1)γ2 +
√

2 γ
N′

∑
k=1

sk Ik +
1

16(N′ + 1)

N′

∑
k=1

I2
k + O(I3), (6)

with sk = sin kπ
2(N′+1) . In particular, the Hessian of Hγ(I) at I = 0 is given by

d2
IHγ(I)|I=0 =

1
32(N′ + 1)

IdN′ . (7)

As an immediate consequence of (7), we obtain

Corollary 1. Near I = 0, Hγ(I) ist strictly convex for any γ > 0.

Outside of I = 0, we argue differently. As mentioned above, we embed the phase space of the
Dirichlet lattice into the phase space of the periodic lattice and use an analogous convexity result
for the periodic lattice via pullback to the Dirichlet lattice. The image of this embedding is the fixed
point set of a certain symmetry map S of the periodic lattice. This fixed point set is a submanifold of
the entire phase space of the periodic lattice which is invariant under the evolution induced by the
Hamiltonian (1); in this way, this embedding allows us to obtain results on the Dirichlet lattice by
exploiting the properties of the symmetry map S.
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Related work: As already mentioned, similar results have been obtained for the periodic lattice,
see [21], and for other type of perturbation theories, namely the KAM theorem instead of the
Nekhoroshev theorem, see [18]. The technique of expressing symmetry properties of a system in
terms of action-angle variables and Birkhoff coordinates has developed for the defocusing nonlinear
Schrödinger equation, see [24]. The technique of embedding the phase space of a lattice with
Dirichlet boundary conditions into the phase space of the corresponding lattice with periodic boundary
conditions has been used in the case of arbitrary FPU chains, see [25,26]. On perturbations of the Toda
lattice in general, there have been published many papers, see e.g., [27–29], usually however applying
other techniques than the theorems of KAM and Nekhoroshev which are the main theoretical tool of
our approach. The entire work was originally motivated by the pioneering work on a KAM-type result
for the KdV equation [30].

Outline of the paper: In Section 3 we describe suitable coordinates for both types of lattices and then
the aforementioned embedding of the Dirichlet lattice into the periodic lattice of a higher dimension.
In Section 4, we describe some spectral quantities associated with the Toda lattice and their behavior
under the symmetry map needed for the embedding described before. This symmetry map also
induces a special Riemann surface needed in the sequel, see Section 5; this allows then us to prove
Theorem 3. In the appendices, certain lengthy calculations are presented, in addition to some proofs
which are very similar to analogous proofs in our previous work [21].

3. Coordinates and Symmetries

Here we first describe suitable coordinates for the Dirichlet lattice and then an embedding of the
Dirichlet lattice wih N′ particles into the periodic lattice with N = 2N′ + 2 particles.

Coordinates for the Dirichlet lattice As a first step in the Dirichlet case, following Flaschka [14],
we introduce the (noncanonical) coordinates

dn := −pn ∈ R (0 ≤ n ≤ N′), cn := γe
1
2 (qn−qn+1) ∈ R>0 (0 ≤ n ≤ N′). (8)

The boundary conditions (4) imply that d0 = 0 and ∏N′
n=0 cn = γN′+1; we will identify related

Casimir functions below.
In these coordinates the Hamiltonian H(D)

Toda, given by (3), takes the simple form

H(D) =
1
2

N′

∑
n=1

d2
n +

N′

∑
n=0

c2
n, (9)

and the equations of motion are, in terms of the cj’s and dj’s defined by (8),

ḋ0 = 0,
ḋn = c2

n − c2
n−1 (1 ≤ n ≤ N′),

ċ0 = 1
2 c0d1,

ċn = 1
2 cn(dn+1 − dn) (1 ≤ n ≤ N′ − 1),

ċN′ = − 1
2 cN′dN′ .

(10)

We study the system of Equation (10) on the 2(N′ + 1)-dimensional phase space

M(D) := RN′+1 ×RN′+1
>0 . (11)

This system is Hamiltonian with respect to a suitable nonstandard and degenerate Poisson
structure J(D) ≡ J(D)

d,c described in [18]. The degeneracy can be described by the two Casimir functions

E1 := d0 and E2 :=

(
N′

∏
n=0

cn

) 1
N′+1

. (12)
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Let
M

(D)
δ,γ :=

{
(d, c) ∈M(D) : (E1, E2) = (δ, γ)

}
denote the level set of (E1, E2) for (δ, γ) ∈ R×R>0. Please note that we are mainly interested in the
case δ = 0, i.e., the set M(D)

0,γ , because the assumption δ 6= 0 contradicts the boundary conditions (4).
We have included the case of general δ’s in order to have an even-dimensional phase space. In the
sequel, we write H(D)

δ,γ = H(D)|
M

(D)
δ,γ

.

In [18] we constructed global Birkhoff coordinates for the Dirichlet lattice. Precisely,
we constructed a map

Φ(D) :
(
M(D), J(D)

)
→
(
P(D), J(D)

0

)
, (d, c) 7→ ((xn, yn)1≤n≤N′ , E1, E2), (13)

where E1 and E2 are the Casimir functions introduced by (12). The crucial point of the map (13) is that
the coordinates (xn, yn)1≤n≤N′ , E1, E2 are global Birkhoff coordinates for the Dirichlet Toda lattice, i.e.,

the transformed Toda Hamiltonian Ĥ(D) = H(D) ◦
(

Ω(D)
)−1

is a function of the actions (x2
n + y2

n)/2

(1 ≤ n ≤ N′) and E1, E2 alone.
Coordinates for the periodic lattice In the following, we describe an analogous set-up for the periodic

lattice. Although the set-up looks similar to what we just introduced for the Dirichlet lattice, it is not
identical to the Dirichlet case, which makes it necessary to be introduced explicitly.

The main tool for the investigation of the periodic lattice are the (noncanonical) coordinates
(bj, aj)j∈Z introduced by Flaschka [14], analogously to (8),

bn := −pn ∈ R, an := αe
1
2 (qn−qn+1) ∈ R>0 (n ∈ Z). (14)

In these coordinates the Hamiltonian HToda, analogously to (9), takes the simple form

H =
1
2

N

∑
n=1

b2
n +

N

∑
n=1

a2
n, (15)

and the equations of motion are, analogously to (10),{
ḃn = a2

n − a2
n−1

ȧn = 1
2 an(bn+1 − bn)

(n ∈ Z). (16)

Please note that (bn+N , an+N) = (bn, an) for any n ∈ Z, and ∏N
n=1 an = αN , which means

that the sequences (bn)n∈Z and (an)n∈Z can be identified with the vectors (bn)1≤n≤N ∈ RN and
(an)1≤n≤N ∈ RN

>0, respectively.
In [31] we studied the normal form of the system of Equation (16) on the phase space

M := RN ×RN
>0 (17)

and the model space P := R2(N−1) ×R×R>0. Precisely, we constructed a map

Φ : M→ P, (b, a) 7→ ((xn, yn)1≤n≤N−1, C1, C2), (18)

where C1, C2 are Casimir functions associated with the Poisson structure of the Flaschka
coordinates (14). The crucial point of the Birkhoff map (18) is that the coordinates
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(xn, yn)1≤n≤N−1, C1, C2 are global Birkhoff coordinates for the periodic Toda lattice. Hence the Toda
Hamiltonian, when expressed in these coordinates, takes the form

H ◦Φ−1 =
Nβ2

2
+ Hα(I), (19)

where the term Hα(I) is a real analytic function of the action variables In := x2
n+y2

n
2 , (1 ≤ n ≤ N − 1),

and where β, α are the values of the Casimirs C1, C2.
Note that on an open dense subset {(b, a) ∈ M|In(b, a) 6= 0} of the phase space M,

the coordinates (xn, yn)1≤n≤N−1 of the Birkhoff map (18) are given in terms of action and angle
variables (In, θn)1≤n≤N−1 by

(xn, yn) =
√

In(cos θn, sin θn). (20)

Symmetries of the periodic lattice Let T∗RN be endowed with the canonical symplectic structure and
consider the linear maps T, S : T∗RN → T∗RN given by

T : (q1, . . . , qN , p1, . . . , pN) 7→ (q2, q3, . . . , qN , q1, p2, p3, . . . , pN , p1), (21)

S : (q1, . . . , qN , p1, . . . , pN) 7→ −(qN−1, . . . , q1, qN , pN−1, . . . , p1, pN); (22)

note that T is the standard shift operator. As already discussed by Rink [32] for arbitrary FPU chains,
the maps T and S satisfy the relations TN = S2 = Id and TS = ST−1. Moreover, T and S are symplectic
maps leaving the Hamiltonian HToda, given by (1), invariant. The group GH = 〈T, S〉 (a representation
of the N-th dihedral group DN) is the symmetry group of HToda. In the sequel, we are mainly interested
in the symmetry map S.

Denote by Fix(S) the fixed point set of the map S introduced above. Then Fix(S) is the subset of
all elements (q, p) in T∗RN satisfying

(qn, pn) = −(qN−n, pN−n) ∀ 1 ≤ n ≤ N − 1 and qN = pN = 0. (23)

In particular, if N is even, on Fix(S) we have qN = qN/2 = 0 and pN = pN/2 = 0.
Note that on Fix(S), both the center of mass coordinate Q = 1

N ∑N
i=1 qi and its momentum

P = 1
N ∑N

i=1 pi are identically zero. Hence Fix(S) ⊆ {(q, p) ∈ T∗RN |Q = 0; P = 0}.
On the level of the Flaschka variables (bj, aj)1≤j≤N introduced in (14), the maps T and S introduced

in (21) and (22) are given by T̃, S̃ : M→M, with S̃(b, a) ≡ (S̃(b), S̃(a)) (analogously for T̃) and

(T̃(b))j = bj+1, (T̃(a))j = aj+1, (1 ≤ j ≤ N), (24)

(S̃(b))j = −bN−j, (S̃(a))j = aN−j−1. (1 ≤ j ≤ N). (25)

Similarly to Fix(S) defined above, we denote by Fix(S̃) the subset of all elements
(b, a) ∈M satisfying

(bN−j, aN−j) = (−bj, aj+1) for any 1 ≤ j ≤ N. (26)

with the indices in (24)–(26) understood mod N. In the sequel, we will omit the tilde and write T and
S for the operators T̃ and S̃ on M.

We can also express the symmetry transformations T and S in terms of the Cartesian coordinates
(xn, yn)1≤n≤N−1 given by the Birkhoff map (18), or more suitably, in terms of the associated complex
coordinates (ζk)1≤|k|≤N−1, defined for 1 ≤ k ≤ N − 1 by ζk = 1√

2
(xk − iyk)

ζ−k = ζk = 1√
2
(xk + iyk).

(27)
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We denote by Z the linear subspace of C2N−2 consisting of such vectors (ζk)1≤|k|≤N−1, and define
the map

SZ : Z→ Z, (ζk)1≤|k|≤N−1 7→ (−e4πik/NζN−k)1≤|k|≤N−1. (28)

Like the map S : M → M, this new map SZ is a linear involution. In fact, the two maps S and
SZ are conjugate to each other under the Birkhoff map Φ given by (18)—see [18] for a proof of the
following theorem:

Theorem 5. In terms of the complex variables (ζk)1≤|k|≤N−1 defined by (27) and the Birkhoff map Φ given
by (18) the map S is given by SZ. More precisely,

SZ ◦Φ = Φ ◦ S. (29)

Embedding of the Dirichlet into the periodic lattice We now embed the phase space M(D) of the
Dirichlet lattice, with N′ particles, see (11), into the phase space M of the periodic lattice with
N = 2N′ + 2 particles, see (17), by the map

Θ(D) : M(D) → M

(d, c) =
(
dj, cj

)
0≤j≤N′ 7→ Θ(d, c) =

(
bj, aj

)
1≤j≤N

(30)

where

bj =
1√
2


dj
0
−dN−j
0

, aj =
1√
2


cj (1 ≤ j ≤ N′)
cN′ (j = N′ + 1)
cN−j−1 (N′ + 2 ≤ j ≤ 2N′ + 1)
c0 (j = 2N′ + 2)

. (31)

The image of the map Θ(D) is a subset of Fix(S), as the following shows (see [18]):

Lemma 1. Let (δ, γ) ∈ R×R>0.

(i) Θ(D)
(
M

(D)
δ,γ

)
= M0, γ√

2
∩ Fix(S); in particular, Θ(D)(d, c) ∈ Fix(S) for any (d, c) ∈M(D). Moreover,

Θ(D)
δ,γ is a canonical map from

(
M

(D)
δ,γ , J(D)

)
to (M0, γ√

2
, J).

(ii) The Hamiltonians H and H(D) of the Toda lattice in Flaschka variables with periodic and Dirichlet
boundary conditions, respectively, given by (15) and (9), satisfy H ◦Θ(D) = H(D).

To pull back the embedding Θ(D) to the complex variables (ζk)1≤|k|≤N−1 defined by (27), we
consider the space

Z(D) :=
{
(ζk)1≤|k|≤N′ ∈ C2N′ ∣∣ ζk = ζ−k ∀ 1 ≤ k ≤ N′

}
,

endowed with the canonical symplectic structure induced from C2N′ . Now consider the embedding

ΘZ : Z(D) → Z

(ζk)1≤|k|≤N′ 7→ 1√
2

(
(ζk)1≤|k|≤N′ , (0, 0),

(
−e4πik/NζN′+1−k

)
1≤|k|≤N′

)
(32)

Note that
ΘZ

(
Z(D)

)
= Fix(SZ), (33)
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i.e., ΘZ is a parametrization of Fix(SZ). In other words, by (i), for any (δ, γ) ∈ R×R>0,
Θ(D)|

M
(D)
δ,γ

=: Θ(D)
δ,γ is a parametrization of M0, γ√

2
∩ Fix(S). Together with the Birkhoff maps of the

periodic and the Dirichlet lattice, this leaves us with the following commutative diagram of maps:

Z Mβ,α
H

��

Φβ,αoo

Z(D)

ΘZ

OO

M
(D)
δ,γΦ(D)

δ,γ
oo H(D) //

Θ(D)

OO

R

(34)

4. Spectral Quantities and Riemann Surfaces

It is known (cf. e.g., [33]) that the periodic system (16) can be expressed in the Lax pair form
L̇ = ∂L

∂t = [B, L], where L ≡ L+(b, a) is the periodic Jacobi matrix defined by

L±(b, a) :=



b1 a1 0 . . . ±aN

a1 b2 a2
. . .

...

0 a2 b3
. . . 0

...
. . . . . . . . . aN−1

±aN . . . 0 aN−1 bN


, (35)

and a skew-symmetric matrix B. Hence the flow of L̇ = [B, L] is isospectral.
Discriminant: We denote by ∆(λ) ≡ ∆(λ, b, a) the discriminant of the difference equation((

ak−1T−1 + bkT0 + akT1
)

y
)
(k) = λy(k) (k ∈ Z) (36)

associated with the matrix L, defined by

∆(λ) := y1(N, λ) + y2(N + 1, λ), (37)

where y1(·, λ) and y2(·, λ) are two standard fundamental solutions of (36). In the sequel, we will often
write ∆λ for ∆(λ). Additionally, we consider the symmetric 2N × 2N-Jacobi matrix

Q ≡ Q(b, a) = L((b, b), (a, a)),

whose 2N real eigenvalues (λj)1≤j≤2N (with multiplicities) are the zeroes of the function ∆2
λ − 4,

∆2
λ − 4 = α−2N

2N

∏
j=1

(λ− λj). (38)

(see [34] for comments on this expansion). When listed in increasing order and with their algebraic
multiplicities, they fulfill the following relations (cf. [35])

λ1 < λ2 ≤ λ3 < λ4 ≤ λ5 < . . . λ2N−2 ≤ λ2N−1 < λ2N . (39)

In [18] we proved the following results on the behaviour of the λj’s and the discriminant ∆λ under
the symmetry S introduced in (22):

Lemma 2. Let (b, a) ∈M. Then for any 1 ≤ j ≤ 2N,

λj(S(b, a)) = −λ2N+1−j(b, a). (40)
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Corollary 2. For any (b, a) ∈ Fix(S),

(i) Ik(b, a) = IN−k(b, a) for any 1 ≤ k ≤ N − 1.
(ii) λj(b, a) = −λ2N+1−j(b, a) for any 1 ≤ j ≤ 2N.

(iii) I N
2
(b, a) = 0 and λN(b, a) = λN+1(b, a) = 0, if N is even.

Corollary 3. For any (b, a) ∈M,

∆λ(S(b, a))∓ 2 = (−1)N∆−λ(b, a)∓ 2, (41)

and hence, with ∆̇λ = ∂λ∆λ,
∆̇λ(S(b, a)) = (−1)N+1∆̇−λ(b, a) (42)

as well as
∆2

λ(S(b, a))− 4 = ∆2
−λ(b, a)− 4. (43)

Riemann surface Σb,a: Denote by Σb,a the Riemann surface obtained as the compactification of the
affine curve

Cb,a := {(λ, z) ∈ C2 : z2 = R(λ)} (44)

for

R(λ) := ∆2
λ(b, a)− 4 = α−2N

2N

∏
j=1

(λ− λj(b, a)) (45)

by (38). Note that Cb,a is a two-sheeted curve with the ramification points (λi, 0)1≤i≤2N , identified with
λi in the sequel, and that Cb,a and Σb,a are spectral invariants; the Riemann surface Σb,a is obtained
from Cb,a by adding two (unramified) points at infinity, namely ∞+ and ∞−, one on each of the two
sheets, i.e.,

Σb,a := Cb,a ∪ {∞+, ∞−}. (46)

Strictly speaking, Σb,a is a Riemann surface only in the case that the spectrum of Q(b, a) is simple,
i.e., if the estimates in (39) are strict. We showed in [34] that In(b, a) = 0 iff λ2n(b, a) = λ2n+1(b, a),
therefore the spectrum of Q(b, a) is simple iff (b, a) ∈M•, where

M• = {(b, a) ∈M|In 6= 0 ∀1 ≤ n ≤ N − 1}. (47)

If the spectrum of Q(b, a) is not simple, Σ(b, a) can be transformed into a Riemann surface by
doubling the multiple eigenvalues—see e.g., Section 2 of [36]. We will discuss this case in detail below,
see Section 5, since it is of great importance for the main task of this paper.

Canonical sheet and canonical root: For (b, a) ∈ M• the canonical sheet of Σb,a is given by the set

of points (λ, c
√

∆2
λ − 4) in Cb,a, where the special c-root c

√
∆2

λ − 4 is defined on C \ ⋃N
n=0(λ2n, λ2n+1)

(with λ0 := −∞ and λ2N+1 := ∞) and determined by imposing the sign condition

− i c
√

∆2
λ − 4 > 0 for λ2N−1 < λ < λ2N . (48)

As a consequence we have for any 1 ≤ n ≤ N

sign c
√

∆2
λ−i0 − 4 = (−1)N+n−1 for λ2n < λ < λ2n+1. (49)

Cycles on Σb,a: We introduce the projection π ≡ πb,a : Cb,a → C onto the λ-plane, i.e.,
πb,a(λ, w) = λ and its extension to a map πb,a : Σb,a → C∪ {∞}, where πb,a(∞±) = ∞.

We now introduce the cycles (ck)1≤k≤N−1 and (dk)1≤k≤N−1 on Σb,a. Denote by (ck)1≤k≤N−1 the
cycles on the canonical sheet of Cb,a (see above) in such a way that π(ck) is a counterclockwise oriented
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closed curve in C which contains in its interior the two ramification points λ2k and λ2k+1, whereas all
other ramification points are located outside of π(ck).

Moreover, denote by (dk)1≤k≤N−1 pairwise disjoint cycles on Cb,a \ {(λk)1≤k≤N−1} defined in a
way such that for any 1 ≤ n, k ≤ N − 1, the intersection indices with the cycles (cn)1≤n≤N−1 defined
above with respect to the orientation on Σb,a, induced by the complex structure, are cn ◦ dk = δnk.
In order to be more precise, we choose the cycles dk in a way that (i) the projection πb,a(dk) of dk is a
smooth and convex counterclockwise oriented curve in C \ ((λ1, λ2k) ∪ (λ2k+1, ∞)) and that (ii) those
points of dk whose projection by πb,a onto the λ-plane have a negative imaginary part are located on
the canonical sheet of Σb,a.

Abelian differentials: Let (b, a) ∈ M• and 1 ≤ n ≤ N − 1. Then there exists a uniquely given
polynomial ψn(λ) of degree at most N − 2 such that for any 1 ≤ k ≤ N − 1

1
2π

∫
ck

ψn(λ)√
∆2

λ − 4
dλ = δkn. (50)

Using the definition of the cycles ck given above, we can rewrite (50) as

1
π

∫ λ2k+1

λ2k

ψn(λ)

c
√

∆2
λ−i0 − 4

dλ = δkn. (51)

The coefficients of the polynomials ψn(λ) can be computed explicitly, see e.g., Appendix A of [37].
In [18] we proved

Lemma 3. Let (b, a) ∈M•. Then for any real λ,

ψn(λ)(S(b, a)) = (−1)NψN−n(−λ)(b, a). (52)

Note that the Formula (63) remains valid if the assumption (b, a) ∈M• is weakened, as long as
the ψ-functions appearing in (63) are well-defined. We will return to this point in the next section.

On the surface Σb,a, we consider the differentials

Ω1 = − 1
N

∆̇λ√
∆2

λ − 4
dλ, (53)

Ω2 = − 1
N

 λ∆̇λ√
∆2

λ − 4
dλ−

N−1

∑
n=1

In
ψn(λ)√
∆2

λ − 4
dλ

 . (54)

We proved in [21] the following lemma on Ω1 and Ω2:

Lemma 4. The Abelian differentials Ω1 and Ω2 on Σb,a satisfy the following properties:

(i) Ω1 and Ω2 are holomorphic differentials on Σb,a except at the points f∞+ and ∞− where in the standard
charts, the Ωi’s admit an expansion of the following form

Ω1 = ∓
(

1
λ
− e1

λ2 + O
(

1
λ3

))
dλ, Ω2 = ∓

(
1 + O

(
1

λ2

))
dλ. (55)

(ii) Ω1 and Ω2 fulfill the normalization condtions∫
ck

Ωi = 0 ∀ 1 ≤ k ≤ N − 1, i = 1, 2. (56)
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(iii) When expressed in the local coordinate λ, on each of the two sheets,
∫ λ

λ2N
Ω1 has an asymptotic expansion

as λ→ ∞ (λ real) of the following form

∫ λ

λ2N

Ω1 = ∓
(

log λ + e0 + e1
1
λ
+ . . .

)
. (57)

On Σb,a \ {λ1, . . . , λ2N}, Ω1 and Ω2 take the form

Ωi =
χi(λ)√

R(λ)
dλ (i = 1, 2),

where χi(λ) are polynomials in λ of the form χ1(λ) = λN−1 + eλN−2 + . . . and χ2(λ) = λN + f λN−1 + . . ..
Note that Ω1 and Ω2 do not depend on the parameter α. Conversely, (i) and (ii) uniquely determine Ω1 and Ω2.

Remark 1. As discussed in [21], the differentials Ω1 and Ω2 exist for any strictly increasing sequence of λj’s,
i.e., λ1 < . . . < λ2N , even if these λj’s are not the spectrum of some matrix Q(b, a). In this more general case,
the associated Riemann surface, similarly to (44)–(46), is defined as the compactification of

C := {(λ, z) ∈ C2 : z2 = α−2N
2N

∏
j=1

(λ− λj)}, (58)

i.e.,
Σ = C∪ {∞+, ∞−}.

The differentials Ω1 and Ω2 are then simply defined by the conditions (55) and (56) instead of the
Formulas (53) and (54).

For any 1 ≤ k ≤ N − 1, introduce the dk-periods of the differentials Ω1 and Ω2,

Uk :=
∫

dk

Ω1; Vk :=
∫

dk

Ω2. (59)

In [21], we proved the following results on the Uk’s, the Vk’s and e0, the coefficient in the
expansion (57); recall from (19) that Hα is the Toda Hamiltonian expressed in the Birkhoff coordinates

given by (18), H ◦Φ−1 = Nβ2

2 + Hα(I):

Proposition 1. For any (b, a) ∈M• and any 1 ≤ k ≤ N − 1,

Uk =
2πik

N
, Vk =

2
i

ωk, e0 = − log(α).

where ωk is the Toda frequency ωk = ∂Ik Hα.

5. Constructions on the Fixed Point Set

We now assume that N ≥ 6 is even, i.e., N = 2N′ + 2 for some N′ ≥ 2. In addition to Fix(S),
we consider the smaller set (analogously to M•)

M•Fix = {(b, a) ∈ Fix(S) ⊆M|Ik(b, a) > 0 ∀ 1 ≤ k ≤ N′}. (60)

It follows from Corollary (2) (ii) that in the case (b, a) ∈M•Fix the spectrum of Q(b, a) is not simple,
hence Σb,a, as defined by (44) and (46), is not a Riemann surface in this case, but rather a “punctured”
surface (a neighborhood of the point (λN , 0) is a bouquet of two open disks glued together at one
common point, hence the surface does not have a manifold strucutre at this point—see [36]). We can
overcome this difficulty by the following construction.
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Instead of R(λ) as defined by (45), we consider

R(reg)(λ) := α−2N+2 ∏
1≤k≤2N

k 6=N,N+1

(λ− λk) (61)

and the surface
Σ(reg)

b,a :=
{
(λ, z) ∈ C2 : z2 = R(reg)(λ)

}
∪ {∞+, ∞−}. (62)

Note that unlike in the definition of Rb,a, see (45), R(reg)(λ) 6= ∆2
λ(b, a)− 4. For (b, a) ∈ M•Fix,

the surface Σ(reg)
b,a is isomorphic to the regular Riemann surface Σ∗b,a obtained from the punctured

surface Σb,a by doubling the point (λN(b, a), 0), as shown in [36] for the analogous case of finite gap

potentials of the KdV equation. In the sequel, we will thus consider Σ∗b,a instead of Σ(reg)
b,a . Note that the

genus of Σ∗b,a equals the genus of Σb,a minus one.
The cycles (ck)1≤k≤N−1 and (dk)1≤k≤N−1, defined in Section 4 for Σb,a, are defined on Σ∗b,a as well,

as long as k 6= N
2 . In the case (b, a) ∈M•Fix, the curve on Σ∗b,a corresponding to cN/2 does not contain

any ramification point in its interior, and the curve on Σ∗b,a corresponding to dN/2 is no longer closed .
On Σ∗b,a, we thus consider the 2(N − 2) curves (ck)1≤k≤N−1,k 6=N/2 and (dk)1≤k≤N−1,k 6=N/2.

On Σ∗b,a, the functions ψn(λ), defined by (50), exist as well, as long as n 6= N
2 , since there existence

only depends on the cycles cn. Lemma 3 now takes the form

Lemma 5. Let (b, a) ∈M•Fix. Then for any real λ,

ψn(λ)(b, a) = (−1)NψN−n(−λ)(b, a). (63)

The proof of Lemma 5 works completely along the lines of the proof of Lemma 3, which we have
given in [18] and which is based on Lemma 2 (which does not assume (b, a) ∈M•), and we then use
(b, a) = S(b, a). We will use (63) in Appendix B in the proof of Lemma 6 below.

Moreover, we again consider the differentials Ω1 and Ω2 defined by (53) and (54), now on Σ∗b,a;
for clarity, we momentarily denote these differentials on the new surface Σ∗b,a by

Ω∗1 = − 1
N

∆̇λ√
∆2

λ − 4
dλ, (64)

Ω∗2 = − 1
N

 λ∆̇λ√
∆2

λ − 4
dλ−

N−1

∑
n=1

n 6= N
2

In
ψn(λ)√
∆2

λ − 4
dλ

 . (65)

They have the same properties as described by Lemma 4 for the original case (b, a) ∈ M•,
except that the identities (56) are only valid for k 6= N

2 and Σb,a has to be replaced by Σ∗b,a. That these
properties continue to hold in this new case (b, a) ∈M•Fix follows from the fact that the surfaces Σb,a
and Σ∗b,a differ only in the fact that the point (λn, 0) has been doubled in the construction of Σ∗b,a,
and the curves (ck)1≤k≤N−1 for k 6= N

2 do not touch this doubled point.
Remark 1 also holds in this case: The Riemann surface Σ∗ and the differentials Ω∗1 and Ω∗2 exist

for any sequence of λ’s with λ1 < λ2 < . . . < λN = λN+1 < . . . λ2N , even if this sequence is not the
spectrum of Q(b, a) for some (b, a) ∈M•Fix. Namely, Σ∗ is in such a case defined by, similarly to (58),
as the compactification of the affine curve

C ≡ Cλ := {(λ, z) ∈ C2 : z2 = α−2N ∏
1≤j≤2N

k 6=N,N+1

(λ− λj)} (66)
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i.e., as
Σ∗ ≡ Σ∗λ = Cλ ∪ {∞+, ∞−}. (67)

The differentials Ω∗1 and Ω∗2 are then defined by the properties (55) and (56), where it is understood
that (56) only holds for k 6= N

2 . For clarity, we restate this definition in Appendix C, see Lemma A1.
If the sequence λ1 < λ2 < . . . < λN = λN+1 < . . . λ2N corresponds to some (b, a) ∈M•Fix, one shows
that the differentials defined by (64) and (65) have the properties (55) and (56), and in the general case
the existence and uniqueness of differentials with these properties is established by general Riemann
surface theory. All these facts can be checked exactly as in the case discussed in the previous section,
and in our previous work [21].

For k 6= N
2 , we consider as in the original case (59) the dk-periods of Ω∗1 and Ω∗2 , with the integrals

now taken on the new surface Σ∗, defined by (67),

U∗k :=
∫

dk

Ω∗1 ; V∗k :=
∫

dk

Ω∗2

(
1 ≤ k ≤ N − 1, k 6= N

2

)
. (68)

On these U∗k ’s and V∗k ’s in the case (b, a) ∈M•Fix, we have the following lemma, which we prove
in Appendix B.

Lemma 6. Let (b, a) ∈M•Fix. Then for any 1 ≤ k < N
2 ,

U∗N−k = −U∗k + 2πi, (69)

V∗N−k = V∗k . (70)

for any 1 ≤ k < N
2 .

Note that we only claim the statements (69) and (70) to be true in the case of a Riemann surface
Σ∗b,a originating from a sequence of λj’s being the spectrum of Q(b, a) for some (b, a) ∈M•Fix and not
in the case of an arbitrary surface Σ∗; but we only need the formulas in the former (more special) case,
see the proof of Theorem 6.

We now define the extended period map F on the set

L := {λ = (λj)1≤j≤2N′+1 ∈ R2N′+1|λ1 < . . . < λ2N′+1 < 0}

as follows
F : L → R2N′+1

λ 7→ ((U∗i , V∗i )1≤i≤N′ , e0),
(71)

where e0 is the coefficient in the asymptotic expansion (57). In the construction (71), λ ∈ L is extended to
λ̃ = (λ, 0, 0,−λ) ∈ R2N . To this auxiliary λ̃, the associated surface Σ∗ is constructed via (66) and (67),
on which the differentials Ω∗1 and Ω∗2 are given, and then the quantities U∗k and V∗k by (68). It is
straightforward to see that F is a smooth map with values in R2N′+1.

Next we define the map

Λ : RN′
>0 ×R>0 → L

((In)1≤n≤N′ , α) 7→ (λj)1≤j≤2N′+1,
(72)

where (λn)1≤n≤2N′+1 is the first part of the spectrum of the matrix Q(b, a) for some (b, a) ∈ M•Fix
which is determined by the Birkhoff map Φ (cf. (18)),

(b, a) = Φ−1
((

+
√

2In, 0
)

1≤n≤N′
, (0, 0),

(
+
√

2IN′+1−n, 0
)

1≤n≤N′
, 0, α

)
. (73)



Symmetry 2018, 10, 506 14 of 26

Note that (73) ensures that (b, a) ∈M•Fix and therefore λ ∈ L. It can be seen analogously as in the
case (b, a) ∈M• explained in [21] that Λ is a smooth embedding.

Proposition 2. For any λ = (λ1 < . . . < λ2N′+1) ∈ L,

F(λ) =

((
2nπi

N
,−2i ∂In Hα

)
1≤n≤N′

,− log α

)
. (74)

Proof. Recall from Proposition 1 that in the case (b, a) ∈M•, we have

Uk =
2πik

N
, Vk =

2
i

ωk (1 ≤ k ≤ N) (75)

and ωk = ∂In Hα by definition. In our case (b, a) ∈ M•, these formulas continue to hold for the U∗k ’s
and V∗k ’s, as long as k 6= N

2 , and their proof is completely analogous to the proof of the former case
discussed in our previous work [21]. We will explicitly show the case of the Uk’s in the proof of
Lemma 6 in Appendix B. From the Formula (75) and the definition (71) of the map F, the claimed
statement (74) immediately follows.

The composition F ◦Λ : RN′
>0 ×R>0 → R2N′+1 is therefore given by

F ◦Λ ((In)1≤n≤N′ , α) =

((
2πni

N
,−2i ∂In Hα

)
1≤n≤N′

, − log α

)
.

The differential d(F ◦Λ) is a (2N′ + 1)× (N′ + 1)-matrix of the form

0N′×N′ 0N′×1

(
−2i ∂2 Hα

∂In ∂Il

)
1≤n,l≤N′

0N′×1

. . . −α−1


, (76)

where 0N1×N2 denotes the N1 × N2-matrix with all entries 0. We now need the following version of
Krichever’s theorem [21,38] on the map F. Note that the following theorem is only concerned with the
behaviour of F on Im(Λ), the image of the map Λ as defined by (72).

Theorem 6. Restricted to Im(Λ), the map F is a local embedding, i.e., the differential

dλ

(
F|Im(Λ)

)
: TλIm(Λ) ∼= RN′+1 → TF(λ)R2N′+1 ∼= R2N′+1

of F at λ is a linear embedding.

Proof. Let λ ∈ Im(Λ) ⊆ L, and assume that Theorem 6 does not hold, i.e., that F|Im(Λ) is not a local
embedding. Then there exists a smooth 1-parameter family

λ(τ) = (λj(τ))1≤j≤2N′+1, −1 < τ < 1, (77)

with λ(0) = λ and λ(τ) ∈ Im(Λ) ⊆ L for any −1 < τ < 1, so that

δλn ≡ ∂τ |τ=0λn(τ) 6= 0 for some 1 ≤ n ≤ 2N′ + 1 (78)



Symmetry 2018, 10, 506 15 of 26

but
((Ui, Vi)1≤i≤N′ , e0) (τ) = ((Ui, Vi)1≤i≤N′ , e0) (0) + O(τ2). (79)

We extend the family λ(τ) with 2N′ + 1 components to a family

λ(τ) = (λn(τ))1≤n≤2N (80)

with 2N = 4N′ + 4 components by

λ2N+1−n(τ) := −λn(τ) (1 ≤ n ≤ N − 1), λN(τ) = λN+1(τ) := 0. (81)

By this construction, it is ensured that the family λ(τ) = (λn(τ))1≤n≤2N obtained in this
way is the full spectrum of a matrix Q(b(τ), a(τ)) for any −1 < τ < 1, since any element
λ = (λj)1≤j≤2N′+1 ∈ Im(Λ) ⊆ L is by definition the first part of the spectrum of a matrix Q(b, a)
for some (b, a) ∈ M•Fix. In the sequel, by λ(τ) we mean the 2N-component family (80) whose first
2N′ + 1 components are given by (77) and whose remaining 2N′ + 3 components by (81).

Then, by Lemma 6, (79) remains satisfied, but for the N − 2 component vectors
U = (U1, . . . , UN′ , UN′+2, . . . , UN−1) and analogously for the Vk’s. i.e., we have

UN−k(τ) = −Uk(τ) + 2πi

= −Uk(0) + 2πi + O(τ2)

= UN−k(0) + O(τ2),

and analogously for the Vk’s. Moreover, we have e1(τ) = e1(0) = 0, since (as we showed in [21]),
e1 = −β, and as we discussed in [18], β = − 1

N ∑N
j=1 bj = − 1

2N ∑2N
j=1 λj. By the conditions (81) however,

the last sum equals zero. Alltogether, we obtain(
(Ui, Vi) 1≤i≤N−1

i 6=N/2
, e0, e1

)
(τ) =

(
(Ui, Vi) 1≤i≤N−1

i 6=N/2
, e1, e0

)
(0) + O(τ2). (82)

Lemma 7. From the estimates (82) it follows that

δλn = 0 for any 1 ≤ n ≤ N − 1, n 6= N
2

. (83)

The proof of Theorem 6 is completed once we have proved Lemma 7, since the conclusion
(83) obviously contradicts the assumption (78). The proof of Lemma 7 is contained in Appendix C;
it completely follows the lines of a similar proof in our previous work [21].

Since both Λ and F|Im(Λ) are embeddings, the same holds for the composition F ◦Λ. Hence the
rank of the differential d(F ◦Λ), given by (76), has to be maximal, i.e., N′+ 1. Therefore, by the structure
of the matrix (76), the rank of the N′ × N′-matrix

(
∂2Hα/∂In∂Il

)
1≤n,l≤N′ has to be N′. We have thus

proved the following result on the Hamiltonian of the N-particle periodic lattice with respect to the
first N′ action variables in the case (b, a) ∈M•Fix:

Proposition 3. Let (b, a) ∈M•Fix. Then the matrix(
∂2Hα

∂In∂Il

)
1≤n,l≤N′

(84)

is regular.
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We now prove our main result, Theorem 3. The main ingredients are Proposition 3 and the
embedding of the N′-particle Dirichlet lattice into the 2N′ + 2-particle periodic lattice described in
Section 3.

Proof of Theorem 3. By Proposition 3, the N′ × N′-matrix (84) is regular for any (b, a) ∈ M•Fix.
Taking the pullback with respect to the embedding ΘZ given by (32), we have from the commutative
diagram (34) the identity

Hα ◦ΘZ = H ◦Φ−1
β,α ◦ΘZ = H(D) ◦

(
Φ(D)

δ,γ

)−1
,

and it therefore follows from Proposition 3 that the matrix∂2
(

H(D) ◦
(

Φ(D)
δ,γ

)−1
)

∂In∂Il


1≤n,l≤N′

is regular as well (note that the property of being a nondegenerate matrix is invariant under coordinate
transformations). In other words, the frequency map

RN′
≥0 → RN′ , I 7→ ω(I; γ) := ∂IHγ.

is nondegenerate on all of RN′
>0. Together with the convexity of Hγ(I) at I = 0, an immediate

consequence of Corollary 1, this implies that Hγ(I) is convex on all of RN′
>0. This proves Theorem 3.

6. Discussion

As already stated in the introduction, establishing a Nekhoroshev-type result for the Toda lattice
with Dirichlet boundary conditions in our view has a double significance. On the one hand, it is
an interesting statement in the context of the unexpected stability results discovered by Fermi et
al. for the general class of FPU chains, in particular for this kind of boundary conditions which is
closer to Fermi’s simulations and possible physical applications than periodic boundary conditions.
On the other hand, our result it is one of the few explicit case studies of the Nekhoroshev theorem;
in particular, explicitly checking that the rather strong conditions of the abstract Nekhoroshev theorem
are fulfilled is a highly nontrivial task which for many physically interesting examples turns out to
be impossible.
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Appendix A. Nekhoroshev’s Theorem

Here we describe the theoretical set-up of perturbed Hamiltonian systems and Nekhoroshev’s
theorem on the stability of the motion in such systems, thereby exactly following the exposition in [20].
In this reference, the statement is formulated for convex and quasi-convex unperturbed Hamiltonians;
we only cite the version for the (stronger) convex case, since it is this version which we apply in the
present paper.

We consider a neary integrable Hamiltonian

H = H0(I) + fε(I, θ), (A1)
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which is a real analytic function of the action-angle variables I ∈ R ⊆ Rn, θ ∈ Tn = Rn/2πZn

and arbitrarily depends on a small parameter ε (we assume n ≥ 2). Specifically, the Hamiltonian
is assumed to be a real analytic function on a fixed complex neighborhood of P × Tn of the form
Vr0,s0 P = Vr0 P×Ws0Tn ⊆ Cn ×Cn. The Hessian of the integrable Hamiltonian H0, Q(I) = ∂2

I H0(I),
is assumed to be uniformly bounded with respect to the operator norm induced by the Euclidean norm.

We assume the perturbation parameter ε to be chosen in such a way that | fε|P,s0,r0 ≤ ε in
the following exponentially weighted norm: If u is analytic on Vr,sD with a Fourier expansion
∑k uk(I)eik·θ , then

|uε|P,s0,r0 = sup I ∈ Vr(D) ∑
k∈Zn
|uk(I)|e|k|s,

where we use the 1-norm |k| = |k1|+ . . . + |kn|.
Let m be a positive number. The integrable Hamiltonian H0 is denoted m-convex, if the inequality

〈Q(I)ξ, ξ〉 ≥ m‖ξ‖2, ξ ∈ Rn,

holds at every point I ∈ Ur0 P. Nekhoroshev’s theorem on the exponential stability of the motion
governed by the perturbed Hamiltonian (A1) then reads as follows:

Theorem A1. Suppose H0 is m-convex, and

| fε|P,s0,r0 ≤ ε ≤ ε0 =
mr2

0
210 A2n ,

where r0 ≤ 4l/m and A = 11M/m. Then for every orbit with initial position (I0, θ0) ∈ P× Tn one has
the estimate

‖I(t)− I0‖ ≤ R0

(
ε

ε0

)a
for |t| ≤ T0 exp

( s0

6

( ε0

ε

a))
except when ‖ω(I0)‖ ≤ mr0/8 in which case ‖I(t)− I0‖ ≤ r0 for all t. The parameters are

a =
1

2n
, R0 =

r0

A
, T0 = A2 s0

Ω0
,

where Ω0 = sup‖I−I0‖≤R0
‖ω(I)‖.

Appendix B. Additional Properties of the Period Map

Here we prove Lemma 6 on the behaviour of the dn-periods U∗k and V∗k of the differentials Ω∗1 and
Ω∗2 on the set M•Fix, defined by (60). In this appendix, we omit the stars and write Uk, Vk, Ω1 and Ω2.

Proof of Lemma 6. Since the Riemann surfaces Σb,a in the case (b, a) ∈ M• and Σ∗b,a in the case
(b, a) ∈ M•Fix are topologically different (in particular, they have a different genus), we prove the
claimed Formulas (69) and (70) by direct computations and without refering to formulas in the case
(b, a) ∈M• and continuity arguments. The computations are however similar to the case (b, a) ∈M•;

in particular, the sign conditions for the canonical sheet and the canonical root c
√

∆2
λ − 4 on the

surface Σ∗b,a remain unchanged, since on the complex plane C, the behaviour of the sign of
√

∆2
λ − 4

for (b, a) ∈ M•Fix is qualitatively similar to the corresponding behaviour in the case (b, a) ∈ M•;
the spectral gap [λN , λN+1] in the latter case has simply shrinked to a single point in the former case.

We first prove the statement (69) on the Uk’s, closely following the corresponding computation
in [21]. By the definition (64) and the normalization conditions (56) one gets for any 1 ≤ n ≤ N − 1
with n 6= N

2 ∫
dn

Ω1 = − 2
N

(∫ λ2

λ1

+
∫ λ4

λ3

+ . . . +
∫ λ2n

λ2n−1

)
∆̇λ

c
√

∆2
λ−i0 − 4

dλ.
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For any λ2k−1 ≤ λ ≤ λ2k, by the sign condition (49),

∆̇λ

c
√

∆2
λ−i0 − 4

=
(−1)N−k∆̇/2

i +
√

1− (∆/2)2
dλ =

1
i

∂λ

(
arcsin

(
(−1)N−k ∆λ

2

))

and thus ∫
dn

Ω1 = − 2
Ni

n

∑
k=1

arcsin
(
(−1)N−k ∆λ

2

) ∣∣∣∣∣
λ2k

λ2k−1

=
2nπ

N
i. (A2)

Using Formula (A2) for n = N − k, we get

UN−k =
2(N − k)π

N
i = 2πi− 2kπi

N
= 2πi−Uk,

as claimed.
We now turn to the statement (70) on the Vk’s. By the normalization conditions (56), we get

Vn =
∫

dn
Ω2 = 2 ·

(∫ λ2

λ1

+ . . . +
∫ λ2n

λ2n−1

)
Ω2

By (54), Ω2 is given by

Ω2 = − 1
N

 λ∆̇λ√
∆2

λ − 4
dλ−

N−1

∑
n=1

In
ψn(λ)√
∆2

λ − 4
dλ


Hence it follows that (using the normalization conditions (56) for 1 ≤ n < N

2 )

Vn =
∫

dn
Ω2 = − 1

N

∫
dn

λ∆̇λ√
∆2

λ − 4
dλ−

N−1

∑
l=1

Il

∫
dn

ψl(λ)√
∆2

λ − 4
dλ

 .

= − 2
N


n

∑
k=1

∫ λ2k

λ2k−1

λ∆̇λ

c
√

∆2
λ−i0 − 4

dλ

︸ ︷︷ ︸
=:Ak

−
N−1

∑
l=1

Il

n

∑
k=1

∫ λ2k

λ2k−1

ψl(λ)

c
√

∆2
λ−i0 − 4

dλ

︸ ︷︷ ︸
Bk,l


Using the notation with the Ak’s and Bk,l’s just introduced, we get for 1 ≤ n < N

2

VN−n = − 2
N

(
N−n

∑
k=1

Ak −
N−1

∑
l=1

Il

N−n

∑
k=1

Bk,l

)

= − 2
N

((
n

∑
k=1

+
N−n

∑
k=n+1

)
Ak −

N−1

∑
l=1

Il

(
n

∑
k=1

+
N−n

∑
k=n+1

)
Bk,l

)
(A3)

= Vn −
2
N

(
N−n

∑
k=n+1

Ak −
N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l

)

We claim that we have for any 1 ≤ k, l ≤ N − 1

Ak = −AN+1−k, (A4)

Bk,l = −BN+1−k,N−l . (A5)



Symmetry 2018, 10, 506 19 of 26

Before proving (A4) and (A5), we finish the proof of (70). By (A4), it follows that

N−n

∑
k=n+1

Ak =
1
2

(
N−n

∑
k=n+1

Ak −
N−n

∑
k=n+1

AN+1−k

)

=
1
2

(
N−n

∑
k=n+1

Ak −
N−n

∑
m=n+1

Am

)
= 0, (A6)

where we made the substitution m = N + 1− k in the second sum. Similarly, we use (A5) to obtain

N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l =
1
2

(
N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l −
N−1

∑
l=1

Il

N−n

∑
k=n+1

BN+1−k,N−l

)

=
1
2

(
N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l −
N−1

∑
l=1

IN−l

N−n

∑
k=n+1

BN+1−k,N−l

)

=
1
2

(
N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l −
N−1

∑
l=1

IN−l

N−n

∑
m=n+1

Bm,N−l

)
(A7)

=
1
2

(
N−1

∑
l=1

Il

N−n

∑
k=n+1

Bk,l −
N−1

∑
l′=1

Il′
N−n

∑
m=n+1

Bm,l′

)
= 0,

where we used the identity Il = IN−l valid on Fix(S) (see Corollary 2) and then the substitutions
m = N + 1− k and l′ = N − l. Plugging (A6) and (A8) into (A4), we get VN−n = Vn, i.e., the claimed
Formula (70).

It remains to prove the auxiliary Formulas (A4) and (A5). We first turn to (A4). By the sign
rule (49) for the c-root we get

An =
∫ λ2n

λ2n−1

λ∆̇λ

c
√

∆2
λ−i0 − 4

dλ

= (−1)N−n
∫ λ2n

λ2n−1

λ∆̇λ

i +
√

4− ∆2
λ

dλ

By (40), we have λj = −λ2N+1−j on Fix(S), hence we obtain

An = (−1)N−n
∫ −λ2N+1−2n

−λ2N+2−2n

λ∆̇λ

i +
√

4− ∆2
λ

dλ

= (−1)N−n · (−1) ·
∫ λ2N+1−2n

λ2N+2−2n

(−µ)∆̇−µ

i +

√
4− ∆2

−µ

dµ

= (−1)n ·
∫ λ2N+2−2n

λ2N+1−2n

µ∆̇µ

i +

√
4− ∆2

µ

dµ

in the second step making the substitution µ = −λ and in the last step reversing the integration
direction and using Corollary 3 in the last step; recall that N = 2N′ + 2 is even, which implies

∆̇−µ = (−1)N+1∆̇µ = −∆̇µ



Symmetry 2018, 10, 506 20 of 26

and simplifies the sign in front of the integral. Again writing λ = µ and using the rule (49) for the sign
of the c-root, we get

An = (−1)n ·
∫ λ2N+2−2n

λ2N+1−2n

λ∆̇λ

i +
√

4− ∆2
λ

dλ

= (−1)n · (−1)
∫ λ2(N+1−n)

λ2(N+1−n)−1

λ∆̇λ

(−1)N−(N+1−n) c
√

∆2
λ−i0 − 4

dλ

= −
∫ λ2(N+1−n)

λ2(N+1−n)−1

λ∆̇λ

c
√

∆2
λ−i0 − 4

dλ

= −AN−k,

as claimed in (A4). The proof of (A5) proceeds in a similar way, and we mainly comment on the
differences to the previous computation. We have, using the same steps as above,

Bn,l =
∫ λ2k

λ2k−1

ψl(λ)

c
√

∆2
λ−i0 − 4

dλ

= (−1)N−n
∫ λ2n

λ2n−1

ψl(λ)

i +
√

4− ∆2
λ

dλ

= (−1)N−n
∫ λ2N+2−2n

λ2N+1−2n

ψl(−λ)

i +
√

4− ∆2
λ

dλ

Now we use the Formula (63) from Lemma 5. This gives us

Bn,l = (−1)n
∫ λ2N+2−2n

λ2N+1−2n

ψN−l(λ)

i +
√

4− ∆2
λ

dλ.

As before, we then get

Bn,l = (−1)n
∫ λ2N+2−2n

λ2N+1−2n

ψN−l(λ)

(−1)N−(N+1−n) c
√

∆2
λ − 4

dλ

= −
∫ λ2(N+1−n)

λ2(N+1−n)−1

ψN−l(λ)

c
√

∆2
λ − 4

dλ

= −BN+1−n,N−l ,

as claimed in (A4). This completes the proof of Lemma 6.

Appendix C. Proof of the Modified Bikbaev-Kuksin Lemma

Note that this entire appendix is basically copied from our previous work [21], with the necessary
small modifications due to the fact that we are considering a slightly different Riemann surface than in
the situation discussed in [21].

First we need to derive some auxiliary results. Let us first recall Lemma 4, now reformulated for
our purpose of the Riemann surface Σ∗ defined by (67), and regardless of whether the sequence of λ′s
under consideration is a part of the spectrum of some (b, a) ∈M•Fix:

Lemma A1. There exist Abelian differentials Ω∗1 and Ω∗2 on Σ∗ uniquely defined by the the following properties:
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(i) Ω∗1 and Ω∗2 are holomorphic differentials on Σ∗ except at the points ∞+ and ∞− where in the standard
charts, the Ω∗i ’s admit an expansion of the following form

Ω∗1 = ∓
(

1
λ
− e1

λ2 + O
(

1
λ3

))
dλ, Ω∗2 = ∓

(
1 + O

(
1

λ2

))
dλ (A8)

(ii) Ω∗1 and Ω∗2 satisfy the normalization condtions

∫
ck

Ω∗i = 0 ∀ 1 ≤ k ≤ N − 1, k 6= N
2

, i = 1, 2. (A9)

(iii) When expressed in the local coordinate λ, on each of the two sheets,
∫ λ

λ2N
Ω∗1 has an asymptotic expansion

as λ→ ∞ (λ real) of the following form

∫ λ

λ2N

Ω∗1 = ∓
(

log λ + e0 + e1
1
λ
+ . . .

)
. (A10)

On Σ∗ \ {λ1, . . . , λ2N}, Ω∗1 and Ω∗2 take the form

Ω∗i =
χi(λ)√

R(λ)
dλ (i = 1, 2), (A11)

where χ1(λ) and χ2(λ) are polynomials in λ of degree N − 1 and N − 2, respectively, and

R(λ) = ∏
1≤i≤2N

ß 6=N,N+1

(λ− λi).

As in Appendix B, in the sequel we again omit the ∗ and write Ω1 and Ω2, always meaning the
differentials Ω∗1 and Ω∗2 defined by the conditions (A8) and (A9). In addition to these two differentials,
for any p ∈ C (the affine curve (66) underlying Σ) we define the Abel integrals

Ji(p) =
1
2

∫
γp

Ωi, (A12)

where γp is any path in the set C from p∗ to p. The map ι : C→ C, p 7→ p∗ interchanges the two sheets
of C,

p∗ = (λ,−w) ∀ p = (λ, w) ∈ C. (A13)

Note that for any i = 1, 2, the function p 7→ Ji(p) is multi-valued. Actually, Ji(p) is well defined
up to half periods of Ωi. Therefore locally it is a well defined smooth function. Consequently,
its differential dJi is well defined. Note that for i = 1, 2 and 1 ≤ n ≤ 2N (n 6= N, N + 1), the number
zero is one of the possible values of Ji(λn). For any point p ∈ C, we denote by γ0

p a path in C from
λ2N ≡ (λ2N , 0) to p, and we define γp to be the path from p∗ to p (see (A13)) obtained by concatenating

−ι
(

γ0
p

)
and γ0

p. Here the path −ι
(

γ0
p

)
denotes the path from p∗ to λ2N obtained by reversing the

orientation of the path ι
(

γ0
p

)
, and ι(γ0

p) is the path obtained by applying to γ0
p the map ι. In Lemma A2

we state those properties of Ωi and Ji which we need in the sequel.

Lemma A2. (i) The differential forms Ω1 and Ω2 are odd with respect to the interchanging map ι, i.e.,
the pullback ι∗Ωi of Ωi satisfies the identity ι∗Ωi = −Ωi.

(ii) For i = 1, 2,
1
2

∫
−ι(γ0

P)◦γ
0
P

Ωi =
∫

γ0
P

Ωi.



Symmetry 2018, 10, 506 22 of 26

(iii) When expressed in the local coordinate λ, on each of the two sheets, the integral
∫ λ

λ2N
Ωi admits an

asymptotic expansion as λ→ ∞ (λ real) of the following form

∫ λ

λ2N

Ω1 = ∓
(

log λ + e0 + e1
1
λ
+ . . .

)
(A14)

and ∫ λ

λ2N

Ω2 = ∓ (λ + f0 + . . .) , (A15)

where e0 and e1 are real valued.

Proof. (i) Let 1 ≤ i ≤ 2. The claimed identity ι∗Ωi = −Ωi follows from the uniqueness of the
differential Ωi stated above in Lemma A1, as−ι∗Ωi is a meromorphic differential which is holomorphic
on the surface C and satisfies the same asymptotics at ∞± as well as the same normalization
condition (A9) as the differential Ωi.

(ii) In view of statement (i) we conclude that for any point p ∈ C,

1
2

∫
−ι(γ0

P)◦γ
0
P

Ωi =
1
2

(
−
∫

ι(γ0
P)

Ωi +
∫

γ0
P

Ωi

)
=
∫

γ0
P

Ωi.

(iii) The stated asymptotics follow from the asymptotics of Ωi stated in Lemma A1. The claim that
e0 and e1 are real follows from the assumption that λ1, . . . , λ2N are real and that for any real λ with
λ > λ2N , one has R(λ) > 0.

For any 1 ≤ i ≤ 2, we denote by NΩi the set of zeroes of Ωi, and we denote by Nχi the set of zeroes
of the polynomials χi, where in both cases the zeroes are listed with their respective multiplicities.
Note that we have |Nχ1 | = N − 2 and |Nχ2 | = N − 1, whereas for i = 1, 2

|NΩi | ≤ 2|Nχi |.

We introduce the projection π ≡ πλ : C→ C onto the λ-plane, i.e., the projection map π(λ, w) = λ

and its extension to a map π : Σ∗ → C∪ {∞}, where π(∞±) = ∞.

Lemma A3. The zero sets Nχi and NΩi have the following properties:

(i) All elements of Nχ1 are simple and real, and we have Nχ1 ∩ {λ1, . . . , λ2N} = ∅. Moreover,
NΩ1 = π−1

λ (Nχ1) and |NΩ1 | = 2N − 2.
(ii) All elements of Nχ2 are simple except possibly one which in that case has multiplicity two. Furthermore,

|Nχ2 \ {λ1, . . . , λ2N}| ≥ N − 2 and |NΩ2 \ {λ1, . . . , λ2N}| ≥ 2N − 4.

(iii) Nχ1 ∩ Nχ2 = ∅, and thus NΩ1 ∩ NΩ2 = ∅ as well.

Proof. The statements about the zero sets NΩi of Ωi can be easily obtained from the ones about the
zero sets Nχi in view of the representation Ωi = χi(λ)/

√
R(λ) dλ, cf. (A11) above, and the property

that Ωi has a pole at the points ∞+ and ∞−. Hence we only prove the claimed statements for Nχi .
By the normalization condition (A9) above, for any 1 ≤ k ≤ N − 1, k 6= N

2 , the polynomial χ1(λ)

has at least one real zero τ1,k satisfying the condition λ2k < τ1,k < λ2k+1. As χ1(λ) is a polynomial of
degree N − 2, it follows that all zeroes τ1,k of χ(λ) are simple and that we have

Nχ1 = {τ1,k|1 ≤ k ≤ N − 1, k 6= N
2
}.
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In particular, note that Nχ1 ∩ {λ1, . . . , λ2N} = ∅. Similarly, (A9) implies that for any
1 ≤ k ≤ N − 1, k 6= N

2 , the polynomial χ2(λ) has at least one real zero τ2,k satisfying the condition
λ2k < τ2,k < λ2k+1. As χ2(λ) is a polynomial of degree N − 1, it follows that

Nχ2 \ {τ2,k|1 ≤ k ≤ N − 1, k 6= N
2
}

consists of one point τ0 ∈ C. It is not excluded that this point τ0 coincides with one of the zeroes
(τ2,k)1≤k≤N−1,k 6= N

2
. In any case, we have |Nχ2 ∩ {λ1, . . . , λ2N}| ≤ 1. It remains to prove the statement

(iii). Assume that a point τ is a common zero of χ1(λ) and χ2(λ), i.e., that τ ∈ Nχ1 ∩ Nχ2 . Then there
exists 1 ≤ k ≤ N − 1, k 6= N

2 with λ2k < τ < λ2k+1. As all the roots of χ1(λ) are simple, one has
χ′1(τ) 6= 0 (′ = d

dλ ). Thus we can choose the real parameter ξ such that the polynomial χ2 + ξχ1

has a double root at τ. Indeed, for the choice ξ = −χ′2(τ)/χ′1(τ) we have χ2(τ) + ξχ1(τ) = 0
and χ′2(τ) + ξχ′1(τ) = 0. As

∫
cj
(χ2(λ) + ξχ1(λ))/

√
R(λ) dλ = 0 for all 1 ≤ j ≤ N − 1, j 6= N

2 ,

the N roots of the polynomial χ2 + ξχ1 are given by τ and (τξ,j)j 6=k, where τ is the double root
mentioned above and for any j 6= k, N

2 , the root λ2j < τξ,j < λ2j+1 is simple. Therefore, the polynomial
χ2(λ) + ξχ1(λ) does not change sign in the interval [λ2k, λ2k+1], contradicting the normalization
condition

∫
ck
(χ2(λ) + ξχ1(λ))/R(λ) dλ = 0. Hence the polynomials χ1 and χ2 have no zero in

common, as claimed.

Proof of Lemma 7. The following proof closely imitates the proof of a similar statement in [21],
with only slight deviations due to the fact that here we work in the case λN(τ) = λN+1(τ). We omit
some parts of the proof which are identical to the previously considered case.

For p ∈ Cλ(τ) the multi-valued functions Ji(p, τ), defined up to half periods of the differentials
Ωi(τ), are given by

Ji(p, τ) =
1
2

∫
γp

Ωi(τ),

cf. (A12), where Ωi(τ), for i = 1, 2, denote the Abelian differentials of Lemma A1, corresponding to
the Riemann surface Σλ(τ) = Cλ(τ) ∪ {∞+, ∞−}, as in (66) and (67).

By Lemma A2 (ii), Ji(p, τ) =
∫

γ0
p

Ωi(τ). In particular, note that fpr i = 1, 2 the differential

dJi(p, τ) is well defined and equals the restriction of the differential Ωi(τ) to Cλ(τ). Near any point
p = (λ, w) ∈ C \ {λ1, . . . , λ2N}, λ is a local coordinate. This remains valid for τ sufficiently close to 0,
and hence for any point p ∈ C \ {λ1, . . . , λ2N} we can define (i = 1, 2) as follows:

δJi(p) := ∂τ |τ=0 Ji(p, τ). (A16)

By Lemma A4 below, δJ1 is a single-valued function, extends to a meromorphic function on Σ∗

and is holomorphic on the set Σ∗ \ {λ1, . . . , λ2N}. At a ramification point λk, the function δJ1 might
have a simple pole with a residue of the form r1(k)δλk, where r1(k) 6= 0. However, by Proposition
A1 below, we have δJ1 ≡ 0 and hence, in particular, δλk = 0 for any 1 ≤ k ≤ 2N. This alltogether
contradicts the assumption made above that δλn 6= 0. Hence the proof is thus complete once we have
proved Lemma A4 and Proposition A1.

Lemma A4. The functions δJ1 and δJ2 defined by (A16) are single-valued functions, and they extend
to meromorphic functions on Σ∗. They are holomorphic on the set Σ∗ \ {λ1, . . . , λ2N}. At the
ramification points (λn)1≤n≤2N,n 6=N,N+1, they might have simple poles with a residue of the form
(i = 1, 2; 1 ≤ n ≤ 2N; n 6= N, N + 1)

Resp=λn δJi = ri(n)δλn

where for i = 1, r1(n) 6= 0 for any 1 ≤ n ≤ 2N, n 6= N, N + 1. In addition, δJ1 has a zero of order 2 at ∞±.
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Proof. The proof of this lemma is identical to the proof of Lemma 3.5 in [21]; hence we do not give
any details here.

Proposition A1. δJ1 ≡ 0.

To prove the statement of Proposition A1, we first need to introduce an auxiliary function. For any
point p ∈ C \ NΩ1 , dJ1(p) = Ω1(p) 6= 0. Hence it follows by the implicit function theorem that there
exists a smooth curve τ 7→ q(τ) := q(τ, p) with q(0) = p defined for τ sufficiently close to zero such
that J1(q(τ), τ) = J1(p). In particular, one has one has q(τ) = λn(τ) for p = λn (n 6= N, N + 1).
Then we introduce for p ∈ C \ NΩ1

δK(p) :=
d

dτ

∣∣∣
τ=0

J2(q(τ), τ).

As the periods of the differentials Ω2 are constant up to O(τ2), and as J2(p, τ) is well defined up
to half periods of Ω2, the function δK is single-valued. Moreover, δK admits a meromorphic extension
to Σ∗. Indeed, as we have J1(q(τ), τ) = J1(p), it follows that for any p ∈ C \ NΩ1

δJ1(p) + 〈Ω1(p), δq〉 = 0

where the pairing 〈·, ·〉 denotes the dual pairing between T∗p Σ∗ and TpΣ∗. Therefore

δK(p) =
d

dτ

∣∣∣
τ=0

J2(q(τ), τ) = δJ2(p) + 〈Ω2(p), δq〉

leads to

δK(p) = δJ2(p)− Ω2(p)
Ω1(p)

δJ1(p). (A17)

By Lemma A3 we know that Ω2(p)
Ω1(p) extends to a meromorphic function on Σ∗ with possible poles

at the zeroes of Ω1. Because of Lemma A4, δK admits a meromorphic extension to Σ∗.

Lemma A5. δK ≡ 0.

Proof of Lemma A5. We show that, when counted with their orders, the number of poles of the
differential δK does not match the number of zeroes. First note that we have δK(λn) = 0 for any
1 ≤ n ≤ 2N, n 6= N, N + 1. Indeed, if p = λn for some n satisfying 1 ≤ n ≤ 2N, n 6= N, N + 1, we have
q(τ) = λn(τ) and therefore for i = 1, 2, Ji(λn(τ), τ) contains zero for any τ, implying that the identity
δK(λn) = 0 holds. On the other hand, by the definition (A17) of δK, the poles of δK in C are contained
in the set NΩ1 of the zeroes of Ω1. By Lemma A3, all those zeroes are simple and hence|NΩ1 | = 2N− 4.
Now we investigate the values of δK at ∞+ and ∞−. Using the standard charts z = 1

λ it follows by
Lemma 4 that

Ω2(z)
Ω1(z)

= O
(

1
z

)
and by Lemma A4, we have δJ1(z) = O(z2). Therefore

Ω2(z)
Ω1(z)

δJ1(z) = O(z).

It follows that Ω2(z)
Ω1(z)

δJ1(z) vanishes at ∞+ and ∞−. Moreover, again by Lemma A4, δJ2 is
holomorphic at ∞+ and ∞−. Alltogether it follows that the meromorphic function δK has at least
2N − 2 zeroes and at most 2N − 4 poles (counted with multiplicities). As Σ∗ is a compact surface,
it then follows that δK ≡ 0.
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Proof of Proposition A1. By Lemma A5, Formula (A17) implies that

δJ1 ·Ω2 ≡ δJ2 ·Ω1. (A18)

By comparing the poles and the zeroes of δJ2 · Ω1 and δJ1 · Ω2 we want to conclude that we
have δJ1 ≡ 0 (and hence δJ2 ≡ 0 as well). Indeed, by Lemma A4, any pole of the differential δJ1

has to be a ramification point of ΣE and is of the order 1. By Lemma A3, at least 2N − 4 zeroes of
Ω2 are elements of CE \ E. Now we have to distinguish between two cases. If Ω2(En) 6= 0 for any
1 ≤ n ≤ 2N (n 6= N, N + 1), then the differential Ω2 has 2N − 2 zeroes which are all contained in
Σ∗ \ ({λ1, . . . , λ2N}∪ {∞+, ∞−}). By Lemma A3, the zeroes of Ω2 cannot be zeroes of Ω1 and therefore
(A18) implies that they must be zeroes of δJ2. Moreover, by Lemma A4, the differential δJ1 vanishes
at ∞± of order 2, whereas Ω2 has a pole of order 2. Thus δJ1 ·Ω2 is holomorphic at ∞±. By (A18)
above, δJ2 ·Ω1 is then holomorphic at ∞±. Since Ω1 has a pole of order 1 at the points ∞± it follows
that δJ2 vanishes at ∞±. Alltogether, the differential δJ2 has at least 2N zeroes on ΣE. On the other
hand, by Lemma A4, δJ2 has at most 2N − 2 poles (which are all simple). As Σ∗ is a compact Riemann
surface, the meromorphic function δJ2 vanishes identically, and thus by (A18), δJ1 as well.

It remains to consider the case where there exists 1 ≤ n ≤ 2N, n 6= N, N + 1, such that Ω2(λn) = 0.
By Lemma A4, δJ1 is then either holomorphic near λn or has a pole of order 1. Therefore δJ1 ·Ω2 is
holomorphic near λn. By (A18), δJ2 ·Ω1 then is holomorphic at λn as well. By Lemma A3, Ω1(λn) 6= 0,
hence δJ2 is holomorphic near the point λn. Again by Lemma A4, it follows that δJ2 has at most
2N − 3 poles in Σ∗. On the other hand, by Lemma A3, the differential δJ2 has at least 2N − 4 zeroes
in C \ {λ1, . . . , λ2N}. We have already observed that δJ2 vanishes at ∞+ and ∞−. Therefore δJ2 has at
least 2N − 2 zeroes and at most 2N − 3 poles in Σ∗. Since Σ∗ is a compact Riemann surface, it follows
that the meromorphic function δJ2 vanishes identically, and so does δJ1.
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