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Overview

1. Time-dependent PEMFC model

References:

2.2 Membrane properties
Recently, Vetter and Schumacher [2-3] showed that it is crucial to determine with high 
precision membrane properties as a function of hydration number. Here we:

We build upon our previously developed steady-state PEFC model [1-2]:
• 1D through-plane, macro-homogeneous, non-isothermal, two phase
• Electrochemistry: Butler-Volmer equation  
• Fully parameterized: Maxwell-Stefan diffusion, adsorption/desorption, condensa-
tion/evaporation, temperature/hydration dependence of properties, ...
• Coupled solution of 8 transport equations using COMSOL

• Implementation of transient terms:

1D model setup of a PEMFC in through-plane direc-
tion. Thickness of the different layers are LGDL= 174.3 
μm, LCL=7.3 μm, LPEM=25.4 μm. Boundary tempera-
ture is 70 °C and pressure is 1.5 bar. In the CL, iono-
mer volume fraction is 0.3  and tortuosity is 1.4. Pore 
tortuosity/Porosity is 2.96/0.7 in GDLs and 1.5/0.18 
in CLs. Electron conductivity is 400 S/m. The double 
layer capacitance is 0.2 F/m2.
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3. Large-signal response

2.1 Small-signal response: EIS
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Conclusions

Measurement points 

Steady-state polarization curve. Col-
ored circles indicate the operation cell 
voltage V0 for EIS analysis. 
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• Classical EIS detects electrical conductivity, polarization resistance and time scales 
related to double-layer capacitance and membrane hydration.
• Analyzing further the response inside the membrane allows extraction of the elec-
tro-osmotic drag coefficient.  
Outlook: 
• Rerun models by including liquid water saturation
• Utilize the large-signal response as on-board diagnostics
• Analyse the response from different inputs: temperature, gas pressure, ...
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• Response inside the membrane:
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• Steady-state operating points: • Classical EIS:
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(a) Magnitude of impedance, 
(b) phase shift and (c) Nyquist 
plot. Identified characteristic 
time scales are related to 
double layer capacitance τDL 
and membrane hydration τ
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• Analysis of the response to input amplitudes from 1 mV to 32 mV
• Calculation of the total harmonic distortion (THD) with Pi being the 
power at the i-th harmonic of the input signal:      

1 mV 2 mV 4 mV 8 mV 16 mV 32 mV

• Extraction of the electro-osmotic drag coefficient    : 

• 1. Develop a non-isothermal, two-phase time-dependent PEM fuel cell model 
• 2. Conduct classical EIS experiments using small input signals 

• 2.1 Analyze the response of current density
• 2.2 Analyze the response inside the membrane and extract from it membrane 
properties, which is illustrated by the electro-osmotic drag coefficient

• 3. Analyze the non-linear, distorted response from larger input signals
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