# Advanced characterization of PEMFCs using a two-phase time-dependent model

Zurich University of Applied Sciences



Robert Herrendörfer and Jürgen O. Schumacher

Institute of Computational Physics, Zurich University of Applied Sciences, 8401 Winterthur, Switzerland robert.herrendoerfer@zhaw.ch

Overview

Recently, Vetter and Schumacher [2-3] showed that it is crucial to determine with high precision membrane properties as a function of hydration number. Here we:
1. Develop a non-isothermal, two-phase time-dependent PEM fuel cell model
2. Conduct classical EIS experiments using small input signals

## 2.2 Membrane properties



- 2.1 Analyze the response of current density
- 2.2 Analyze the response inside the membrane and extract from it membrane properties, which is illustrated by the electro-osmotic drag coefficient
- 3. Analyze the non-linear, distorted response from larger input signals

## 1. Time-dependent PEMFC model

We build upon our previously developed steady-state PEFC model [1-2]:

- 1D through-plane, macro-homogeneous, non-isothermal, two phase
- Electrochemistry: Butler-Volmer equation
- Fully parameterized: Maxwell-Stefan diffusion, adsorption/desorption, condensation/evaporation, temperature/hydration dependence of properties, ...

• Coupled solution of 8 transport equations using COMSOL



1D model setup of a PEMFC in through-plane direction. Thickness of the different layers are  $L_{GDL}$  = 174.3  $\mu$ m,  $L_{CL}$ =7.3  $\mu$ m,  $L_{PEM}$ =25.4  $\mu$ m. Boundary temperature is 70 °C and pressure is 1.5 bar. In the CL, ionomer volume fraction is 0.3 and tortuosity is 1.4. Pore tortuosity/Porosity is 2.96/0.7 in GDLs and 1.5/0.18 in CLs. Electron conductivity is 400 S/m. The double layer capacitance is 0.2 F/m<sup>2</sup>.

• Extraction of the electro-osmotic drag coefficient  $\xi$ :



3. Large-signal response



• Implementation of transient terms:

| Electron transport     | $a_{\rm A,C}C_{\rm DL}\frac{\partial\varphi_{\rm e}}{\partial t} + \nabla \cdot j_{\rm e} = S_{\rm e},  j_{\rm e} = -\sigma_{\rm e}\nabla\varphi_{\rm e}$                                                     |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proton transport       | $\underline{a_{\mathrm{A,C}}C_{\mathrm{DL}}\frac{\partial\varphi_{\mathrm{p}}}{\partial t} + \nabla \cdot j_{\mathrm{p}} = S_{\mathrm{p}},  j_{\mathrm{p}} = -\sigma_{\mathrm{p}}\nabla\varphi_{\mathrm{p}}}$ |
| Heat conduction        | $c_p \frac{\partial T}{\partial t} + \nabla \cdot j_T = S_T,  j_T = -k\nabla T$                                                                                                                               |
| Hydrogen diffusion     | $(1-s)\epsilon_{\rm p}C\frac{\partial y_X}{\partial t} + \nabla \cdot j_X = S_X,  \mathbf{X} = \mathbf{H}_2, \mathbf{H}_2\mathbf{O}, \mathbf{O}_2$                                                            |
| Oxygen diffusion       | $Ot \qquad Ot \qquad \qquad \qquad Ot \qquad \qquad$                                                                                    |
| Water vapor diffusion  | $-\mathcal{O} \vee g_X = \sum_{Y \neq X} \overline{\mathcal{D}_{X,Y}}$                                                                                                                                        |
| Dissolved water        | $\underline{\frac{\epsilon_{\rm i}}{V_{\rm m}}\frac{\partial\lambda}{\partial t} + \nabla \cdot j_{\lambda} = S_{\lambda},  j_{\lambda} = -\frac{D_{\lambda}}{V_{\rm m}}\nabla\lambda + \frac{\xi}{F}j_p}$    |
| Liquid water transport | $\frac{\epsilon_p}{V_w}\frac{\partial s}{\partial t} + \nabla \cdot j_s = S_s,  j_s = -\frac{D_s}{V_w}\nabla s  s = 0.1$                                                                                      |
|                        |                                                                                                                                                                                                               |

## 2.1 Small-signal response: EIS

• Steady-state operating points: • Classical EIS:  $V = V_0 + \Delta V \sin(2\pi f t), \quad \Delta V = 1 \text{mV} \quad Z = \frac{\varphi_e}{j_e}$ 

• Analysis of the response to input amplitudes from 1 mV to 32 mV • Calculation of the total harmonic distortion (THD) with P, being the power at the *i*-th harmonic of the input signal:  $\sum_{i=1}^{10} P_i$  $THD = \chi$ 0.14 0.2 0.12 0.15 QH 0.1 0.08 THD OHT 0.5 0.1 0.06 0.04 0.05 10<sup>-1</sup> 10<sup>-3</sup> 10<sup>3</sup> 10<sup>-5</sup> 10<sup>-3</sup> 10<sup>-3</sup> 10<sup>-5</sup> 10<sup>-1</sup> 10<sup>-5</sup>  $10^{1}$  $10^{3}$ 10<sup>3</sup>  $10^{1}$  $10^{-1}$ 10<sup>1</sup> f [Hz] f [Hz] f [Hz] 2 mV - 4 mV - 8 mV - 16 mV - 32 mV 1 mV

### Conclusions

- Classical EIS detects electrical conductivity, polarization resistance and time scales related to double-layer capacitance and membrane hydration.
- Analyzing further the response inside the membrane allows extraction of the electro-osmotic drag coefficient.
- Outlook:



- JULIOUK.
- Rerun models by including liquid water saturation
- Utilize the large-signal response as on-board diagnostics
- Analyse the response from different inputs: temperature, gas pressure, ...

#### Acknowledgements

We gratefully acknowledge the financial support by the Swiss Federal Office of Energy for the project "Advanced characterization of fuel cell stacks for automotive applications" (SFOE contract number: SI/501764-01).

#### **References:**

[1] Roman Vetter and Jürgen O. Schumacher, 2019, Free open reference implementation of a two-phase PEM fuel cell model, Comp. Phys. Commun., 234, 223-234, 10.1016/j.cpc.2018.07.023
 [2] Roman Vetter and Jürgen O. Schumacher, 2018, Experimental parameter uncertainty in PEM fuel cell modeling. Part I: Scatter in material parameterization, submitted, arXiv:1811.10091

[3] Roman Vetter and Jürgen O. Schumacher, 2018, Experimental parameter uncertainty in PEM fuel cell modeling. Part II: Sensitivity analysis and importance ranking, submitted, arXiv:1811.10093