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Abstract

Estimation of signals at the current boundary of time series is an important task
in many practical applications. In order to apply the symmetric filter at current time,
model-based approaches typically rely on forecasts generated from a time series model
in order to extend (stretch) the time series into the future. In this paper we analyze
performances of concurrent filters based on TRAMO and X-12-ARIMA for business
survey data and compare the results to a new efficient estimation method which does
not rely on forecasts. It is shown that both model-based procedures are subject to
heavy model misspecification related to false unit root identification at frequency zero
and at seasonal frequencies. Our results strongly suggest that the traditional model-
based approach should not be used for problems involving multi-step ahead forecasts
such as e.g. the determination of concurrent filters.
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1 Introduction

A policy-oriented business cycle research needs reliable indicators of current economic ac-
tivity (real time data). In general, these indicators are affected by seasonal patterns and
noise. Therefore, the data have to be filtered accordingly. Unfortunately, symmetric filters
cannot be used towards the boundaries of a sample. The actual (current) signal - which
is often the most interesting in practical applications - cannot be computed directly, but
has to be estimated instead. Moreover, the series considered here are part of a leading
indicator of economic activity so that multivariate approaches are not really helpful in
predicting outcomes of such an indicator. Therefore, signals or equivalently symmetric
filters must be approximated by suitable (efficient) univariate asymmetric filters. The
filter for the most actual (current) time point is called concurrent filter. As argued in [7],
p-2 “As the first-published adjustment for month 7, this is the adjustment (the output of
the concurrent filter) that receives the most attention ... Thus it is especially important
to consider properties of the concurrent filters”.

In this article we analyze properties of concurrent filters based on various estimation
methods. Model-based approaches (MBA) such as TRAMO/SEATS or Census X-12-
ARIMA are widely used for signal extraction. For solving the above boundary problem
- approximation of symmetric by asymmetric filters - MBA rely on forecasts generated
by a model to ‘stretch’ (extend) the time series in order to apply the symmetric filter
towards the boundaries of a sample. As shown in [2], [12] and [15] this procedure results
in a particular asymmetric filter whose coefficients (filter weights) are optimized with re-
spect to one-step ahead forecasting performances of the time series model (typically an
ARIMA-model). However, if the weights of the symmetric filter decay slowly (which is
typical for seasonal-adjustment or trend extraction, see the example below) then not only
one-step but also multi-step-ahead forecasts of longer horizons are needed. Since it is
known that one- and multi-step ahead forecasting performances of time series models are
generally conflicting because of model misspecification (see, for example, [3] and [4]) it fol-
lows that the optimization criterion underlying MBA is not optimally designed for solving
the boundary signal estimation problem i.e. for computing the concurrent filter.

In this article, we compare the performances of TRAMO and X-12-ARIMA with those
of an efficient estimation method presented in [15] - the so called Direct Filter Approach
(DFA) - using a representative sample of 36 monthly time series (business survey data
collected at the Institute for Business Cycle Research at the Swiss Institute of Tech-
nology, Zurich. The data as well as the filters used can be downloaded from the sites
www.zhwin.ch/ wia/signalextraction or www.kof.ethz.ch/signalextraction. In sections 3
and 4 specific DFA filters - optimized for each time series - are used and comparisons ‘in’
and ‘out of sample’ are reported. In section 5 ‘similar’ time series are clustered together
into three different clusters and only three different filters are optimized for the DFA (one
for each cluster, the same for all series in a cluster) which are compared to the 36 spe-
cific MBA-filters. As shown below, these results clearly contradict the implicitly assumed
efficiency of model-based concurrent filters.



2 Experimental Design

In order to illustrate inefficiency issues related to model-based approaches we here consider
concurrent filters for a trend component whose transfer function is defined by
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The filter doesn’t affect components with frequencies smaller than 7/14 and eliminates
completely components corresponding to frequencies greater than /7. Therefore, it is
suited for defining a particular ‘trend’ for monthly time series. We chose a trend compo-
nent here, because it is relevant for many users of statistical data: as argued in [7] p.7 “A
substantial number (of users of seasonally adjusted data) would also prefer that higher fre-
quency components be suppressed in order to obtain a smoother adjusted series”. As can
be seen by direct computation, the filter weights 4 decay ‘slowly’. Therefore good one-
and multi-step ahead forecasts are required. In all our experiments, the filter weights have
been truncated and we use the same symmetric MA(121)-filter I'(-) defined by weights

_ [ G, Kl <60
Tk = 0, otherwise
called ‘final’ estimates - for ¢t = 61,62,..., T — 60.

where C :=1/ >_|k|<60 k- As aresult we can compute signals - so

We chose a constant trend definition for all 36 time series considered in order to make
the comparisons more reliable!. Moreover, we avoid a signal specific to one particular
model-based approach (such as for example a canonical trend or a Henderson filter with
seasonal dips) in order not to favor one particular method. Although not explicitly re-
ported here, the results do not dramatically differ if other trend definitions or seasonal
adjustment filters are used. The reason may be imputed to the fact that the rate of
decay of the weights based on alternative filter definitions is often slow too. Therefore,
the corresponding estimation problem requires good one- and multi-step ahead forecasting
performances (which is generally a conflicting requirement for MBA).

The business survey data collected by the Institute for Business Cycle Research at
the Swiss Federal Institute of Technology consists of 36 monthly time series beginning
in June 1979 and ending in August 2004 (7" = 303). The specific dynamics of the time

1Signals for X-12-ARIMA are not explicitly defined so that direct comparisons across methods are
not possible. Model-based signal definitions resulting for example from canonical decompositions (SEATS)
depend on misspecified models (see below), the characteristics of the time series and eventually the (latest)
version of the software used. Therefore we chose the above unifying framework for our comparisons.



series involved are very different which makes the considered sample in some sense ‘rep-
resentative’ for many practical applications: noise amount and spectral peaks of seasonal
components vary in height (intensity) and/or width (stability of the season). Another
important fact is that the time series are bounded. Therefore, the corresponding processes
cannot be integrated. Identification of an integrated process by the MBA would be a for-
mal misspecification suggesting that one- and multi-step ahead forecasting performances
may be conflicting. Note that boundedness of time series is quite frequent in practical
applications e.g. ‘rates’ such as unemployment-rates for example.

If the data-generating process (DGP) of a time series were known, then the MBA
would be optimal. In practice the DGP is unknown and MBA attempt to identify it from
data. However, the empirical results presented here strongly suggest that an identification
strategy based on one-step ahead forecasting errors (as in TRAMO or X-12-ARIMA for
example) is not optimal in general. An alternative to the ‘traditional’ MBA would be to
find an asymmetric filter which minimizes the revision error variance

min E[(Y; — ;)?] (3)
I

where

e Y, denotes the estimate, i.e. the output of the asymmetric concurrent filter with
transfer function I' (the argument of the above minimization procedure);

e Y} is the (unknown) output of the symmetric filter;

e The optimization is operated with respect to the unknown (asymmetric) filter coef-
ficients.

An optimization criterion based on (3) would not primarily contribute to the identification
of the DGP but it would implicitly account for one- and multi-step ahead forecasts as well
as for the ‘shape’ of the symmetric filter to be approximated, something that MBA such
as TRAMO or X-12-ARIMA cannot do. Although DGP-identification and the optimi-
sation problem (3) are closely related, at least asymptotically and under suitable model
constraints both problems differ due to finite sample effects and model misspecifications.

Unfortunately, the expectation in (3) is unknown (in fact even Y; is generally unknown).
The idea of the direct filter approach (DFA) as presented in [13], [14] and [15] is to
approximate the unknown expectation by an efficient estimate and to optimize unknown
(asymmetric) filter coefficients by minimizing this estimate. Consider a minimization of
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where I'(-) and I'(-) are the transfer functions of symmetric and asymmetric filters, I x (wy)
is the periodogram of the input process and wy = k27/N are equidistant discrete frequen-
cies in [—m,7]. It is shown in [15] that the output of the resulting asymmetric filter is



asymptotically efficient if the input signal (original time series) is stationary. The intuition
behind this assertion may be based on the following sequence of approximations
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where Iyay (wg) is the (unknown) periodogram of the filter error AY; := Y; — Y;. More
formally, it is shown in [15] that the approximation error in (5) is of order o(N~/2) (su-
perconsistency) and that the error in (6) is the ‘smallest’ possible (asymptotically) from
which the asserted efficiency can be derived. The distribution of the estimated filter pa-
rameters obtained in (4) is derived in [15] under some general assumptions about the
input signal. Generalizations to integrated processes as well as generalizations of ‘tra-
ditional’ information criteria and of unit-root tests - which match the structure of the
boundary signal estimation problem - are presented too in [15]. However, in deriving the
empirical results in this article we rely deliberately on an ‘agnostic’ approach for the DFA
and do not account neither for ‘identification’ nor for ‘hypothesis testing’: the same fil-
ter design is used for all 36 time series considered and unknown parameters are optimized
with respect to (4) using allways the same set of initial values for the unknwon coefficients.

In the following, both MBA are compared to the above efficient DFA. The empirical
in sample results are based on a comparison of concurrent filter outputs (with a ‘rolling’
boundary 7" = 61, ...,303 — 60 = 243) for the trend-signal defined by the (truncated and
renormalized) MA(121)-filter based on (2). Therefore, squared errors of the asymmetric
filters are computed for ¢ = 61,...,7 — 60 = 243 (183 observations) and sample means
(of squared errors) are taken accordingly. DFA- and MBA-filters are obtained by using
information in the whole sample (303 observations). However, the ‘in sample’ experiment
is not fully relevant because future observations are not available for estimating the filter
coefficients in practice. Therefore, ‘out of sample’ results are also reported. For the latter,
only T'— 60 = 243 observations can be used for estimation. Furthermore, 40 observa-
2 are retained at the end of the remaining sample for assessing the various methods.
All in all, the number of available observations for identification (MBA) and estimation
(MBA and DFA) is reduced by 100 for the ‘out of sample’ experiment: from N = 303 to
N = 243 — 40 = 203 observations.

tions

MBA asymmetric filters are obtained by forecasting the time series at the rolling end-
points and then applying the truncated symmetric MA(121) to the stretched time series.
DFA asymmetric filters solve (4). For the DFA, the filter design is based on zero-pole
pairs located at the frequencies kx/6, k = 0,1,...,6. A corresponding zero-pole pair is
characterized by 2 degrees of freedom. However, the particular zero-pole pair at frequency

2Filter errors are autocorrelated so that a sufficiently long sample is needed for assessing out of sample
performances.



0 aims at small time delays of the filter and is characterized by one degree of freedom
only, see [15] for formal definitions and results. An additional unconstrained zero-pole
pair (three degrees of freedom since the argument is optimized too) and a normalizing
constant are used to match the filter properties in the important passband of the fil-
ter. This amounts to 5% 2+ 14+ 2+ 3 4+ 1 = 17 degrees of freedom. The stable and
invertible minimum-phase DFA-filters used here are of the type ARMA(15,15) with pa-
rameters satisfying a set of 13 restrictions (filter parameters can be downloaded from
www.zhwin.ch/ wia/signalextraction or www.kof.ethz.ch/signalextraction). The two de-
grees of freedom of zero-pole pairs at k7w /6, k = 1,...,6 account for height and width of
potential spectral peaks (seasonal fundamental and harmonics). If there is no apparent
spectral peak at a particular frequency, corresponding zeroes and poles of the ARMA-
filter are allowed to cancel each other. Therefore we renounce to ‘identify’ an optimal
filter design as mentioned earlier. As a result, some of the AR~ and/or MA-coefficients
are almost vanishing and the (concurrent) filter may seem to be unnecessarily complicate.
However, as shown below the performances (especially ‘out of sample’) are not affected by
this circumstance.

Filter errors are computed for MBA (TRAMO and X-12-ARIMA) and the DFA and
relative sample error variances
Ca (VP —Y)* - Sa (VP4 - v)’
=1 (VP4 =132

(7)

are recorded for all series, where Y is the output of the symmetric MA(121) filter (7" varies
depending on the analysis being in- or out-of-sample). We use TRAMO and X-12-ARIMA

as implemented in DEMETRA, version 2 (SP1). This is a user-friendly interface running
under Windows which gives access to TRAMO/SEATS and X-12-ARIMA (release version
0.2.8). It can be downloaded from http://forum.europa.eu.int /Public/irc/dsis/eurosam/library?.
Since MBA generally rely on adjustments - outliers and calendar effects such as trading-

day or Easter-effect adjustments - and/or log-transforms we used original (unadjusted) as

well as linearized (adjusted and transformed) series for our comparisons. Note that the
linearized time series generally depend on the MBA used, since testing procedures may
differ.

3 Empirical Results ‘in sample’

In this section, comparisons are based on three distinct experimental ‘set-ups’. As filter
inputs we use original data in the first two and linearized data (adjusted for outliers and /or

3Recent and intended future developments of X-12-ARIMA (X-12-ARIMA /SEATS, see [10]) seem to
point towards TRAMO/SEATS since for example it is claimed in [10] that “It (the new development)
is a prototype of a merged version of the two programs” and “The version of X-12-ARIMA used in this
prototype has an updated model selection procedure based on the procedure found in the TRAMO time
series modelling program”. For our purposes, however, we prefer that the versions of X-12-ARIMA and
TRAMO used here still differ in particular with respect to model identification. Since TRAMO does not
perform better than the ‘older’ X-12-ARIMA version it is reasonable to expect that in the light of the
former comments the newer version(s) of X-12-ARIMA won’t do neither.



calendar effects and/or log-transformed) in the last experiment. In the first experiment,
identification is based on the adjusted data (it is well known that model identification
may be heavily affected by outliers, see for example [11]) and estimation is based on the
original unadjusted time series. For that we make use of functionalities in the ‘detailed
analysis’ module in DEMETRA: in estimating parameters for the original data we simply
constrain model orders to those obtained for the linearized data. In the second experiment,
we estimate model orders and parameters using the original data. Hereby, we consider
the fact that the DFA does not ‘benefit’ from this features neither. Again we use the
‘detailed analysis’ module of DEMETRA in which we exclude adjustments and transfor-
mation facilities. In the last experiment, identification and estimation are both based on
the linearized time series (which are then also the input series for our concurrent filters).
For the DFA, identification is not necessary and estimation is based on the original unad-
justed time series only: therefore the same concurrent DFA filters are used for all three
experimental designs. As a result, the last experiment favors MBA since linearized time
series are used as input signals.

3.1 In-sample results for all series

The model orders obtained when allowing for series adjustments are summarized in tables
1 (TRAMO) and 2 (X-12-ARIMA). For X-12-ARIMA only those models were listed in
table 2 which differed from TRAMO: thus the two identification procedures agreed for
exactly half of the time series only which is a first indication of model misspecification.
It is well known that different ARIMA-models may lead to very similar one-step ahead
forecasting performances although the same models may considerably differ with respect
to multi-step ahead performances especially if integration orders do not agree: see for
example time series 1 and 4 which are identified as I(1) by TRAMO and as I(2) by X-
12-ARIMA. As shown in [7] (section 5) such indeterminacy may have substantial (severe)
impacts on the resulting filters. The ‘d’-columns correspond to the estimated integration
orders of the models. As already mentioned, the data generating process (DGP) of the
business survey data used cannot be integrated. However, both MBA identified integrated
processes for all series except series number 33 which is identified as a stationary process
by TRAMO (note that it is I(2) according to X-12-ARIMA). All in all, 18 (TRAMO) and
32 (X-12-ARIMA) time series are identified as I(2)-processes and X-12-ARIMA selects
the airline-model for 27 time series (75% of the cases). Note that usage of unit-root tests
did not lead to substantial improvements of estimated integration orders, see section 3.2
(this is not really surprising because traditional tests based on one-step ahead forecasting
performances cannot sufficiently discriminate series with ‘longer’ (bounded) swings from
realizations of integrated processes). Moreover, relaxing the imposed unit-root constraints
may lead to overfitting.

Empirical results for the comparison between the DFA and the MBA based on the first
experimental ‘set up’ above are to be found in table 3: in the column entitled “X-12-T”
model orders are based on TRAMO and parameter estimates are based on X-12-ARIMA*
whereas in the column “X-12-A” the comparison is fully based on X-12-ARIMA. The

4Therefore the effect due to different estimation routines can be isolated.



numbers in the columns are based on expression (7): thus negative values indicate that
the DFA performs better. As can be seen, the DFA outperforms TRAMO as well as X-
12-ARIMA for all time series and the mean relative gain (reduction in error variance) of
the DFA is close to 40% at the rolling boundary of the time series. Empirical results not
reported here show that a linear combination of MBA and DFA filters does not outperform
the DFA, suggesting that the MBA is ‘encompassed’ by the DFA. The difference between
the estimation procedures of X-12-ARIMA and TRAMO is negligible (see the columns en-
titled “TRAMO” and “X-12-T”) at least with respect to concurrent filter characteristics
and the different model identification procedures of TRAMO and X-12-ARIMA do not
lead to statistically significant differences neither although X-12-ARIMA performs slightly
better (compare columns “X-12-T” and “X-12-A”).

For the second experimental ‘set-up’ we only report the aggregate mean performances
(in order to save space) which are —35% (when comparing the DFA to TRAMO) and
—46% (when comparing the DFA to X-12-ARIMA). TRAMO performed slightly (though
not significantly) better when the model identification was based on the unadjusted time
series and conversely for X-12-ARIMA. Again, the DFA outperformed both MBA for all
time series.

In the third experiment, we use the linearized (adjusted and/or log-transformed) time
series as input signals and compare the performance of the DFA - still using the filters
optimized for the original series - with ‘optimal’ MBA concurrent filters. Note that the
linearized series depend on the method used (in their introduction to [9] the authors argue
“The procedure of X-12-ARIMA differs from that of TRAMO in several ways, related
mainly to parameter and likelihood calculation and to outlier identification). This par-
ticular experimental design clearly favors the MBA since filter coefficients for the DFA
were not re-optimized and linearized series should be ‘optimally’ transformed to account
for model assumptions. Again, we only present the mean performance for all series which
was —30% (TRAMO) and —28% (X-12-ARIMA).

Since the DFA relies on a much larger set of estimated parameters (17 parameters
are estimated), one may suspect that the above results may be due at least partially
to overfitting. In [15] it is shown that out of sample performances of the DFA do not
significantly differ from in sample properties, because the particular design of so called
Zero-Pole-Combination (ZPC)-filters specifically accounts for the ‘salient features’ of a
time series - height and width of spectral peaks at kn/6, k = 0,...,6 -, see for example
section 3.3 in [15] for formal definitions and results. The empirical results in sections 4
and 5 below confirm that overfitting (by the DFA) is not an issue, but inefficiency (of
MBA) seems to be one.

Although we now know that the loss in performance of MBA is important, we still do

not know why the DFA does better. A detailed analysis for two particular time series in
the next section offers more insights into the relevant topics.
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3.2 A detailed analysis based on two particular time series

Due to methodological differences the performances of DFA and MBA vary. T'wo particular
time series - series number 30 and 31 - are selected here for revealing these differences in
more detail. Although the conclusions drawn do not markedly differ for the other series of
the sample we have chosen number 30 and 31 because they are ‘representative’ for what
happens in general and are therefore illustrative. The models identified by TRAMO and
X-12-ARIMA for the time series X; 30 and X; 31 (using all observations) are

Yizo = (1—B)X¢30
Yiso = (1—"0b1)eso (8)

where b] FAMO — _(.1765 and b;*'? = —0.1315 and

Y;g731 = (1 — B)(l — BlQ)Xt’:gl
izt = (1—=0B)(1—pB1B%)ers 9)

with b] BAMO — 6879, BT RAMO — _0.7791 and b2 = —0.6916, 52 = —0.8361.
Since both approaches selected identical models, results were (almost) identical too (in-
significant variations are due to differences between estimation routines). The MBA
selected I(1)- and I(2)-DGP’s respectively. For series 30, ‘traditional’ unit-root tests
(Zivot-Andrews, Elliot-Rothenberg-Stock and Phillips Perron) do reject the I(1)-unit-
root hypothesis®. For series 31 Zivot-Andrews does not reject the null hypothesis, Elliot-
Rothenberg-Stock rejects it on the 5%- but not on the 1%-level and Phillips- Perron rejects
the null hypothesis that the seasonal differences are I(1) on the 1%-level. The asymmetric
model-based concurrent filter is generated by applying the truncated MA(121) based on
(2) to the time series stretched by forecasts generated by models (8) and (9): we here
only report results for estimates based on TRAMO (the differences between both MBA
are negligible).

As can be seen from the periodogram in the left panel in the middle of figure 3, series 30
is characterized by ‘local’ trends and a weak seasonal component located at the fundamen-
tal m/6 (which cannot be accounted for by the non-seasonal ARIMA(0,1,1)(0,0,0)-model
(8). The corresponding panel in figure 4 shows that series 31 is characterized by stronger
seasonal harmonics as well as noise (the panels on the right in the middle of these figures
are the periodograms after the filtering process). Outputs of the asymmetric TRAMO-
and DFA-filters as well as corresponding revision errors (differences between outputs of
symmetric and asymmetric filters) are depicted in figure 1 for both time series. The spec-
tral decomposition of the revision errors in figure 2 reveals a pattern which - as suggested
by experience - seems to be typical when comparing DFA and MBA: the former generally
strongly outperforms the latter in the lower frequency portion of the spectrum as well as
around or at seasonal peaks (look, for example, at the remaining peak at the fundamental
/6 in the revision errors produced by TRAMO for series 30 in the left panel of figure
2). Towards frequency zero the worse performance of MBA may be explained by model-
misspecifications due to erroneous unit root identification which imply unnecessarily severe

5The tests were performed using the R-routines ur.pp, ur.za and ur.ers implemented in the package
urca. A constant model (no trend) is used with lag length 4 (ERS,ZA) or lags=*“long” (PP).

11



restrictions for the amplitude function of the corresponding concurrent filter and larger
time delays. Special ‘care’ of the lower frequency components is needed because they are
often strong and because they belong to the passband of the filter. Therefore, any (unnec-
essary) distortion may result in a substantial loss of performance. For the DFA, five filter
parameters are allocated to this important frequency band in order to match relevant time
series characteristics: see more about interpreting them below. The worse performance of
MBA-filters towards seasonal frequencies may be imputed to the fact that often a single
parameter - for example an SMA(12) - must account for all seasonal components (fun-
damental and harmonics) simultaneously. Experience suggests that model-based filters
are often too sparsely parameterized to account for the complex dynamics of practical
time series. The richer parameterized ZPC-filters of the DFA which define the constrained
ARMA-filters are specifically designed to adapt for strength (height) and stability (width)
of each of the spectral peaks located at (or in the vicinity of ) k7 /6, k = 0, ..., 6. Ultimately,
MBA rest on (too) parsimonious models - i.e. filters - because their parameters are not
immanently constrained to adapt for the ‘salient features’ only. Similar arguments are
put forward in [8] to invoke a state-space model approach to signal extraction®. Relaxing
the parsimony constraint may therefore result in overfitting and even worse filter perfor-
mances. The problem is that even severe misspecifications cannot be detected because
one-step ahead forecast errors are not informative enough.

Ideally, amplitude and time delay (phase divided by frequency) functions of the asym-
metric filter should ‘mimic’ the corresponding functions of the symmetric filter. Unfor-
tunately, both requirements are generally conflicting. As can be seen from the lower two
panels in figures 3 and 4 , the ‘fit’ of the amplitude and the time delay functions (units
on the vertical axis correspond to time units i.e. months) of the concurrent DFA-filter
depends on the spectrum of the input process, getting better for dominant components
which is a direct consequence of the optimization criterion (4). The time delay, for ex-
ample, is small towards low frequencies where the bulk of the spectrum is located. From
the shape of the amplitude function in the lower left panel in figure 4 one can see that
the asymmetric DFA-filter generally damps seasonal components without removing them
completely (as would be the case for a MBA-filter derived from an ARIMA-model with
‘crude’ seasonal differences, see [2], section 4 and [15] section 5.3). Note that the finite
MA(121)-filter does not remove them completely neither but the infinite one in 2 would.
The periodogram of the output signal in the right-hand panel in the middle of figure 4
reveals that the overall damping of the filter in the stopband is ‘optimal’ for removing the
seasonal components of the time series.
broader trough of the

As suggested above, the shape of amplitude and time delay functions of the concur-
rent filter in the passband is important. As a result of the optimization (4) the ‘free’
zero-pole pair (whose argument is not constrained a priori) of the DFA concurrent filters
is always located in the passband: together with the zero-pole pair at frequency zero and

SHowever, as for the above MBA these models are optimized with respect to one-step ahead forecasting
performances only so that model misspecification will lead to inefficient concurrent filters too. Moreover,
the ‘traditional’ basic structural model (BSM) corresponds to an I(2)-process which would again result
in unnecessarily severe restrictions for the concurrent filters. The I(2)-hypothesis for the BSM is derived
from the requirement that the slope of the trend (first differences) should be ‘adaptive’.
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the normalizing constant five (34-2) degrees of freedom are used to match the series char-
acteristics in the passband of the filter (whereas the widely used airline-model relies on two
parameters only for the whole spectrum). One may note first that Apga(0) # 1 (i.e. the
MA (c0)-weights of the ARMA-filter do not add to one) in contrast to the MBA-filter which
must satisfy the constraint Ay;p4(0) = I'(0) = 1 because of the misspecified unit-roots
at frequency zero, see [15] for a formal treatment of this problem. Intuitively, the level
restriction A(0) = I'(0) is necessary for (asymptotically) unbounded integrated time series,
because otherwise the revision error variance would become infinite (asymptotically). Ev-
idently, for bounded time series this is no more true. Therefore, the unnecessarily severe
‘level’” constraint is relaxed for the DFA. It is important to emphasize that the relaxation
of this restriction has not only incidences on the normalizing constant of the filter (as one
might expect at first sight) but also on its zeroes and poles, thus affecting the transfer func-
tion of the filter in a more fundamental manner. Whereas the real zero-pole pair located
at frequency zero aims at a small time delay of the filter in the pass band (see for example
figures 3 and 4 and [15] section 5.4 for formal details), the additional ‘free’ zero-pole pair
shifts undesirable filter characteristics - overshooting of the amplitude function or ‘large’
time delays - to regions in the passband where the spectrum of the input series is weak,
see figures 3 and 4. As a result, effects due to undesirable filter characteristics are less
pronounced, see for example the spectra of the revision errors in figure 2.

The ‘invisible hand’ at work is the optimization criterion (4) which moves zeroes and
poles of the ARMA-filter in order to exploit the individual spectral shape of a time series
optimally. It would be a difficult task to search for forecasting-models whose concurrent
filters would behave ‘similarly’. Formally, the structure of such a model could be obtained
from the concurrent DFA-filter but it is very unlike that the same model could be obtained
using statistics based on one-step ahead forecasting errors only. This is because one-step
ahead forecasting is not directly related to signal extraction at the (current) boundary
of a time series. More fundamentally, time series characteristics which are relevant for
boundary signal extraction do not necessarily import in the context of one-step ahead
forecasting: a large spectral peak in the vicinity of (but not necessarily at) frequency
zero may be accounted for by first differences when computing a one-step ahead forecast
but for the signal extraction problem additionally the location of the peak is important
because transfer functions of symmetric and concurrent filters must match there (equiv-
alently: undesirable filter characteristics must be shifted away from the peak). In this
sense, computation of concurrent filters requires more flexibility and is more ‘information
demanding’ than one-step ahead forecasting which is often erroneously confounded with
DGP-identification in the signal extraction literature.

As the above examples demonstrate, misspecification of the integration order seems
to have severe impacts on the efficiency of the resulting MBA-filters. Maravall in [6],
p-156 argues that “moderate overdifferencing causes, in practice, little damage”. While
this statement may eventually be verified for one-step ahead forecasting applications the
above findings show that it should be revised for signal extraction in general.
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4 QOut-of sample results for all series

The results in this section are based on the original (unadjusted) time series and corre-
spond to the first experimental ‘set up’ in section 3.1. As mentioned before in section 2,
the filters in the following experiment are based on information from ¢ = 1 to ¢t = 203
(which corresponds to 17 years of observations). The symmetric MA(121) is computed
up to t = 243 and therefore relative out of sample performances (based on (7)) are com-
puted for the latest 40 observations from ¢ = 204 to ¢ = 243, see the first column of
table 4. Neither model parameters nor DFA coefficients were re-estimated as new infor-
mation became available. In fact, re-estimation has only minor impact on the results as
already shown in [5], p.7. Negative signs indicate that the DFA outperforms TRAMO.
Similar results are obtained for X-12-ARIMA, so that we do not report them here explic-
itly: the mean relative gain of the DFA is —37% (reduction of revision error variance)
‘out of sample’. Additionnally, out- and in-sample performances of each method are com-
pared and corresponding results are reported in the second and third columns of table 4:
here negative signs indicate that out of sample performances are better (than ‘in-sample’).

Note that ‘in sample’ results in the present section may differ from ‘whole sample’
results obtained in the preceding section 3 because models and DFA-filters are not com-
puted on the whole sample (303 observations) but on the shorter subsample t = 1, ..., 203
(so model orders and/or parameter estimates may vary). For the DFA, a direct compar-
ison of ‘out of sample’ and ‘whole sample’ (analyzed in section 3.2) concurrent filters in
figure 5 shows that the DFA filter characteristics ‘in’ and ‘out of sample’ are very similar
which explains the results in table 4. Note that for series 30 the weak fundamental at
7/6 is still accounted for by the DFA (see the corresponding dip in the amplitude func-
tion in figure 5) whereas it is ignored by the MBA which selects the same non-seasonal
ARIMA(0,1,1)(0,0,0)-model as for the whole sample. For series 31 the weak fundamental
at m/6 is slightly damped by the ‘whole sample’ DFA-filter whereas the ‘out of sample’
DFA-filter ignores it (an effect due to the additional information in the whole sample).
As seen in the last two columns of table 4 neither estimation method seems to be af-
fected by overfitting (mean performances ‘out of sample’ are not significantly different
from zero). It is therefore not surprising that the mean gain of the DFA ‘out of sample’
(approximately 38%) is close to the mean gain ‘in sample’ reported in table 1. Despite
a relatively large number of parameters being estimated for the DFA, overfitting is obvi-
ously avoided by constraining parameters to fit the ‘salient features’ of the time series only.

As expected, the identification procedure of TRAMO selects different models depend-
ing on the available sample length. Therefore, we briefly investigate the additional gain
obtained by the automatic model selection procedure. For that we compare the perfor-
mances of TRAMO with automatic model selection set on (as above) with concurrent
filters based on the airline model only (no model selection). The mean relative decrease
of the filter error by using the automatic identification procedure was —8% (stand. dev.
3%) when comparing only those time series for which the airline model was not selected
and —5%(stand. dev. 2%) in the mean over all time series on the whole sample (N=303).
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5 Frequency-Clustering: 3 DFA-filters outperform 36 spe-
cific MBA-filters

Despite evident advantages of the DFA from a statistical point of view, the method suffers
from difficult numerical optimization because of strong non-linearities and multidimen-
sionality (17-dimensional parameter space). Numerical solutions of the criterion (4) have
been found through combination of genetic algorithms (slow convergence towards global
extremum) and methods based on Nelder-Mead and BFGS (fast convergence to local ex-
tremum) as implemented in R”. In order to reduce the computational effort we decided
to simplify the estimation problem for the whole sample by defining clusters of ‘similar’
time series for which a single concurrent filter is computed. For the DFA, two time series
are claimed to be ‘similar’ if the normalized periodograms (the normalization is obtained
by standardizing the time series) look ‘similar’ whereby a formal measure of ‘similarity’
is provided by cluster analysis based on normalized periodograms, using complete link-
age and the Euclidean distance (other clustering methods do not lead to substantially
different clusters). Based on a dendrogram-analysis the time series were partitioned into
three clusters as can be seen from table 5. The arithmetic means of the periodograms of
the series in each of the clusters are shown in figure 6 (the original unadjusted series are
used here). The mean periodogram statistics are obtained by averaging the periodograms
of series in identical clusters. They are used in (4) in order to compute three distinct
concurrent filters, one for each cluster: the same filter is used for all series in a cluster.
Therefore, three concurrent DFA-filters only compete with 36 specific MBA-filters. Note
that the various processes identified by TRAMO for the time series in a given cluster (for
example cluster 2) suggest much more heterogeneity among time series, for example series
13 (cluster 2) is identified as I(1) without seasonals whereas for series 7 (also in cluster
2) an airline-model has been identified. The relative performances of both approaches are
summarized in table 5. Negative numbers indicate that the particular DFA approach cho-
sen here (three filters only) performs better. The three DFA-filters outperform the MBA
for 30 (out of 36) time series and the mean gain in performance obtained is approximately
—14% which is strongly significant (stand. dev. 3%). Note that the loss in performance
of the three DFA filters with respect to specific DFA filters is quite important (about 22%
larger revision error variance) which indicates that a lot of information has been lost by
aggregating the periodograms. However, this information can obviously not be recovered
by MBA.

These results confirm that the MBA is an inefficient estimation method. Moreover, as
already shown by the out of sample results in section 4, overfitting cannot be an issue for
the DFA since the method used here performs very well although the statistics used (the
mean periodograms) do no more directly depend on one particular time series. Finally,
these findings may also suggest that the automatic identification method of the above MBA
may not be well-suited for signal extraction since very different process classes (different
integration orders) are identified for time series with ‘similar’ characteristics.

"The Comprehensive Archive R Network, http: / /cran.r-project.org.
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6 Summary and Conclusion

The above results provide strong evidence against the generally assumed efficiency of MBA
in signal extraction problems. It is shown that the dynamic structure of many practical
time series is too rich to be accounted for by simple models such as, for example, airline-
models. In an attempt to generalize the airline-model in [1] it is argued in the conclusion:
“The one-step-ahead forecast error diagnostic does not suggest strong forecast perfor-
mance gains for the new models ... Our experience with these models strengthens our
confidence in the robustness and flexibility of the airline model”. Our experience confirms
that statistics based on one-step ahead forecasting performances are not well suited for
problems involving multi-step ahead forecasts but we do not agree with the authors when
they claim that the airline model is “flexible”.

Integrated processes are often identified by MBA for time series which cannot be
integrated (for example bounded time series) thus resulting in inefficient concurrent fil-
ters. Although the unit-root constraints imposed by ‘traditional’ models (like for example
the airline-model) may be useful for short-term one-step-ahead forecasting they may be
severely misleading when computing multi-step ahead forecasts of longer horizons from the
same model. Therefore, model-based concurrent filters are inefficient if the weights of the
symmetric filter decay slowly. This situation is common to many applications including
well-known Henderson (13- or higher order) or Hodrick-Prescott (with A = 1600) as well as
model-based (canonical) filters for example. Very often, the above MBA select models for
I(2)-processes which is a misspecification for (economic) time series that are not extremely
trending. This evident misspecification (at least for the above bounded time series) may be
at least partially due to the ‘crude’ seasonal operator in (1—B'2) = (1—B)(1+B+...+B')
which induces a spurious unit root towards frequency zero: the additional (1 — B) of the
I(2)-model compensates the distortion induced by the seasonal operator (1+B+...+ B1).
As a result, MBA-filters generally perform worse in the passband - as suggested in fig-
ure 2 - because they satisfy unnecessarily severe restrictions due to erroneous unit root
identification. Furthermore, the traditional (1 — B®)-operator (s = 12 for monthly data)
generates filters which must (often unnecessarily) remove spectral power at all seasonal
harmonics (see for example [2], section 4) at the expense of worse approximations at
other frequencies implying poorer performances of the filter. A detailed analysis for two
particular time series reveals that MBA do not match the ‘salient features’ of the above
data which exhibit a dynamic structure that cannot be accounted for by ‘too parsimonious’
models. Out-of-sample results confirm that more flexible (richer parameterized) ZPC-
ARMA-filters are able to account for the complex dynamics of practical time series -
location, height and width of spectral peaks - without being affected by overfitting (these
results straighforwardly extend to integrated processes, see [15]). The ‘invisible hand’ at
work is the optimization criterion (4) which accounts for the relevant information much
better than statistics based on (one-step ahead) model residuals.

Note that the shape of the symmetric filter is explicitly accounted for by the DFA in
(4) whereas classical model identification and estimation does not care about the signal
to be approximated. If misspecification is to be expected, then this issue becomes an
additional topic with regard to efficiency: for a symmetric MA(3) filter the concurrent
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filter is based on one-step ahead forecasts only but for a symmetric MA(5) one- and two-
steps ahead forecasts are needed. Therefore the best model should perform well for both
forecasting-steps.

It is remarkable that three DFA-filters clearly outperform 36 specific MBA filters, es-
pecially if the identification procedures of MBA suggest very different DGP’s for series
belonging to the same cluster (filtered by the same concurrent DFA-filter). This empirical
fact provides further strong evidence against efficiency of MBA. Moreover, it also sug-
gests that the 'traditional’ identification procedures of MBA might not be well suited for
the signal extraction problem at hand. For the 36 time series analyzed in this article,
the gain in efficiency (of the resulting concurrent filter) obtained by the automatic model
identification of TRAMO over constant usage of the airline model is only 5% (differences
between estimation routines were irrelevant, see section 3.1). Additional 13% are obtained
by using three DFA-filters which are constrained to be identical within a cluster of ‘sim-
ilar’ time series. However, by far the largest improvement is obtained by using specific
DFA-filters, revealing that a lot of information has been lost by the aggregation of the
periodograms (clustering) which could not be retrieved by the MBA. The gain in using
the DFA - approximately 40% (in and out of sample) in the first two experimental designs
(using original time series) and approximately 30% when using linearized time series (the
third design favors the MBA) - is huge and in effect much larger than that obtained by us-
ing automatic model identification procedures. Note that the DFA performs much better
than the MBA for every experimental design and for all series and that no ‘identification’
procedure is necessary since the same ARMA(15,15)-filter design is used for all series.

From a methodological point of view, the optimization procedure underlying MBA
solves a statistical problem (one-step ahead forecasting) which is only indirectly related to
signal extraction. This fact partly explains the reported inefficiencies. Other issues may
be seen in insufficient flexibility (too sparsely parameterized models) and unspecific model
design. Typical characteristics such as the location of potential spectral peaks are often
known in advance. Only the height and the width of the peaks must then be matched by
the filter. Focussing on these features only by using suitable designs (ZPC-filters) avoids
overfitting. Also, the ‘legitimity’ of model-based signal definitions (for example canonical
components as defined in SEATS) cannot be asserted anymore, especially in the context
of ‘heavy’ model misspecification (false integration order) as the above examples demon-
strate, see also [7], section 5 for further evidence in this direction when ‘weak’ model
misspecification (correctly identified unit roots but misspecified model orders) is at work.
Finally, since efficiency cannot plead for MBA, corresponding signal extraction software
should also provide additional informations such as amplitude and time delay functions of
the concurrent (boundary) filters, as we did in figure 5. These important characteristics
(especially the time delay in the passband of the filter) can aid users in deciding whether
a given asymmetric filter is well suited for a particular application or not. As argued in [7]
“In particular, the gain function of the infinite symmetric model-based filter provided by
SEATS can fail to show significant features of the finite filter gain function, and it provides
virtually no insight into the properties of the one-sided concurrent filter, whose gain and
phase delay offer more relevant information for most users of seasonally adjusted data”.
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Briefly: the statement that properties of a model-based asymmetric concurrent filter are
not important because it is ought to be ‘optimal’ (efficient) should be revised in the light
of the above results.
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Figure 1: Boundary estimates (concurrent filter) and revision errors : MBA (dotted) and
DFA (dashed)
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Figure 2: Periodograms of revision errors for MBA (dotted) and DFA (dashed)
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Figure 4: Characteristics of the asymmetric DFA-filter (series 31)
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Table 1: Models identified by TRAMO

Series | (p,d,q) x (P,D,Q) | d | Series | (p,d,q) x (P,D,Q) | d
1 (0.L,1)(1.0,1) 1]19 (0.L,1)(0.1,1) 2
2 (0,1,3)(0,0,1) 120 (3,1,0)(0,0,1) 1
3 (0,1,1)(0,1,1) 2 | 21 (0,1,1)(0,1,1) 2
4 (0,1,1)(1,0,0) 1] 22 (0,1,1)(0,0,0) 1
5 (0,1,1)(0,1,1) 2| 23 (0,1,1)(0,1,1) 2
6 (1,1,0)(0,0,0) 1] 24 (0,1,1)(0,1,1) 2
7 (0,1,1)(0,1,1) 2| 25 (0,1,1)(0,1,1) 2
8 (0,1,1)(0,1,1) 2 | 26 (3,1,0)(0,0,0) 1
9 (0,1,0)(0,1,1) 2 | 27 (0,1,1)(0,1,1) 2
10 (0,1,0)(0,1,1) 2 | 28 (2,1,0)(0,0,1) 1
11 (0,1,0)(0,1,1) 2 | 29 (0,1,1)(0,1,1) 2
12 (3,1,1)(0,0,0) 130 (0,1,1)(0,0,0) 1
13 (0,1,2)(0,0,0) 131 (0,1,1)(0,1,1) 2
14 (0,1,3)(0,0,0) 1|32 (2,1,0)(0,0,0) 1
15 (3,0,0)(0,1,1) 1133 (1,0,1)(0,0,0) 0
16 (0,1,1)(1,0,0) 1|34 (0,1,1)(0,1,1) 2
17 (0,1,1)(0,1,1) 2| 35 (0,1,3)(0,0,0) 1
18 (0,1,0)(0,0,1) 1|36 (0,1,1)(0,1,1) 2
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Table 2: Models identified by X-12-ARIMA (only those which differ from TRAMO)

Series | (p,d,q) x (P,D,Q) | d | Series | (p,d,q) x (P,D,Q) | d
1 (0.L1)(0.1,1) 2 16 (0.1,3)(0.1,1) 2
4 (0,1,1)(0,1,1) 218 | (2,1,2)(0,1,1) 2
6 (0,1,3)(0,0,0) 120 (0,1,1)(0,1,1) 2
9 (0,1,1)(0,1,1) 222 | (0,1,1)(0,1,1) 2
10 | (0,1,1)(0,1,1) 2126 | (0,2,3)(0,0,0) 2
11 (0,1,1)(0,1,1) 2128 | (0,1,1)(0,0,1) 1
12 (3,1,1)(0,0,1) 132 (0,1,1)(0,1,1) 2
13| (0,1,1)(0,1,1) 2133 | (0,1,1)(0,1,1) 2
15 (0,1,1)(0,1,1) 2| 35 (0,1,1)(0,1,1) 2

Table 3: Performance of DFA vs. MBA (,in sample’)

Series | TRAMO | X-12-T | X-12-A | Series | TRAMO | X-12-T | X-12-A
1 —71% —64% —46% 19 —42% —40% —40%
2 —-25% —22% —22% 20 —43% —44% —51%
3 —21% —21% —21% 21 —27% —33% -33%
4 —74% —70% —68% 22 —14% —12% —T%
5) —47% —39% —39% 23 —14% —-16% —16%
6 —67% —67% —45% 24 —26% —28% —28%
7 -33% —-33% —33% 25 —22% —20% —20%
8 —15% —-16% —16% 26 —54% —54% —56%
9 —26% —27% —-23% 27 —42% —35% —-35%
10 —17% —-16% —16% 28 —27% —27% —30%
11 —-19% —19% —-18% 29 —29% —29% —29%
12 —37% —40% —40% 30 —T76% —75% —75%
13 -35% —34% —-32% 31 —42% —-38% —-38%
14 —38% —37% —37% 32 —32% —-31% —34%
15 —20% —22% —-50% 33 —20% —17% —43%
16 —52% —51% —33% 34 —28% —27% —27%
17 —28% —28% —28% 35 —-15% —-15% —44%
18 —94% —111% | —2% 36 —-35% —34% —34%
Mean —-36% —-36% | —34%
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Table 4: Out of sample Performances of DFA and MBA

Series | DFA vs MBA | Out vs In (DFA) | Out vs In (MBA)
1 —57% —16% —8%
2 —57% —13% 10%
3 —34% —37% —36%
4 —49% 20% 13%
5 —73% —15% 10%
6 —32% 41% 32%
7 —26% —67% —77%
8 —56% —90% —32%
9 —6% % —15%
10 —30% 23% 22%
11 —22% 17% 19%
12 —55% 6% 17%
13 —23% 43% 36%
14 —52% 1% 11%
15 —43% —70% 4%
16 —28% 13% 27%
17 —35% —72% —44%
18 —88% 23% 22%
19 —61% 2% 36%
20 —18% 48% 49%
21 —40% 18% 27%
22 —4% 40% 41%
23 —45% —86% —37%
24 —53% —42% —10%
25 —3% 11% 17%
26 —25% 31% 18%
27 —26% 37% 30%
28 —70% —56% —7%
29 —27% 28% 23%
30 —81% 19% 21%
31 —37% 22% 8%
32 —45% —2% 11%
33 —16% —75% —156%
34 —33% —81% —75%
35 3% 38% 21%
36 —24% 53% 51%

Mean —38% —5% 2%
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Table 5: Performance of three DFA filters vs. MBA

Ser.nmb. | DFA vs. MBA | Cluster | Ser.nmb. | DFA vs. MBA | Cluster
1 —26% 1 19 —26% 1
2 —12% 2 20 —27% 2
3 —40% 3 21 26% 3
4 10% 2 22 -1% 2
5 —27% 1 23 —6% 3
6 —13% 2 24 —-1% 3
7 0% 2 25 —-3% 3
8 —-1% 2 26 —11% 2
9 —19% 3 27 —28% 1
10 —5% 3 28 -33% 2
11 —5% 3 29 —27% 3
12 4% 2 30 —41% 2
13 —-30% 2 31 —44% 1
14 —20% 2 32 -31% 2
15 —67% 1 33 28% 2
16 —-15% 1 34 —23% 2
17 —-11% 3 35 12% 2
18 —14% 2 36 —-15% 2
Mean —14%
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