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ABSTRACT  

Study Design: Cross-sectional 

Objective: We quantified fatty infiltration (FI) geography of the lumbar spine to identify whether 

demographics, temporal low back pain (LBP), and disability influence FI patterns. 

Summary of Background Data: Lumbar paravertebral muscle FI has been associated with age, sex, LBP, 

and disability; yet, FI accumulation patterns are inadequately described to optimise interventions. 

Methods: This cross-sectional study employed lumbar axial T1-weighted MRI in 107 Southern-Chinese 

adults (54 females, 53 males). Single-slices at the vertebral inferior end-plate per lumbar level were 

measured for quartiled-FI, and analysed against demographics, LBP, and disability (ODI: Oswestry 

Disability Index).  

Results: Mean FI% was higher in females, on the right, increased per level caudally, and from medial to 

lateral in men (p<0.05). FI linearly increased with age for both sexes (p<0.01) and was notably higher at 

L4&5 than L1,2&3 for cases aged 40-65yrs. BMI and FI were unrelated in females and inversely in males 

(p<0.001). Females with LBPweek and males with LBPyear had 1.7% (each) less average FI (p<0.05) than 

those without pain at that time-point. Men locating their LBP in the back had less FI than those without 

pain (p<0.001). Disability was unrelated to FI for both sexes (p>0.05).  

Conclusions: Lumbar paravertebral muscle FI predominates in the lower lumbar spine, notably for those 

aged 40-65, and depends more on sagittal than transverse distribution. Higher FI in females and differences 

of mean FI between sexes for BMI, LBP, and disabling ODI suggest sex-differential accumulation 

patterns. Our study contradicts pain models rationalising lumbar muscle FI and may reflect a normative 

sex-dependent feature of the natural history of lumbar paravertebral muscles.   

Keywords: paravertebral; muscle; multifidus; low back pain; disability; disc degeneration; phenotypes; 

fatty infiltration 

Level of Evidence: 2 
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KEY POINTS 

• This is the first study to quantify the geography of lumbar paravertebral muscle fat 

infiltration (FI) in the transverse plane based on axial MRI. 

• Fatty infiltration (FI) of the paravertebral muscles is predominantly noted in the lower 

lumbar spine, whereby spatial distribution of FI was dependent upon lumbar level 

rather than medial-lateral distribution in the axial profile.  

• Although paravertebral FI increased with age, sex-differential fat accumulation 

patterns were noted, with variations with body mass index (BMI), low back pain 

(LBP) and disability profiles between males and females. 

• Males were noted to have less paravertebral muscle FI with greater BMI and with 

LBP and/or sciatica but higher FI with greater disability profiles, whereas BMI and 

pain/disability profiles did not differ among the female population.   

• This study contradicts previous models that relate pain and disability with FI of the 

paravertebral muscles.  
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INTRODUCTION 

Low back pain (LBP) is one of the world’s most disabling diseases,1 and is forecast to 

increase in cost to society2,3 alongside an ageing global population.4 The condition is highly 

relevant, with a lifetime prevalence reportedly as high as 84%, and an annual prevalence 

between 22-65%.5 However, the variety and uptake of treatments for LBP have increased3,6,7 

without an appreciable reduction in the problem.1,2 There is an urgent need to develop 

different, effective, and resource-efficient management strategies to mitigate its economic, 

social, and personal impact.8-11 Paravertebral muscles are receiving more attention as 

promising targets toward optimising spinal health in people with and without LBP. 

Fatty infiltration (FI) of lumbar paravertebral muscles increases with age in healthy, 

asymptomatic adults,12-16 and relates to spinal curvature17 and posture.18 Degenerative 

imaging features of the spinal column, such as facet joint osteoarthritis,19 spondylolisthesis,19 

disc space narrowing,19,20 and type 2 Modic changes,19,20 have been associated with 

paravertebral muscle FI. Yet, despite a substantial body of literature associating back muscle 

FI with LBP19-29 and spinal disorders,30-36 inconsistent associations cast doubt not only on 

pain causation models but also measurement methods. Mechanistic/unloading37 or skeletal 

muscle denervation theories38 within the spinal degenerative cascade39,40 may offer a viable 

rationale. Few longitudinal studies examine temporal changes to the lumbar muscle FI,26,41,42 

such that the influence of interventions on muscle composition remain unclear despite 

emerging evidence for the association of FI to altered function.21 Understanding patterns of 

and measures for fat distribution in muscle tissues may help to determine where prevention 

and rehabilitation efforts could be best directed on a patient-by-patient basis. 

Corresponding with degenerative features of the vertebra and discs,43 there is an 

indication that FI predominates in the low lumbar levels12,15,26,30 where paravertebral muscle 
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volume is greatest.12 Of the lumbar paravertebral muscles, the multifidus12,13 or erector 

spinae15,26,30 appear to be most susceptible, and where ethnicity, age, and sex-type seem 

influential.44 As far as we are aware, no large-scale study has examined the spatial 

distribution of lumbar paravertebral muscle FI in the transverse plane. Such detail is 

necessary to better understand where fat has a propensity to accumulate, and therefore to 

identify where muscular interventions may be targeted. Our study therefore examined the 

distribution of paravertebral muscle FI throughout the lumbar spine using a method 

quantifying the geography of FI in the transverse plane. We analysed the results in relation to 

subject demographics, LBP and disability to identify differential characteristics.  

METHODS 

Study population and design 

This was a cross-section study of 108 volunteers of Southern Chinese origin. Due to 

inability to assess axial imaging parameters in one participant, the study included 107 

subjects. Individuals were recruited from an ongoing population-based cohort list, all of 

which were recruited by open invitation and whose details and protocol are reported 

elsewhere.45-47 All subjects of the larger cohort were recruited to assess MRI changes of the 

spine and not based on the presence or not of pain. No subject was enrolled with known 

trauma, previous spine surgery, metabolic disorders, spinal deformities, and infections. These 

107 subjects were randomly selected from this cohort list, irrespective of pain or disability 

profiles, and consecutively enrolled when invited and re-imaged to be part of a novel imaging 

study and spinal phenotype assessment. All 107 subjects underwent axial T1-weighted MRI. 

Participant demographics (e.g. sex, age, body mass index (BMI:kg/m2)) were obtained at the 

time of clinical pain/disability assessment. Imaging was undertaken within three months of 
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this clinical visit. Institutional review board approval was achieved to perform this study. Due 

to funding constraints, 108 subjects were recruited to be part of this imaging cohort.  

Assessment of pain and disability 

Subjects were asked to indicate the presence of LBP (localised LBP or sciatica (pain 

radiating into the lower extremity extending beyond the knee) for ≥two weeks; yes/no) at 

different time-points: (1) lifetime, (2) past year, (3) past month, (4) past week, and (5) today. 

Subjects were also asked the predominant location of their pain, which was categorised as 

LBP, sciatica, both, or none. Disability was examined using the Oswestry Disability Index 

(ODI) 48,49 where subjects with ODI ≥20% were assigned with disability, and those below the 

threshold without. Additional details regarding the assessment of pain and disability relevant 

to the parent study have been reported previously.45,47 

MRI parameters and measurements  

Lumbar MRIs were obtained using a 3-Tesla scanner (Siemens, Munich, Germany or 

Philips, Best, The Netherlands).46 T1-weighted axial MRIs included the following 

parameters: central, supine body position within the bore; repetition time 500-800ms (body 

size dependent); echo time 9.5ms; FOV of 210x210mm; Matrix of 218x256; slice thickness 

4mm with 0.4mm gap; flip angle 90°, and total acquisition duration 137 seconds. This scan 

included the caudal part of T12 to the cephalad portion of S3. Images were stored in DICOM 

format. 

The reliability of our MRI method (intra-rater ICC=0.88, inter-rater ICC=0.82) for 

evaluating the spatial distribution of FI in this population by our rater has been previously 

described.50 Briefly, images were evaluated in random order by a single observer (ANM) 

blinded to participants’ clinical or demographic status. Single axial slices approximating the 
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inferior vertebral end-plates of L1 through to L5 were selected (cross-referenced from the 

equivalent sagittal scans) and examined. Regions of interest (ROI) were manually traced 

(bilateral with randomly selected starting-side) over the lumbar paravertebral muscles 

encircling multifidus, longissimus thoracis lumborum, and iliocostalis lumborum (together)51 

using a semi-automated Matlab-based programme. The programme then automatically 

divided the ROI into equitable quarters based on pixel number, and then determined percent 

fat content (medial to lateral separately, and together) with reference to a rater-dependent 

selection of homogeneous subcutaneous fat50 (Figure 1).  

Modelling 

As our principle research question was to identify where FI accumulated in the 

transverse plane, in our initial modelling step, we estimated sex-specific models with FI as 

the dependent variable and level, quartile, the interaction between level and quartile, and 

right-left as covariates (Model 1). In order to control for potential confounders the initial 

model was subsequently adjusted for age, and BMI (Model 2). We also explored further 

models, adjusting for temporal pain, and disability. However, adjusting for the latter variables 

did not substantially change the association between FI and the covariates. Moreover, the 

great majority of temporal pain and disability covariates were not statistically significant. We 

therefore refrain from showing detailed results of our further model exploration and instead 

the results are reported in text. 

Statistical Analyses 

Stata Version 14.1 (StataCorp, College Station, TX, USA) was used for all statistical 

analyses. Mean and standard deviations (SD) noted as ± where applicable. We applied 

generalized estimation equation regression models for clustered data with robust standard 

errors based on the sandwich estimator and exchangeable correlation structure using Stata’s 
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xtgee command. We reported estimated regression coefficients with corresponding standard 

errors and 95% confidence intervals (CI). Statistical significance was established at p<0.05. 

RESULTS 

Descriptive statistics are presented in Table 1. The sample comprised 54 females and 

53 males of similar mean age (females: 53.7±7 years; males: 51.3±8.1 years) and BMI 

(females: 23.6±4.0 kg/m2; males: 25.5±2.5 kg/m2). Females had higher mean FI (31.5±5.9%) 

than males (26.3±5.4%; p<0.001). Pain was present in diminishing proportions from life to 

today for both sexes (data not shown): Females: LBPlife 85.7%, LBPyear 77.1%, LBPmonth 

60.4%, LBPweek 46.8%, and LBPtoday 33.3%; Males: LBPlife 81.8%, LBPyear 74.4%, LBPmonth 

58.1%, LBPweek 55.8%, and LBPtoday 41.9%. Disability was present in 31.5% females and 

34.0% males. 

Results of the multivariate analyses (Table S1, http://links.lww.com/BRS/B426, Model 

2) confirmed that females had higher mean FI than males, which was an observation shown 

for each lumbar level and quartile when adjusted for age and BMI (Figure 2). Fat content 

increased per level caudally (p<0.001), and per quartile from medial to lateral in males 

(p<0.001). However, this pattern of increasing lateral FI distribution differed at L5 for both 

sexes where the highest values were shown in the first and third quartiles. The pattern for 

transverse FI distribution observed in the upper levels (L1&L2) differed from the lower 

(L4&L5) (Table S1, http://links.lww.com/BRS/B426 and Figure 2). The right side showed 

more mean FI than the left for both sexes (by 0.79% in females (CI: 0.32-1.27%) and by 

0.46% in males (CI: 0.03-0.88%; p<0.05)). A linear increase in FI with age was seen for both 

sexes (females: 2.2%/10 years, CI: 0.5-3.8%, p<0.05; males: 1.5%/10 years, CI: 0.4-2.4%, 

p<0.01) and was notably higher at L4&5 than L1,2&3 for cases aged ~40-65 years (Table 

S1, http://links.lww.com/BRS/B426 and Figure 3). BMI was unrelated to FI in females, yet 
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showed an inverse relationship in males (-0.63% (per BMIunit), CI: -0.90 to -0.36, p<0.001) 

(Table S1, http://links.lww.com/BRS/B426 and Figure 4).  

Temporal pain was generally unrelated to FI for both sexes (data not shown), except in 

females with LBPweek who had 1.72% less mean FI (CI: -3.33 to -0.10%, p<0.05) than those 

without pain at that time-point, and males with LBPyear who had 1.68% less mean FI (CI: -

3.20 to -0.15%, p<0.05) than those without pain at that time-point. Males describing localised 

LBP had less FI than those with no pain (-3.86%, CI: -5.40 to -2.33, p<0.001) and a trend for 

less FI in those with LBP and sciatica than those with no pain (-1.75%, CI: -3.76 to 0.26, 

p<0.10). Back disability (ODI≥20%) was unrelated to FI for both sexes but showed a trend 

for 1.57% higher FI in men with disability (females: p=0.69; males: p=0.09) (data not 

shown).  

DISCUSSION 

This study quantifies the geography of lumbar paravertebral muscle fat content in the 

transverse plane based on axial MRI. Our Asian representative population confirms higher 

proportions of FI in women and with age, and particular susceptibility at the lowest lumbar 

levels in both sexes. We reveal an increasing proportion of FI from medial to lateral 

particularly in the upper lumbar spine, and in men, and show differences in the spatial 

distribution of FI relating to age, sex, and BMI. Self-reported pain had only limited 

association to lumbar paravertebral fat content and its geography, and disability (ODI) was 

unrelated. The findings have mechanistic implications in explaining the presence of FI, and in 

targeting rehabilitation strategies where different requirements for each sex-type exist.  

The results agree with literature spanning Asian and Caucasian ethnicities reporting 

higher proportions of FI in erector spinae than multifidus (Korean,15 Finnish,26 and Hungarian 

cohorts30). However, Crawford et al.12 described higher fat content in multifidus at L1-4 in a 
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Swiss cohort, and higher proportions in erector spinae only at L5. Differences in imaging 

sequencing used between these studies, and their defined ROIs may explain these variations 

and highlight the need for standardised methodologies.51 It is plausible that fat accumulates 

selectively secondary to variables not examined in our study, including genetic influences 

like spinal curvature and anatomical variations. Figure 2 demonstrates an atypical FI 

distribution pattern at L5; this may be a result of morphological variabilities (e.g. fibre 

orientation)52,53 and level-dependent influences on muscle fat accumulation and should be 

considered in further investigations. Emerging evidence points to differences between 

ethnicities in terms of yearly accumulation of fat in lumbar paravertebral muscles of 

asymptomatic cases, and where erector spinae composition appears to decline rapidly in 

Asians after middle age.44   

In agreement with studies examining multiple lumbar levels,12,15,17,26 our findings are 

clear that FI has a propensity for the lowest lumbar levels over the upper lumbar spine in both 

sexes, all ages, and within our cohort’s range of BMI. Lee et al.15 discuss a plausible 

mechanistic explanation for this caudal spatial distribution based on a cantilever 

phenomenon54 where L5-S1 is rendered susceptible to degeneration as the motion hinge 

between the relatively fixed trunk (maintained by intraabdominal pressure55) and the fixed 

sacropelvic complex. Further, their results suggest a temporal pattern of fat distribution. Our 

findings presented in Figure 3 suggest a distinct separation of the upper and lower lumbar 

spines for those aged late thirties to late sixties in both sexes. We speculate that this may 

reflect the normative degenerative cascade56 where mid-adulthood aligns with the stage of 

instability57 and probable modified loading and stress-shielding of tensile tissues. Another 

aligned speculation is that lordotic spinal curvature predisposes motion segments to the 

development of paravertebral muscle FI. In their MRI study of healthy Danish adults 

comparing FI proportion in several muscles including three regions of the spine, Dahlqvist et 
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al.16 noted higher fat content in the lumbar and cervical paravertebral muscles than those in 

the thoracic spine using Dixon methods. In addition, higher FI has been shown for Brazilians 

with sway back posture18 indicating an influence of spinal curvature on fat accumulation. 

Further investigation regarding heritable features of the spine in relation to muscle 

composition remain important in refining our expectations on what and how muscle and other 

soft-tissues can be influenced. 

Our results have also indicated a propensity for FI in right-sided lumbar paravertebral 

muscles compared to those on the left. The literature surrounding sided-asymmetry is 

conflicted with studies using similar methodologies based on quantifying FI from full muscle 

volumes in asymptomatic cohorts showing different results,12,14 and with limited association 

to handedness.12 As such, consensus regarding the meaningfulness of sided asymmetry has 

not been reached and may even be related to methodological limitations like body centring in 

the bore, starting side for manual segmentation50, or phenotype variability in morphology.  

An alternative explanation for the differences shown in the upper and lower lumbar 

levels may be that the method used has superiority for identifying FI in either the medial-

lateral elongated muscle morphology of the upper lumbar levels or the rounded anterior-

posterior nature in the lower lumbar spine (Figure 1).51 However, in investigating our 

method’s reliability, Mhuiris et al.50 show higher repeatability for the lower lumbar levels 

than upper and for the first medial quartile compared with the two most lateral. This is 

encouraging given degenerative change and LBP predominate in the lower lumbar spine and 

therefore are where studies are more commonly undertaken; however, further investigation 

regarding method sensitivity and comparison to Dixon or other multi-echo sequencing is 

warranted. Furthermore, we consider there to be a need to better identify fat propensity within 

each quartile, particularly for those representing multifidus where the shorter fibres have a 

deeper position52 and differential activity58 than longer (superficial) fibres.  
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The positive relationship between age and FI was expected and is in agreement with 

several cohort- and population-based studies assessing either asymptomatic or LBP 

participants.12,14,15,21,26,42 Our results revealing sex-differential relationships between FI and 

BMI agree with recent studies examining substantial asymptomatic Asian15 and Caucasian12 

cohorts, and support the need for sexes to be analysed separately in studies determining 

parameters relating to paravertebral muscle composition. As depicted in Figure 4, females 

had no association between BMI and FI at any lumbar level; however, males showed an 

inverse relationship with less FI in participants with higher BMI. The latter observation is 

perhaps counterintuitive but may be indicative of males storing their fat elsewhere than the 

lumbar paravertebral muscles. This is plausible given body tissue composition differs 

substantially between sexes59 with higher total and abdominal subcutaneous adipose tissue in 

women, and higher visceral adipose tissue in men.60,61 Males are also known to have higher 

total lean muscle tissue but this attribution is typically based on studies examining larger 

muscles of the appendicular skeleton.61 

Our findings appear inconsistent with various pain models explaining the presence of 

lumbar paravertebral muscle FI. Our statistical modelling with temporal self-reported pain as 

confounders revealed only two associations indicating slightly lower fat in those reporting 

pain at a week (females) or year (males). While this may agree with others reporting no or 

limited association between LBP and paravertebral muscle FI, we are hesitant to definitively 

negate any association between FI and pain given our statistical modelling emphasised 

description of the geography of lumbar paravertebral muscle FI. Further, the lack of 

definitive measure for pain as a highly individualised experience represents a limitation. 

Instead, examining pain as a dependent variable may reveal new insights. Our sample 

describes LBP lifetime (84%), annual (76%) and point (37%) prevalences toward the higher 

end of reported global ranges,5 which appears to contradict the notion that people in Hong 
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Kong have less LBP.62 Furthermore, our methods rely on self-reported recollection of 

historical pain, which is subject to bias and may not effectively represent the complex and 

changing state of LBP. Similarly, we reveal no association between FI and disability (as 

measured using the ODI at the time of clinical assessment). However, our finding indicating a 

trend for higher FI in men with disability is suggestive of a sex-specific relationship.  

Our study has several strengths in examining a substantial sample of population-based 

(i.e. non-patient-based) Asians and employing a reliable quantitative MRI method for 

assessing lumbar paravertebral muscle composition. We provide novel contributions in 

describing the spatial distribution of FI in the lumbar spine, particularly in relation to 

accumulation patterns in the transverse plane, and according to lumbar level. The differences 

shown between sexes provide new insight that must be considered when planning future 

studies to allow for meaningful sub-group analyses. We acknowledge that our muscle 

composition data is represented by single slices of T1-weighted axial MRI at each lumbar 

level. While this method is reliable and has sound efficiency, we accept that a multi-slice 

approach may represent the whole level more effectively. Furthermore, we were limited to a 

clinical T1-weighed scan where a uniform frequency difference between fat and water 

species is assumed. Based on the differential precessional frequencies of fat and water 

protons, a multi-echo Dixon technique may provide a superior alternative.51 

CONCLUSIONS 

Our findings do not support previous pain models explaining lumbar paravertebral 

muscle FI and may better reflect a normative sex-dependent feature of the degenerative 

cascade. We confirm that lumbar paravertebral muscle FI predominates in the lower lumbar 

spine; its spatial distribution appears more dependent on lumbar level than on the medial-

lateral distribution in the axial plane. Higher FI in females and differences of mean FI 
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between sexes for BMI, LBP, and disabling ODI scores suggest sex-differential fat 

accumulation patterns, which should inform priori decisions in future studies. Whether 

paravertebral muscle fat content is modifiable with or without intervention requires further 

exploration in longitudinal studies.  
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FIGURE LEGENDS 

Figure 1: Axial T1-weighted MRI quantification method indicating each single slice location 

per lumbar level (left), and its application at L1 (right top) and L4 (right bottom) to 

demonstrate level differences. Regions of interest are manually defined and automatically 

quartiled from medial (Q1) to lateral (Q4) based on equal pixel numbers (demonstrated on the 

left side in blue). Subcutaneous fat reference areas are indicated in black circles. Multifidus 

(red) and erector spinae (longissimus and iliocostalis together) (green) are illustrated per 

lumbar level to represent their level-specific spatial differences. 
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Figure 2: Adjusted predictions of FI (%) for females (left) and males (right) over quartiles by 

lumbar level (95% CI at means). 
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Figure 3: Adjusted predictions of FI (%) for females (left) and males (right) over age by 

lumbar level (95% CI at means). 
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Figure 4: Adjusted predictions of FI (%) for females (left) and males (right) over BMI by 

lumbar level (95% CI at means). 
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TABLE 

Table 1: Descriptive statistics of continuous variables according to sex (females=53; males=54) and 
total sample. 

Females Males Total 

Variables Mean SD Min Max Mean SD Min Max Mean SD Min Max

FI total (%) 31.5 5.9 16.8 56.1 26.3 5.4 12.8 50.4 28.9 6.2 12.8 56.1 

Age (years) 53.6 6.9 22.3 67.2 51.3 8.1 25.6 65.5 52.5 7.6 22.3 67.2 

BMI 
(kg/m2) 23.6 4.0 18.1 39.5 25.6 2.5 20.8 29.8 24.5 3.5 18.1 39.5 

ODI (%) 12.7 13.0 0 48.0 11.9 12.5 0 60.0 12.4 12.8 0 60.0 

 

SD: standard deviation; Min: minimum; Max: maximum; FI: fatty infiltration; kg: kilograms; m: 
meters; %: percentage; BMI: body mass index; ODI: Oswestry Disability Index 
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