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Abstract

Introduction
Lumbar movement variability during heavy, repetitive work may be a protective mechanism to 
diminish the progression of lumbar disorders and maintain neuromuscular functional integrity. The 
effect of neuromuscular exercise (NME) on the variability of lumbar movement is still to be 
determined.

Methods
A randomised controlled trial was conducted on a population of nursing personnel with subacute 
LBP. Following randomization, the NME group participants completed an NME program of six months 
duration. The participants in the control group only attended the assessment sessions. The outcomes 
were assessed at: baseline; after six months intervention; 12 months. The primary outcome was 
lumbar movement variability based on angular displacement and velocity.

Results
A positive treatment effect on lumbar movement variability was seen after six months of NME 
intervention. Angular displacement improved, and angular velocity remained constant. At the 12-
month follow up, however, the effect faded in the NME group. Lumbar movement variability 
worsened in the control group over all time periods.

Conclusion
NME may improve lumbar movement variability in the short term and may indicate improved 
neuromuscular functional integrity. The design of an optimal NME program to achieve long-term 
improvement in lumbar movement variability is a subject worthy of further research.

Trial Registration Number
NCT04165698

Key Words
Low Back Pain, Nonlinear Dynamics, Exercise Movement Techniques, Randomized Controlled Trial, 
Recurrence Quantification Analysis

1. Introduction
Low back pain (LBP) is a frequent occupational health problem in industrialized countries. 

International studies have reported a higher prevalence of LBP in nursing personnel than in other 

occupations, with the annual prevalence ranging from 45% to 77% (Harcombe et al., 2014, Wang et 

al., 2015, Yassi et al., 2013). Work-related tasks of nurses, such as patient handling, increase the risk 

of developing persistent LBP (Holtermann et al., 2013). The consequences are significant functional 

disability and working days lost (Harcombe et al., 2014), long-term absence (Andersen et al., 2012) 

and dropout from the profession early in the career (Faber et al., 2010). Lumbar movement 

variability during patient handling may be a protective mechanism to diminish the progression of 
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lumbar disease (Madeleine et al., 2009, Madeleine et al., 2008). Research evidence on effective 

interventions is currently inadequate.

Repetitive, heavy lifting is an occupational necessity in nursing and is thought to accelerate lumbar 

spine diseases, such as cumulative trauma disorders (CTDs) (Solomonow, 2012). Repetitive lifting of 

patients using poor ergonomics and trunk postures, e.g. with bent stance and a distorted back are 

characteristic causes of CTD (Holtermann et al., 2013, Roffey et al., 2010, Seidler et al., 2011, 

Smedley et al., 1995, Yassi et al., 2013). During extreme spinal postures, cumulative load induces 

height loss of the intervertebral discs (Gooyers et al., 2012). These, coupled with inadequate rest 

time, are predictors of a clinically important deterioration in low back function (Marras et al., 2014). 

Non-lifting patient care, the greatest proportion of the working shift, adds to the accumulated load 

on the lumbar soft tissues, since it is frequently performed in extreme, flexed spinal postures 

(Hodder et al., 2010, Holmes et al., 2010). According to Marras, 2000, Marras et al., 2014, 

Solomonow, 2012, risk factors for the development of CTD of the lumbar spine are: long loading 

durations; high magnitude loads; high movement velocities; large numbers of repetitions; and 

inadequate rest periods between work sessions. They report that continued longer term exposure 

could result in chronification of the disorder. A highly repetitive loading frequency at high velocities, 

as present in the handling of patients, is the most prominent risk factor (Solomonow, 2012). 

Repetitive tissue stressing of the lumbar spine is associated with greater anterior, posterior and 

compressive shear loading of the lumbar vertebra endplates, prompting increased cytokines 

expression levels and neutrophil density (Yang et al., 2011). Lengthy periods of recurrent work 

induces muscles spasms and transient disc creep with reduced stability in the spine, followed by 

acute inflammation and hyperexcitability of the muscles, tissue degradation and greater local lumbar 

stability (Solomonow, 2011, 2012, Solomonow et al., 2012). Pain has been linked to an alteration in 

the structural variability of lumbar movement, as a consequence of LBP, spinal laxity and lumbar disc 

creep. This has been observed during repetitive lifting and cyclic flexion-extension at high velocities 

(Asgari et al., 2015, Bauer et al., 2017, Bauer et al., 2015b, Dideriksen et al., 2014, Gizzi et al., 2018, 

Howarth et al., 2013).

Sufficient movement variability during repetitive work could provide protection against lumbar 

disorders. The degree of structure in a movement’s variability indicates how a repeated movement 

evolves over time, and describes the complexity and predictability of that movement. Pain-free 

workers have shown less structured movement variability than those with pain (Madeleine et al., 

2009, Madeleine et al., 2008). When uniform movements are repeated regularly, the associated soft 

tissues receive an increasing dosage of stress exposure. In cases of less structured movement 

variability, tissue loads are modified, tissue stress more broadly distributed and the cumulative load 
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on particular tissues reduced (Cote, 2012, Madeleine et al., 2008, Mathiassen et al., 2003). Kopp, 

1973 theorized that movement variability is an indicator of neuromuscular integrity (or voluntary 

motor abilities) that reflects coordination and the smooth regulation of movement. Accordingly, the 

potential to train individuals to perform tasks with less structured variability is an area of current 

interest both to occupational medicine and LBP research. Findings from studies on the shoulder 

region suggest that biofeedback training helps to reduce electromyogram amplitude, selectively 

activate subdivisions and increase motor variability of the trapezius muscle (Holtermann et al., 2013, 

Palmerud et al., 1995, Samani et al., 2010). Studies to show whether specific training can alter the 

structure of lumbar movement variability have not as yet been performed. Neuromuscular exercise 

(NME) is a training targeted at improving lumbar muscle control, flexibility and strength. It has the 

potential to increase the quantity of lumbar movement patterns available to an individual. This 

would afford them the opportunity of undertaking repetitive tasks in a variable manner, resulting in a 

reduction in cumulative stress on specific tissues.

In a research environment, the recognized standard tool for non-invasive analysis of lumbar 

movement is a 3D high-speed camera system (Cuesta-Vargas et al., 2010, McGinley et al., 2009). 

Certain constraints, such as lengthy exposure over time, can limit their application in specific settings. 

A movement analysis system to assess lumbar movement variability has been developed to 

overcome these limitations (Bauer et al., 2015a, Ernst et al., 2013). It uses wireless inertial 

measurement units (IMUs), a standardized IMU placement protocol and a reliable measurement 

protocol. The IMU system is concurrently valid when compared to optoelectronic measurement 

systems (Bauer et al., 2015a).

The objective of this study was to investigate the impact of NME on the variability of lumbar 

movement patterns during a work-related repetitive lifting task in female nurses suffering from 

recurrent LBP. A comparison was made to a control group of nurses with LBP who did not receive an 

intervention. It is hypothesised that the structure of lumbar movement variability decreases after six 

months of NME intervention. The longer-term effectiveness of NME was assessed at a 12-month 

follow up session.

2. Methods
This study is a planned sub-study of NURSE-RCT, NCT4165698 (sub-study 3) (Suni et al., 2018). The 

effects of NME were assessed prior to intervention at baseline, after six months of intervention and 

at a 12-month follow-up. The study was conducted according to the Declaration of Helsinki, 

approved by the local ethics committee and received informed consent from all participants. A flow 

chart of the study process is presented in Figure 1.
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2.1 Participants
Female nursing personnel were recruited from Tampere University Hospital between May and 

August of 2013. Inclusion and exclusion criteria are listed in Table 1. For more details see the 

protocol by Suni et al., 2016.

2.2 Randomization and blinding
Participants were randomly assigned to the two study groups using sealed and sequentially 

numbered envelopes. Each participant received an envelope containing the group allocation at the 

baseline measurement session and after opening the envelope the participant was offered to join the 

allocated study group. Then, they were given information regarding their concrete participation. The 

study personnel responsible for the eligibility assessments and study measurements were blinded to 

the group allocations. The statistician and the outcome evaluators were also blinded to the assigned 

groups until the statistical analysis was completion.

2.3 Intervention
The NME intervention was performed near the nurses’ work places. NME participants were asked to 

attend training sessions of 60 minutes twice a week for six months. The objectives were to restore 

pain-related degradations of balance and coordination, and to increase endurance and strength. 

Over the first seven weeks, the nurses learned how to perform the exercises correctly, how to 

control their lumbar neutral zone and the associated breathing patterns. In the following weeks, the 

intervention was more exacting, with increasing demands on the subject’s strength, balance, 

endurance and coordination. Following the initial bi-weekly exercise sessions, instructed by 

experienced NME-trained personnel, the intervention was replaced by one instructed session per 

month and weekly home sessions. The nurses were encouraged to continue with the home exercises 

at the end of the intervention period and were offered two instructed exercise sessions at the start 

of the remaining follow-up period to promote this. The control group received no intervention and 

only attended the three measurement and feedback sessions. The key exercises and overall training 

principles are described in by Suni et al., 2016. The training principles of the study and key exercises 

were outlined in a special booklet and DVD to support the subjects during their home sessions.

2.4 Equipment
Trunk movements were captured using an IMU system (ValedoMotion, Hocoma AG, Volketswil, 

Switzerland), through sensors attached at the level of the sacrum (S2) and the first lumbar vertebra 

(L1), as described in a separate study (Ernst et al., 2013) (Figure 2). The IMU sensors comprised a 

magnetometer, tri-axial gyroscope and accelerometer. The raw data from the IMUs was sampled at 

50Hz (Valedo® Research, Hocoma AG), converted into quaternions (Madgwick et al., 2010) and, 

finally, into the angular difference between them by applying the tilt/twist formulation (Crawford et 
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al., 1999). The global coordinate system defined the sagittal and frontal planes. The lumbar spine 

angle was calculated from the differential signals of the S2 and L1 sensors. The outcome variables 

were derived from the sagittal plane flexion/extension angle, with flexion being positive and 

extension negative. The alignment of the two IMUs was represented by an angle of zero degrees. The 

angular displacement data was filtered with a second-order zero-phase low-pass Butterworth filter 

(1Hz cut-off frequency). Angular velocity was derived from this filtered data. The data processing 

steps are explained in detail in a separate study and were shown to provide concurrently valid 

estimates of lumbar movement and reliable measures of its determinism (Bauer et al., 2015a).

2.5 Experimental Procedures
Participants performed a ‘Pick Up a Box’ test of five cycles, starting in the upright standing position 

(Figure 3). During each cycle of 4.8 seconds duration, the participant was required to squat, pick up a 

box from the ground and then return to the squat position, whilst guided by a metronome set at 

50bpm. The participants were allowed a rehearsal of the lifting cadence. The box weight was set at 

10% of the participant’s body weight. The test was repeated three times (Bauer et al., 2015b).

2.6 Outcomes
The primary outcome was lumbar movement variability, expressed as the determinism of lumbar 

angular displacement (DET AD) and velocity (DET AV). Determinism indicates the degree of the 

structure of variability. Lower determinism signifies lower predictability of a time series.

2.6.1 Movement Analysis
The raw data from the IMUs was sampled at 50Hz (Valedo® Research, Hocoma AG), converted into 

quaternions (Madgwick et al., 2010) and, finally, into the angular difference between them by 

applying the tilt/twist formulation (Crawford et al., 1999). The global coordinate system defined the 

sagittal and frontal planes. The lumbar spine angle was calculated from the differential signals of the 

S2 and L1 sensors. The outcome variables were derived from the sagittal plane flexion/extension 

angle, with flexion being positive and extension negative. The alignment of the two IMUs was 

represented by an angle of zero degrees. The angular displacement data was filtered with a second-

order zero-phase low-pass Butterworth filter (1Hz cut-off frequency) with a correction factor 

according to (Winter DA., 2009). Angular velocity was derived from this filtered data. The data 

processing steps are explained in detail in a separate study and were shown to provide concurrently 

valid estimates of lumbar movement and reliable measures of its determinism (Bauer et al., 2015a). 

Recurrence quantification analysis (RQA) was applied to the lumbar angular displacement and 

velocity data (Figures 4&5) to quantify the structure of lumbar movement variability. This method is 

described in detail in a reference work (Webber et al., 1994). RQA is a nonlinear data analysis 

method, used to quantify the number and duration of recurrences of a time series. Thus, it quantifies 
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the degree of structure in the variability of a time series. In RQA, time-delayed samples from 

movement data are projected into a phase space plot and form a phase space trajectory. This phase 

space reconstruction procedure was conducted individually for the angular displacement and 

velocity data, using the parameters specified in Table 2. The optimal delay was defined as the first 

minimum of mutual information, following mutual information analysis. Mutual information 

quantifies the amount of information obtained about a timeseries through observing the time 

delayed timeseries. The first minimum of mutal information is the first local minima obtained when 

computing the mutual information obtained by time delayed timeseries with increasing delays. The 

embedding dimension was defined through computing the correlation dimension under diverse 

embedding dimensions. The starting point, where the correlation dimension did not increase 

significantly despite increasing the embedding dimension, defined the optimal embedding 

dimension. The standard deviaton of the phase space trajectory was used to compute epsilon, or the 

tolerance for determining a recurrent point in the phase space. A recurrent point is defined as a point 

that is close (determined through epsilon) to another point in the phase space. If two or more parts 

of the phase space trajectory evolve in the same way (indicated by series of recurring points) that 

indicates recurrent movement patterns. Therefore, recurrent movement patterns are situated in 

close proximity to each other in the phase space plot, and form the shape of diagonal lines of points 

in a recurrence plot (RP). All recurrent points were moved into a two dimensional NxN-sized RP, with 

N being the number of points in the RP. From this, the determinism (DET) was calculated. DET is the 

amount of recurrent movement patterns, or diagonal lines of a predefined minimal acceptable length 

(lmin), over all points in the RP. The parameter lmin was selected through visual examination of the 

RP. Thus, the paramter lmin determines how long two parts of the phase space trajectory have to 

evolve the same way in order to be considered recuring movement patterns. Thus, DET is a measure 

of the predictability of the time series, and formulated as (equation 1): 

(1) 𝐷𝐸𝑇 =  
∑𝑙𝑚𝑎𝑥

𝑙 = 𝑙𝑚𝑖𝑛
𝑙 ∗ 𝑃(𝑙)

∑𝑙𝑚𝑎𝑥

𝑙 = 1
𝑙 ∗ 𝑃(𝑙)

∗ 102

where l is the length of the diagonal lines, lmin and lmax the minimal acceptable, respectively, 

maximal possible length of diagonal lines and P(l) being the number of diagonal lines of length l. The 

mean values of the primary outcomes from the three test repetitions were calculated for further 

analysis. For all data processing steps and calculations Matlab 2018b® (MatLab (ver. 9.4.0.813654, 

R2018b, MathWorks Inc., Natick, MA, USA)), with RQA code from the University of Potsdam, 

Germany (Marwan et al., 2002), was used. 

2.6.2 Clinical outcomes and covariates
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All participants rated their mean level of LBP pain intensity over the past four weeks, using a visual 

analogue scale (VAS) ranging from “no pain” (0mm) to “the worst possible pain imaginable” 

(100mm). Lumbar movement is affected by LBP intensity, body mass index (BMI) and age and were 

thus used as covariates in the subsequent analysis of lumbar movement variability (Bauer et al., 

2015b).

2.7 Statistical Analysis
A linear mixed model was fitted to the outcome data. The modelled observation (kth participant 𝑌𝑖𝑗𝑘

in the ith group at time j) was formulated as (equation 2)

,(2) 𝑌𝑖𝑗𝑘 = µ + 𝛼𝑖 + 𝛽𝑗 + (𝛼𝛽)𝑖𝑗 + 𝑈𝑘(𝑖) + 𝛽𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝜀𝑖𝑗𝑘

With  as the intercept,  as the ith group effect,  as the jth time effect, as the ijth group-time µ 𝛼𝑖 𝛽𝑗 (𝛼𝛽)𝑖𝑗

interaction (or the treatment effect, the quantity of interest),  as the random intercept of 𝑈𝑘(𝑖)

subject k nested in group I,  as the effect of LBP intensity, BMI and age at baseline, and  𝛽𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 𝜀𝑖𝑗𝑘

as the measurement error. We assumed that Uik ~ (0, ) with  as the between-subject variance 𝑁 𝑣2 𝑣2

and   with  as the within-subject variance. 𝜀𝑖𝑗𝑘 𝑁(0,𝜏2) 𝜏2

The model parameters were estimated with a Bayesian approach, using uninformative priors on the 

model’s parameters. To sample from the posterior distributions, the Gibbs sampling approach, a 

Monte-Carlo-Markov-Chain (MCMC) algorithm, was used (Plummer, 2003). The model parameters’ 

means, standard deviations and 95% Highest Posterior Density intervals (95% HPDI) were reported 

from the posterior distributions. The outcomes were analysed by ‘intention to treat’. R (Rx64 3.3.1 R 

Foundation for statistical computing, Austria) was used for the statistical analysis. 

3. Results
Eighty-three female nursing personnel suffering from LBP were recruited for this study. Sixteen 

nurses withdrew from the study before the end of the six months intervention and five during the 

follow-up period (Figure 1). The descriptive characteristics of the participants are presented in Table 

3. Figure 6 shows the observed means of the two groups through the three time points. Table 4 

contains posterior summaries and 95% HPDI of the treatment effects between each of the three time 

points. Further posterior summaries, derived from the Bayesian estimation, are presented in 

Appendix 1. The groups presented similarly at baseline (Appendix 1). Lumbar movement variability 

showed a treatment effect after the six months of NME intervention. In the NME group, DET AD 

decreased and DET AV remained constant throughout the intervention phase. The 95%HDPI did not 

cross zero (Table 4). Both DET AD and DET AV increased in the control group between the three 
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points in time (Table 3). This demonstrates that the NME intervention decreased and preserved the 

structure of lumbar movement variability, when compared to no active intervention.

4. Discussion
This study has shown that NME may decrease or sustain the structure of lumbar movement 

variability. The observed treatment effect was substantial because it constituted about half of the 

standard deviations of the outcomes (see Tables 3 & 4). Consequently, NME can increase or uphold 

neuromuscular functional integrity, indicating that the neuromuscular system is more capable of 

generating suitable responses to the stressors and functions of nursing activities. In contrast, lumbar 

movement variability worsened in the non-intervention control group.

Determinism, as a measure of the structure of lumbar angular displacement and velocity, indicates 

how predictively a person performs a repetitive movement. Adequate lumbar motor variability 

allows new movement solutions to be found in response to shocks in the external environment (Riley 

et al., 2002), such as sudden perturbations (Hodges et al., 2009). It may consequently be of relevance 

for the maintenance of occupational health and performance (Srinivasan et al., 2012). Reduced 

variability of trunk and lumbar movement has previously been reported during gait and repetitive 

lifting in people with chronic LBP (Dideriksen et al., 2014, van den Hoorn et al., 2012). People 

suffering from chronic pain may revert to stereotypical motor solutions rather than utilizing a variety 

of alternatives to perform repeat tasks (Cote et al., 2005), despite this causing faster trunk muscle 

fatigue (van Dieen et al., 2009), decreased task performance (Gates et al., 2008) and lengthy 

stereotypical loading of the painful area. Lumbar movement could become more deterministic if left 

untreated, resulting in the neuromuscular system being incapable of restoring its own integrity 

(Costa et al., 2005, Lomond et al., 2010) and potentially leading to a chronic state of CTD. NME may 

reverse or lessen this pain-related loss in complexity of the neuromuscular system.

Motor variability increases in the short term after task-specific exercise, for instance after 

biofeedback training for office workers (Samani et al., 2010), and in the long term due to skills 

development from the repetition of occupational tasks, such as throwing or lifting (Granata et al., 

1999). It is regarded as a protective strategy preventing musculoskeletal disorders, such as CTD, by 

reducing cumulative stereotypical load (Solomonow, 2012). These studies examined the short-term 

effects of training and the physiological process of skills acquisition in pain-free participants. Our 

study focussed on nursing personnel suffering from subacute LBP and the results suggests that six 

months of NME intervention reduces or preserves the structure of lumbar movement variability. The 

observed treatment effect diminished between the post-intervention assessment at six months and 

the follow-up at twelve months. Continuous, rigorous and targeted NME training could be 
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indispensable to the maintenance of lumbar movement variability in populations that are at high 

risk, such as nursing personnel. While the optimal NME program design to attain a sustainable 

improvement in lumbar movement variability remains unidentified (e.g. factors such as intensity of 

training, dosage, type of feedback), this study indicates that, over a six month period, NME can 

improve lumbar movement variability or impede its decline.

4.1 Limitations
The dropouts in both study groups can be partly explained by the nurses’ shift work, but these 

resulted in reduced precision of the treatment effect estimation. The nurses in our study presented 

with only low levels of LBP at baseline, but it is essential to identify interventions that hinder the 

development of the disorder and prevent it from becoming a chronic, disabling LBP in the working 

population. The basic assumption behind the analyses conducted in this study is a linear relationship 

between treatment and the outcome variables. Possible non-linear relationships were not analysed 

and could usefully be a subject of exploration for further research. Future studies might consider the 

Euclidian norm of the 3-D joint angles. These were not analysed due to the IMU systems limited 

concurrent validity when measuring lateral flexion or rotation movements of small magnitude during 

large flexion extension movements, which could be related to the IMUs size (Bauer et al., 2015a). 

While a treatment effect on the structure of lumbar movement variability was found by our data 

processing, relevant information from higher frequency contents might have been missed. Selecting 

a filtering technique demands a concession between noise allowed through and loss of information. 

Future studies should address filter designs that can retain information from higher frequency 

contents whilst eliminating noise. The lifting load was normalized to body weight because measures 

of strength were not collected in this study. The sample was restricted to females, the results might 

therefore not be generalizable to a general nursing population. 

Conclusions
NME may reverse or lessen a further decline of lumbar movement variability in the short term. It 

may improve or maintain neuromuscular functional integrity as a result. The optimal NME design to 

deliver longer-term improvement (factors such as training intensity, dosage and type of feedback) 

requires further investigation in future studies.
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CONSORT 2010 Flow Diagram
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Figure 1. CONSORT 2010 Flow Diagram
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Fig 1. 
Experimental setup: IMUs were placed on the level of sacrum (S2) and L1 (L1).

S2

L1
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Fig 3. 
Test procedure “Pick Up a Box”. The nurses were guided with a metronome set at 50bpm. The box 
was loaded to ten percent of their body weight. 
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Fig 4. Angular displacement and velocity during Pick Up a Box
Angular displacement and velocity data from one participant from the NME group (left column) and 
control group (right column), at baseline, six months and twelve months. Determinism of angular 
displacement and velocity decreased from baseline to six and twelve months (left column) 
respectively increased (right column). 

Abbreviations: NME – neuromuscular exercise
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Example participant NME Group
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Fig 5. Recurrence plots for angular displacement and angular velocity 
Angular displacement and velocity data from one participant from the NME group (left columns) and 
control group (right columns), at baseline, six months and twelve months. Determinism of angular 
displacement and velocity decreased from baseline to six and twelve months (left columns) 
respectively increased (right columns). All recurrent points derived from the phase space trajectories 
were moved into a two dimensional NxN-sized recurrence plot and are illustrated as black points, 
with N being the number of points in the original trajectory and expressed as time in seconds.

Abbreviations: NME – neuromuscular exercise
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Fig 6. Interaction plots for the primary outcomes across all time points
Abbreviations: AD – angular displacement; AV – angular velocity; DET – determinism; NME – 
neuromuscular exercise

The changes between the three time points indicate the treatment effect (the group-time 
interaction).
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Inclusion Criteria Excluison Criteria
Age between 30-55 years

Working at current job for at least 12 months

Suffering from LBP during the past four weeks, 
with a mean minimum intensity of two points 
on the numeric rating scale (NRS) (range 0-10 
points)

Serious former back injury (fracture, back 
surgeries, disc protrusions)

Chronic LBP defined by a physician

Self-reported continuous LBP of seven months 
or longer duration

Other diseases or symptoms that limit 
participation in moderate intensity NME

Current engagement in NME more than once a 
week

Pregnant or postpartum within the past twelve 
months

Table 1. Inclusion and Exclusion Criteria
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Table 2 Input parameters used in recurrence quantification analysis

Delay Embedding Dimension Distance  lmin Epsilon
Angular Displacement 15 4 Euclidian 150 1.3σ

Angular Velocity 14 4 Euclidian 150 1.3σ
σ – Standard deviation of the reconstructed phase space trajectory; lmin - minimal length of diagonal line
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Table 3 Descriptive characteristics of both groups

Group n
Primary 
Outcomes Covariates
DET AD DET AV LBP Intensity

VAS (mm) 
Age
(years)

BMI

Baseline
NME 42 65.5 ± 11.1 64.8 ± 11.4 34.0 ± 21.0 45.7 ± 7.8 26.7 ± (4.6)
Control 41 63.7 ± 9.7 63.7 ± 9.1 28.0 ± 21.1 46.7 ± 7.7 25.8 ± (3.6)
Six Months 
NME 31 64.3 ± 12.1 64.9 ± 12.1 25.2 ± 19.9
Control 36 66.9 ± 9.6 68.7 ± 6.5 27.5 ± 19.0
Twelve Months
NME 31 66.7 ± 13.8 66.7 ± 13.8 21.3 ± 20.0
Control 31 68.8 ± 7.0 68.8 ± 8.0 24.4 ± 22.7
Abbreviations: AD – angular displacement; AV – angular velocity; BMI – body mass index; DET – 
determinism; LBP – low back pain; n – number of participants; VAS – visual analogue scale

All values are expressed as mean ± standard deviation
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Table 4 Posterior distributions of treatment effects
Primary Outcome Time points Mean

 
95% HPDI

DET AD 1 – 2 5.7 1.5 - 10
1 - 3 4.7 0.1 – 9.2
2 - 3 -1.1 -5.7 – 3.6

DET AV 1 - 2 5.8 1.8 – 9.6
1 - 3 1.9 -2.3 – 6.1
2 - 3 -3.9 -8.2 – 0.3

Bold numbers indicate the 95%HDPI not crossing 0.

Abbreviations: 95% HPDI - 95% highest posterior density interval; AD – angular displacement; AV – 
angular velocity; DET – determinism



  

27

Appendix: Posterior Distributions 

DET AD
Parameter Timepoints Mean Standard 

Deviation
95% HPDI

Age 0.1 0.2 -0.2 – 0.4
BMI 0.2 0.3 -0.4 – 0.7
LBP intensity at 
baseline

0.0 0.1 -0.1 – 0.1 

Group Effect 1 -1.9 2.6 -6.9 – 3.3
2 3.9 2.7 - 1.4 – 9.1
3 2.8 2.9 -2.7 – 8.3

ν2 0.8 0.2 0.5 – 1.2
τ2 0.5 1.1 0.3 – 0.5
Time effects NME 
Group 

1-2 -2.2 1.6 -5.3 – 0.8

1-3 0.3 1.7 -3.0 – 3.5
2-3 2.4 1.8 -0.8 – 5.8

Time effects Control 
Group 

1-2 3.6 1.6 0.5 – 6.7

1-3 5.0 1.8 1.8 – 8.2
2-3 1.4 1.7 -1.9 – 4.6

Treatment Effect 1-2 5.7 2.3 1.5 – 10.0
1-3 4.7 2.4 0.1 – 9.2
2-3 -1.1 2.4 -5.7 – 3.6

DET AV
Parameter Timepoints Mean Standard 

Deviation
95% HPDI

Age -0.1 0.1 -0.4 – 0.2
BMI 0.1 0.3 -0.4 – 0.6
LBP intensity at 
baseline

0.0 0.1 -0.1 – 0.1 

Group Effect 1 -1.4 2.4 -6.0 – 3.2
2 4.4 2.5 - 0-5 – 9.2
3 0.5 2.6 -4.7 – 5.5

ν2 0.7 0.2 0.5 – 1.1
τ2 0.4 1.1 0.3 – 0.4
Time effects NME 
Group 

1-2 -0.8 1.4 -3.4 – 1.9

1-3 2.4 1.6 -0.4 – 7.2
2-3 3.2 1.6 0.2 – 6.2

Time effects Control 
Group 

1-2 5.0 1.5 2.3 – 7.7

1-3 4.3 1.5 1.4 – 7.2
2-3 -0.7 1.6 -3.7 – 2.3

Treatment Effect 1-2 5.8 2.0 1.8 – 9.6
1-3 1.9 2.2 -2.3 – 6.1
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2-3 -3.9 2.2 -8.2 – 0.3

Bold numbers indicate the 95%HDPI not crossing 0.

Abbreviations: 95% HPDI - 95% highest posterior density interval; AD – angular displacement; AV – 
angular velocity; DET – determinism; ν2 – between subject variation; τ2 – within subject variation
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