Entity Matching on Unstructured Data:
An Active Learning Approach

Ursin Brunner and Kurt Stockinger
ZHAW Zurich University of Applied Sciences, Switzerland

Abstract—With the growing number of data sources in en-
terprises, entity matching becomes a crucial part of every data
integration project. In order to reduce the human effort involved
in identifying matching entities between different database tables,
typically machine learning algorithms are applied. Moreover,
active learning is often combined with supervised machine
learning methods to further reduce the effort of labeling entities
as true or false matches. However, while state-of-the-art active
learning algorithms have proven to work well on structured data
sets, unstructured data still poses a challenge in entity matching.

This paper proposes an end-to-end entity matching pipeline
to minimize the human labeling effort for entity matching
on unstructured data sets. We use several natural language
processing techniques such as soft tf-idf to pre-process the record
pairs before we classify them using a novel Active Learning
with Uncertainty Sampling (ALWUS) algorithm. We designed our
algorithm as a plugin system to work with any state-of-the-art
classifier such as support vector machines, random forests or
deep neural networks. Detailed experimental results demonstrate
that our end-to-end entity matching pipeline clearly outperforms
comparable entity matching approaches on an unstructured real-
word data set. Our approach achieves significantly better scores
(F1-score) while using 1 to 2 orders of magnitude fewer human
labeling efforts than existing state-of-the-art algorithms.

I. INTRODUCTION

Almost every company needs to integrate data from different
sources to gain potentially new insights into the data. Assume,
for instance, a company needs to merge information from a
customer database in Zurich and another customer database in
San Francisco. While one database focuses on the customers’
financial transactions, the other one provides information about
their browsing patterns in a web shop. In order to analyze the
customers’ behavior and predict future purchases, we need to
match the customers, i.e. the entities of the two data sources.
This problem is known as the Entity Matching problem. The
goal is to determine if two entities refer to the same real-
world object [5]. If the two data sources contain a shared
unique identifier (e.g. a taxpayer number), the entity matching
problem becomes as trivial as a database join. However,
such unique identifiers are rare and often subject to privacy
concerns.

As a consequence, a data matching problem more often
looks like the example shown in Tables I and II. We need to
match two entities based on attributes like names, addresses
or product information while dealing with various formats and
differing, missing or wrong values. Given this uncertainty,
the major challenge of entity matching is to identify which
existing real entity pairs have the highest probability of being
a match. We can thus formulate parts of end-to-end entity

matching process as a classification problem where we need
to minimize the number of false positives.

TABLE I
DATABASE A
Surname | GivenName Street City
Meyer Marie 3/12-14 Hope Cnr Sydney
Smith John 42 Miller St Canberra
TABLE I
DATABASE B
Name Address
Meier, Mary | 14 (App 3) Hope Corner, Sydney 2000
Jonny Smith 47 Miller Street, 2619 Canberra ACT

While early entity matching was heavily used in the health
sector and in national censuses [5], it is now a challenge that
appears in numerous application domains. As large companies
produce (and consume) more and more data which originates
from multiple data sources, the process of data integration
and data cleaning becomes crucial. In the process of data
integration, entity matching is a key step, while in data
cleaning, duplicate detection is of great importance.

The contributions of our paper are as follows:

o We introduce a novel entity matching algorithm called
Active Learning with Uncertainty Sampling (ALWUS) as
core of our end-to-end entity matching pipeline. The
algorithm works as a plugin system, where the learner
can be replaced by any state-of-the-art classifier.

o We provide deep insights into the entity matching pro-
cess, especially into the steps prior to classification. We
use several natural language processing techniques such
soft tf-idf to pre-process the record pairs and to optimize
the end-to-end entity matching pipeline.

o The experimental results demonstrate that our end-to-end
entity matching pipeline with ALWUS is superior to state-
of-the-art algorithms working on a real-world benchmark
data set. Our approach achieves significantly better scores
(F1-score) while using 1 to 2 orders of magnitude fewer
human labels than existing state-of-the-art algorithms [8],
[10], [15].

II. THE ENTITY MATCHING PROBLEM

In this section we first give an overview of the end-to-end
process for entity matching and afterwards discuss different
similarity measures to match two entities.

A. The End-to-End-Process

The process of entity matching as defined by [5] can roughly
be divided into the following major steps: The first step, data
pre-processing, is to clean and standardize the data. The basic
idea is to ensure that the attributes used for the matching have
the same structure, and their content follows the same formats.

The goal of the second step, indexing or blocking, is to
reduce the computational effort when comparing record pairs,
i.e. records from two different data sets. Imagine dealing with
two data sources of n and m records. By building record pairs,
we end up with a quadratic problem of size O(nm). If we
now apply a string similarity measure such as the Levenshtein
distance [12], whose computational complexity is quadratic in
the number of input records, the entity matching problem soon
becomes computationally unfeasible. With indexing/blocking
we therefore try to apply “cheap” and highly tolerant similarity
measures to filter out those record pairs that are “obvious”
non-matches. However, the blocking step is always a trade-off
between not loosing matching record pairs and computational
effort.

The third step, record pair comparison, is about comparing
two records in detail. In this step, only those entities are
inspected, that are not pruned by the indexing or blocking
step. In this step, different similarity measures are applied to
identify matching entities (see Section II-B for details).

The final step, classification, decides if a record pair is a
match or a non-match. The complexity of the classifier can
range from a simple threshold-based rule system to a complex
active learning scenario with support vector machines or deep
neural network learners as we show in this paper.

B. Similarity Measures

In this section we will discuss generic similarity measures
to identify if two entities match.

String Similarities: The easiest way to compare record
pairs is to consider each field of the record as a string and to
apply string similarity algorithms. One of the most commonly
used string comparison algorithms is the Levenshtein distance
[12]. This approximate string matching approach typically
works well for comparing short strings where usually only
small differences are expected. A more specialized similarity
algorithm is, for instance, the Jaro-Winkler [6] algorithm,
which has been designed specifically for the comparison of
names.

Document Similarities: In order to match longer texts,
a common approach is to use tf-idf [14] (term frequency
- inverse document frequency). To compare the similarity
between two records, one typically uses the cosine similarity.
However, one drawback of the original tf-idf cosine similarity
is the fact that it only finds exact matches. A method to resolve
this issue is the soft tf-idf [14].

The basic idea of soft tf-idf is to enable fuzzy matching.
Assume we have a record pair consisting of the two records R;
and R;, where R; and R; are vectors with one value for each
unique term. Each term is represented by its tf-idf weights:
Ri = [wi71,wi72,wi73,] and Rj = [wj71,wj,2,wj73,...].

Before we multiply the tf-idf weights of the vectors I?; and R;
(as is common for the traditional tf-idf), we create a so called
similarity map. Next, we calculate the similarity between all
the terms in R; and R;. If the similarity between two terms is
above a certain threshold (sim(termg, i, termy) > 6), they
are added to the similarity map.

When we later calculate the cosine similarity, we do not
only multiply the two tf-idf weights, but also the similarity
calculated for the similarity map. The new equation to calcu-
late the cosine similarity looks as follows:

|sim_map| .
SUMyG kuj,k - Wik - Wik

k=1
Vi w0 v,
(1)

where the numerator consists only of elements whose simi-
larity threshold is above 6. The denominator, on the other hand,
contains all terms in R; and R;. In summary, the additional
soft feature enables us to decide at which similarity threshold
f we consider two terms to be similar.

sims_tpiaf (Ri, Rj) =

III. ALWUS (ACTIVE LEARNING WITH UN-CERTAINTY
SAMPLING

In this section we will focus on the last step of the
entity matching process, namely classification. Moreover, we
introduce our algorithm ALWUS (Active Learning with Un-
certainty Sampling).

This classification step is often performed using various
supervised machine learning algorithms that require training
data. However, training data for entity matching processes are
often hard to obtain, which makes classical machine learning
challenging. Active learning, where a learner gets only very
little initial labeled data and asks then an oracle for specific
further training data, has been proven to be a good alternative
[1], [2], [10]. The goal of active learning is to reduce the
manual labeling effort as much as possible by querying the
oracle only for the most “important” unlabeled training data.
The challenge of active learning is to find the most important
unlabeled training data items.

A. ALWUS - The Big Picture

ALWUS is based on the theory of active learning by un-
certainty, more precisely on the idea of Query by Committee,
which has been introduced 1992 by Seung et al. [13]. The idea
of querying by committee in combination with bagging (the
machine learning technique based on bootstrapping) is by now
a standard active learning approach and has been successfully
used in many recent works [9], [10].

The novelty in our approach is the integration of ALWUS in
an end-to-end entity matching pipeline. The improvements in
pre-processing and record pair comparison (see Section II-B),
massively speed up the learning rate of ALWUS which leads
to a significant reduction of label requests to the oracle.

The intuition of our approach is as follows:

1) We start by initially labeling a few random data samples

and add them to the labeled training set.

2) Next we bootstrap from this data and create individual
training sets for each of the N learners in the learner
ensemble. We train each learner on its training set.

3) As a next step, we use the learner ensemble to predict
all unlabeled data (unlabeled pool). The predictions will
be different, as every learner in the ensemble has been
trained on a different training set.

4) For every prediction, we calculate the empirical vari-
ance in the learner ensemble. The variance is in this
setup equivalent to uncertainty.

5) The uncertainty ranker uses this measure to decide
which labels to query next.

6) The query is answered by an oracle. In reality, this
oracle is often a human, while in a test setup the oracle
is a predefined dictionary.

7) The newly labeled data is added to the labeled training
set and the active learning starts again.

B. ALWUS - The Details

We will now describe the major steps of our approach
ALWUS in more detail.

1) Bootstrapping: The bootstrap [4] is a universal and
powerful method that can be used to quantify the uncertainty
(in terms of bias, variance and confidence intervals) associated
with a given statistical estimator (learner) . The method does
not rely on a particular data distribution and falls in the broader
class of re-sampling methods [4].

Let zi,...,z, be (possibly multivariate) realizations of
independent and identically distributed random variables X7,
Xo, ..., X,. Further assume that

7 =71, Tn)

is an estimator of some quantity . We now span up a
bootstrap with B estimators as follows:

1) Choose a (large) number B € N
2) Forb=1,...B

o Draw n samples {7, ...
replacement.

o Compute the estimator 7; = 7(z7, ..., z})

,xr} from {z1,...,z,} with

3) The empirical distribution function F'* of (77, ...,7%)
approximates the distribution of 5. Any statistical prop-
erty of the estimator 7 can now be estimated by the
bootstrap estimate 77, ..., V5.

For uncertainty sampling we are interested in the bootstrap
variance, since we use it as a measure for uncertainty. With
the bootstrap introduced above, we calculate the variance as
follows:

~ 1 o
varn(3) = 5 >3 =) @

B
B-1
b=1

with

1 B
v=§;b 3)

Given B is large enough, we get an empirical approximation
of the expected value (Equation 3) and the variance (Equation
2).

2) Ensemble Learner & Uncertainty Ranker: We now use
the bootstrap theory defined in Section III-B1 to create the two
most important components in our architecture, the Ensemble
Learner [16] and the Uncertainty Ranker.

a) Ensemble Learner: The Ensemble Learner is a con-
tainer for the B different sub-learners/estimators. From a high
level perspective it works as any other classification learner:
We fit a set of training samples and then predict a set of
unknown samples based on the model trained in the fit step.

Internally the Ensemble Learner contains a list of sub-
learners, where each learner has its own bootstrapped training
set {x7,...,z*}. Every time we fir a set of training samples
{z1,...,x,} to the ensemble learner, we first randomly create
B subsets of training samples {z7, ...,z } (the bootstrapping
process). We then train each sub-learner on its own training
set.

When we predict a set of new, unlabeled samples, the
Ensemble Learner asks every of the B sub-learners for its
prediction. As every sub-learner has been trained on a different
data set (remember: we create the data sets randomly and with
replacement), the learned models differ from each other and
therefore also the predictions.

The Ensemble Learner then uses a simple concept of
majority voting to decide on the final prediction

B
pp(x) = argmax »_p(z,7;))
b=1

where p(7*) predicts the class label given and argmax
returns the class label which appears most frequently.

In contrast to a simple learner, the Ensemble Learner further
provides the variance property for each predicted sample. As
we deal with a binary classification (”match = 1”/”non-match
= 07) we can simplify the variance introduced in Section
II-B1 to

CYp@ A e {1}, S p() € {1}
(5)

varp(z)

where x is the sample we predicted.

b) Uncertainty Ranker: In every step of the active learn-
ing approach we deal with a set of labeled training data and a
much larger set of unlabeled data. We use a ranker to decide
which samples of the unlabeled data set to label next. The
ultimate goal is to minimize the number of requested labels
and to maximize the performance (F1-score).

The Ensemble Learner enables the Uncertainty Ranker to
do a prediction for all unlabeled data samples. The ranker
then orders the predictions descending by variance and selects
N (batch size) samples with the highest variance, i.e. the
N samples the Ensemble Learner is most uncertain about.
Finally, the active learning algorithm asks the oracle about
the labels for these N samples.

IV. EXPERIMENTAL RESULTS

In this section we describe our experiments on the end-to-
end data matching process using the ALWUS active learning
approach. The results demonstrate that our approach increased
the initial end-to-end F1-score from a baseline of 40% to a fi-
nal value of 81%, which outperforms all compared algorithms.
We further explain how we reduced the human labeling effort
by an order of 1 to 2 magnitudes compared to other state-of-
the-art algorithms.

For our experiments we used the de-facto standard data set
for entity matching, namely the Abt-Buy product data set [8].
The Abt-Buy data set has a total size of 1,081 x 1,092 records
which sums up to 1.2 million record pairs (without blocking).
Out of these 1.2 million record pairs, 1,097 pairs are real
matches.

In order to measure the quality of our matching algorithm,
we use the Fi-score and the human labeling effort.

F1-score: For the Fl-score we use the traditional definition:

Fl=2. prec.is.ion -recall ©)
precision + recall

Note that entity matching data sets are typically highly
imbalanced, i.e. they often contain a high number of non-
matches and a low number of matches. In our case, the
percentage of non-matches is 95%, while the percentage
of matches is 5%.

Human Labeling Effort: The human labeling effort is
measured as the number of query requests to the oracle. The
objective is to minimize the score, as the human labeling effort
is not only expensive but also often subject to errors [15]. The
labeling effort for the initial training data also adds to this
score.

All the experiments were executed on a Linux-based system
running an Intel(R) Core(TM) i7 CPU with 4 cores and 8
threads. The system was equipped with 32 GB RAM.

A. Entity Matching Pipeline

Before demonstrating the results on the core of this paper
(i.e. Active Learning with Uncertainty Sampling), we show
how we improved several steps of the entity matching process
and how much each optimization contributed to the overall
Fl-score. In particular, we will first focus on the steps pre-
processing, blocking and record pair comparison. Without any
of these improvements we reach a baseline F1-score of 40%.
After applying all optimizations, we reach an Fl-score of
81%.

Pre-Processing: By analyzing the data set Abr-Buy, we
figured out that Buy product records often contain identifiers
separated by a dash (e.g. "STR-DG920”), while Abt records
do not. By cleaning out these dashes and merging the two key
tokens to a single identifier during pre-processing, we could
increase performance (AF1-score) by 16%.

Indexing/Blocking: To reduce the record pairs from origi-
nally 1,180,452 to 19,562, we used a simple blocking method
based on Jaccard similarity with § < 0.1. With this simple

blocking we reduced the amount of record pairs by 98.35%,
while loosing 102 of 1097 real matches (9.3%)".

Record Pair Comparison: In the step record pair com-
parison we improved the entity matching pipeline by finding
an optimal similarity threshold for soft tf-idf. We will now
describe this optimization.

Similarity Threshold (8) for Soft tf-idf: Choosing the right
threshold € is fundamental for achieving good performance
with soft tf-idf, as this parameter controls which tokens are
considered to be matches. Hence, we executed a grid search
to find the optimal similarity measure in combination with the
threshold parameter. In particular, we used the two similarity
measures Jaro and Jaro-Winkler.

Our experimental results in Table III show the outcome of
the grid search with a similarity threshold in the range of
[0.8,1]. We have chosen this range based on the optimal out-
comes of grid search’s hyper parameter tuning. The top 4 rows
show the results for the Jaro measure, while the bottom 4 rows
show the results of the Jaro-Winkler measure. As an example
for the massive impact of the hyper parameter, have a look
at the performance difference between a similarity threshold
0.8 and 0.85 with the Jaro-Winkler similarity measure (third
row from the bottom). The performance (F1-score) increases
by 39%. We see the highest increase of the Fl-score by 59%
for the threshold 6 of 0.95 (highlighted in bold). Note that
when we further increase the threshold 6 to 0.98, the Fl-score
only increases by 58%. In other words, further increasing the
threshold reduces the F1-score.

TABLE III
EFFECT OF THE SIMILARITY THRESHOLD (6) ON THE OVERALL
PERFORMANCE (F1-SCORE)

Similarity Measure 6 AF1-score
Jaro 0.8 0%
Jaro 0.85 + 6%
Jaro 0.95 + 13%
Jaro 0.98 + 10%
Jaro-Winkler 0.8 0%
Jaro-Winkler 0.85 + 39%
Jaro-Winkler 0.95 + 59%
Jaro-Winkler 0.98 + 58%

As we originally used the parameter pair (JaroWinkler,
0.85) as a baseline, we could improve the performance of the
Fl-score by 20% by increasing the threshold to 0.95. Finally,
by performing additional feature engineering, we could further
improve the Fl-score by 5%.

B. Classification

We will now discuss the experimental results of our classifi-
cation algorithms. However, before diving into active learning,
we need to find the upper limits of our learners. In other
words, we want to find out what performance (F1-score) a

Such a simple blocking approach obviously offers room for improvement,
which though is out of scope for this work. Christen et al. [5] describe various
advanced blocking algorithms in detail. With a relatively small dataset of
around one million pairs, one could even consider skipping the blocking step
entirely.

passive learner can achieve when the full data set including all
labels are used (see Section IV-B1). These performance values
will then be the baseline for the active learning approach (see
Section IV-B2).

1) Passive Learning: In the passive learning setup we used
the full 19,562 comparison vectors (the record pairs after
blocking), which contain 1,097 matches and 18,465 non-
matches. We split the available data randomly in a 75%
training and 25% test set.

For our experiments we used three different machine learn-
ing algorithms with the following architecture and parameter
settings:

e SVM: Support Vector Machine with a Radial Basis
Function (RBF) kernel. The RBF kernel has been chosen
for maximal learner flexibility.

« RF: Random Forest with 500 estimators. We determined
these hyper parameters by hyper parameter-tuning, both
manually and with scikit-learn’s Exhaustive Grid Search.

o Fully connected NN: Fully connected Neural Network
(in Tensorflow) with the following architecture: input
layer: 500 neurons with ReLU activation function; 3
hidden layers with 500, 500 and 50 neurons with ReLU
activation function; output layer: 1 neuron with a sig-
moid activation function and a binary cross entropy
loss function. This architecture has been chosen based
on hyper parameter tuning and exhaustive grid search.
The resulting hyper parameters are a trade-off between
maximal flexibility for the learner (high Fl-score) and
training run time.

For each of the three learners we executed 20 runs and
measured the Fl-score to identify matches and non-matches.
The results in Table IV (average over 20 runs) indicate
that there is no considerable difference between the different
learners. They all achieve F1-scores between 80% - 82% .

TABLE IV
PASSIVE LEARNING RESULTS (AVERAGE OVER 20 RUNS)
Learner Precision | Recall | Fl-score
SVM with RBF 0.874 0.765 0.816
Random Forest 0.840 0.765 0.800
fully connected NN 0.837 0.789 0.812

2) Active Learning: For the active learning approach, we
used the fully optimized entity matching pipeline described
in Section IV-A. We then implemented our algorithm Active
Learning with Uncertainty Sampling (ALWUS) as described in
Section III.

Among the thee machine learning algorithms that we com-
pared in Section IV-B1, we selected the SVM learner. The
choice of SVM learner has been made due to its low run
time complexity and almost equal performance (F1-score)
compared to more complex learners such as deep neural
networks (see Table IV). We then combined 24 of those SVMs
with an ensemble learner (introduced in Section III-B2a). For
performance reasons we chose the number 24, a multiple of
the test machine’s logical cores which is 8.

o
©

i
@

o
~

F1l-score
o
(o)}
4

o
o]

o
=

©
w

100 150 200 250 300

number of labels

0 50

Fig. 1. Learning curve with Random Ranker over 20 runs. The red line
represents an average over all runs, the black error bars indicate the variance.

The active learning process starts with an initial training set
size of only 10 records. In every iteration, the active learner
requests ranked labels of 10 unknown data samples from the
oracle (batch size 10). We grant the active learner a total
budget of 300 requests to the oracle.

We will now describe the results of active learning with
a Random Ranker (as the baseline) and compare it with our
contribution, the Uncertainty Ranker.

a) Random Ranker: As the name indicates, the Random
Ranker chooses the next label requests for the oracle at
random, not considering any variance information from the
learners. Figure 1 shows the average results over 20 runs. The
average run starts at an Fl-score of 60%, and then increases
up to 75% after 230 training samples. At this point we see no
further improvement until the active learner has used its full
budget of 300 requests.

An interesting finding is the high variance of the scores
of each single run. While the learner ensemble reaches good
scores with very little training data in some runs, other runs
need significantly more labels to reach a stable score. This
effect is explained by the randomness of how the next label
requests are chosen in a single run.

b) Uncertainty Ranker: Finally we ran active learning
with the Uncertainty Ranker. While the setup stays exactly
the same as with the Random Ranker, we now use a ranker
that decides by the uncertainty of the learner ensemble which
samples to query next. The implementation follows the theory
described in Section III-A.

Figure 2 shows the results of an average over all 20 runs.
The average run starts again at an Fl-score of 60% and
reaches an Fl-score of 78.6% at a training-set size of only 60
samples. Moreover, the algorithm reaches a stable F1-score of
81.3% after 90 samples. Afterwards the score only minimally
improves until reaching the full budget of 300 requests.

We also note that the variance of the different runs is much
lower when using the Uncertainty Ranker than for the Random
Ranker. After a training size of 80 samples, every run reached
a minimum F1-score of at least 78%.

Fl-score
o
[e)]

100 150 200 250 300
number of labels

0 50

Fig. 2. Learning curve with Uncertainty Ranker over 20 runs. The red line
represents an average over all runs, the black error bars indicate the variance.

C. Comparing the Results with State-of-the-Art

TABLE V
F1-SCORES AND LABELING EFFORT FOR OUR APPROACH CALLED
ALWUS (RIGHT-MOST COLUMN) COMPARED WITH THREE
STATE-OF-THE-ART ALGORITHMS.

Approach A B C | ALWUS
F1-score 56% | 1% | 73.4% 81%
Labeling effort | 2,000 500 | 3,154 60-90
for top score

Our final results with the Uncertainty Rankers are highly
encouraging. With an F1-score of 81% and higher, we score
better than all compared state-of-the-art approaches as
shown in Table V.

Let us analyze these results in more detail. The active
learning approach of [10] reaches an Fl-score of 56% on
this data set (indicated as Approach A). The frameworks
FEBRL and MARLIN in [8] reach a maximum F1-score of
71% (Approach B), while the hybrid approach of [15] reaches
an Fl-score of 73.4% (Approach C). The main reason for a
superior Fl-score of ALWUS is the improved pre-processing
with soft tf-idf.

More important though is the improvement regarding human
labeling effort. With the Uncertainty Ranker, we need only
60 - 90 samples (including initial training set) to reach an
Fl-score higher than 81%. We therefore reduce the human
labeling effort by an order of 1-2 magnitudes compared to
the state-of-the-art algorithms.

In comparison, the experiments of [10] start with an initial
training set of 249 samples (F1-score of 48%). The best active
learning algorithm reaches an F1-score of 56% after requesting
2,000 labels. Other active learning algorithms (e.g. CVHull
[2], IWAL [3]) perform much worse in this experiment since
they require almost 6,000 labeled samples to reach an F1-score
> 50%.

The known entity matching systems FEBRL and MARLIN
[8] both need around 500 labeled records to reach their
maximum Fl-scores of 71%. After 100 labels, they reach

an Fl-score of roughly 20% (FEBRL), 20% (MARLIN with
ADTree) and 60% (MARLIN with SVM). Note that there has
been more recent work on entity matching such as [7], [11].
However, since these systems do not use an active learning
approach, we cannot directly compare our results with these
systems.

V. CONCLUSIONS

In this paper we proposed a novel end-to-end entity match-
ing pipeline that is relevant for any data integration problem.
With ALWUS we proposed an active learning algorithm with
uncertainty sampling and demonstrated how to use the statis-
tical theory of bootstrapping to train multiple learners with
minimal training data. We created an Ensemble Learner and
an Uncertainty Ranker to decide which record pairs to label
next based on the uncertainty of the Ensemble Learner. Our
experimental results showed how our end-to-end entity match-
ing pipeline with ALWUS reached a higher Fl-score (81%)
than all compared state-of-the-art algorithms on a popular
entity matching data set for unstructured data. Most important
though, the label requests with ALWUS was 1-2 magnitudes
lower than all compared state-of-the-art algorithms.

REFERENCES

[1] A. Arasu, M. Gotz, and R. Kaushik. On active learning of record
matching packages. SIGMOD, 2010.

[2] K. Bellare, S. Iyengar, A. Parameswaran, and V. Rastogi. Active
sampling for entity matching with guarantees. ACM Trans. Knowl.
Discov. Data, 7(3):12:1-12:24, Sept. 2013.

[3] A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted
active learning. CoRR, abs/0812.4952, 2008.

[4] R. T. Bradley Efron. An Introduction to the Bootstrap. CRC Press Book,
1994.

[5] P. Christen. Data Matching: Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer Publishing
Company, Incorporated, 2012.

[6] M. A. Jaro. Advances in record-linkage methodology as applied to
matching the 1985 census of tampa, florida. Journal of the American
Statistical Association, 84(406):414-420, 1989.

[7]1 P. Konda, S. Das, et al. Magellan: Toward building entity matching
management systems. PVLDB, 9(12):1197-1208, 2016.

[8] H. Kopcke, A. Thor, and E. Rahm. Evaluation of entity resolution
approaches on real-world match problems. PVLDB, 3(1-2):484-493,
Sept. 2010.

[9] P. Melville and R. J. Mooney. Diverse ensembles for active learning.

In Proceedings of the Twenty-first International Conference on Machine

Learning, ICML ’04, pages 74—, New York, NY, USA, 2004. ACM.

B. Mozafari, Sarkar, et al. Scaling up crowd-sourcing to very large

datasets: A case for active learning. PVLDB, 8(2):125-136, Oct. 2014.

S. Mudgal, H. Li, et al. Deep learning for entity matching: A design

space exploration. SIGMOD, 2018.

G. Navarro. A guided tour to approximate string matching. ACM

Comput. Surv., 33(1):31-88, Mar. 2001.

H. Sebastian Seung, M. Opper, and H. Sompolinsky. Query by commit-

tee. Proceedings of the Fifth Annual ACM Conference on Computational

Learning Theory, pages 287-294, 01 1992.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of

string distance metrics for name-matching tasks. ACM Workshop on

Data Cleaning Record Linkage and Object Identification, 2003.

J. Wang, T. Kraska, et al. Crowder: Crowdsourcing entity resolution.

PVLDB, 5(11):1483-1494, July 2012.

C. Zhang and Y. Ma. Ensemble Machine Learning: Methods and

Applications. Springer Publishing Company, Incorporated, 2012.

[10]
(1]
[12]

[13]

[14]

[15]

[16]

