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32 LINES OF CODE TO PRICE TWO FACTOR DERIVATIVES

NORBERT HILBER

Abstract. We provide a simple Matlab and Python finite difference code to
solve degenerate, linear parabolic partial differential equations with two space
dimensions subject to a variety of boundary conditions. This code is then ex-
emplarily applied to derivative pricing problems involving two stochastic factors.
In particular, we price a call option in the Heston-Jacobi model and so-called
autocallable, multi barrier convertibles in the bivariate Black-Scholes model.
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1. Introduction

A large part of pricing problems in the financial derivatives industry involve mul-
tivariate stochastic processes, typically in continuous time. The reason for this is
threefold. First, certain options and structured products are written on several
underlyings. For example, about 85% of so-called Barrier Reverse Convertibles
tradable on the exchange “SIX Structured Products” are written on at least two
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underlyings, which are typically stocks. Second, the payoff of an exotic option de-
pends not just on the level of the involved underlyings at maturity, but also on
additional factors driven by the price history of these underlyings. For example,
the value of lookback options depends on the realised maximum or minimum of the
underlying over a certain time period. This renders the corresponding pricing prob-
lem multivariate, even if we consider just one underlying. Third, state-of-the-art
pricing models involve - besides the underlying itself - additional stochastic factors
like stochastic volatility, stochastic local volatility, path-dependent volatility and/or
stochastic interest rates, see for example [Ber16]. Again, if we consider one underly-
ing only, the corresponding pricing problem becomes typically multivariate in such
models, nonetheless. Most of the mentioned problems do not admit a closed-form
solution, such that we have to rely on approximation schemes. Here, the choice of
the scheme heavily depends on the number d of stochastic factors. It is common
knowledge that for d larger than 3 or 4, the prevailing scheme applied in the finan-
cial industry is any of the available Monte Carlo methods (MC). However, besides
delivering random prices, the convergence rate of MC is typically low. Standard
grid-based methods as finite differences or finite elements which rely on approxi-
mating the solution of the corresponding pricing partial differential equation (PDE)
show (much) better convergence rates, but are limited to solve only low-dimensional
pricing problems, since they suffer from the so-called curse of dimensionality and are
thus applicable in practice for d ≤ 4 only. The same can be said about transform
methods (FFT, Cos and the like). By applying so-called sparse grid approxima-
tion methods, this upper bound may be shifted to the right, d ≤ 10 say, see for
example [HRSW13] and then references therein. Recently, deep neural networks
(DNN) have proven to be a valuable alternative to both MC and grid-based meth-
ods, see e.g. [EHJ17]. However, an analysis of the approximation error and proven
convergence rates for DNNs are available only for very specific (and somewhat un-
realistic) pricing problems [EGJS18,GHJvW18]. The main advantage of DNN over
standard grid based approximation schemes is that they do not suffer from the curse
of dimensionality.

The mathematical complexity of the mentioned approximations methods and of
their corresponding error analysis and approximation properties comes at different
levels. Whereas MC methods typically require a sound knowledge in stochastic
calculus, the finite element method can be understood and analysed only by apply-
ing concepts of functional analysis and PDE theory. The finite difference method
(FDM) in contrast is (much) simpler (also in implementation). This simplicity comes
at a price: certain pricing problems can not be solved well, as the convergence rate
might break down due to discontinuous payoffs (even if we apply grid stretching),
and convergence rates (with respect to the number of unknowns) are at most alge-
braic. Furthermore, the often heard argument that the domain of the pricing PDE
is simply a rectangular box in Rd and hence an application of an approximation
scheme which is able to handle more complex domains is not necessary is somewhat
void. For example, we can not price continuously monitored lookback options by
standard finite difference methods (unless we consider additional transformations of
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the problem). Nevertheless, the FDM is a very simple and yet flexible approximation
method for the majority of low-dimensional pricing problems. Despite its simplicity
and flexibility, most of the scientific literature does only describe the FDM but does
state code in the sense of a numerical receipt. The goal of this paper is thus to
provide directly usable Matlab and Python codes which approximate the solution
to (possibly degenerate) parabolic linear PDEs with time-independent coefficients
in d = 2 space dimensions subject to variety of boundary conditions.

The paper is organised as follows. In chapter 2, we give a short description of
the considered pricing problems and partial differential equations (PDEs), respec-
tively. We further discuss on which subsets of the domain of the PDE we need to
specify boundary conditions. In chapter 3 we develop a fully discrete approximation
scheme to solve the PDE of chapter 2 numerically. We first use a second-order finite
difference discretisation with respect to the space variables and then apply a ADI
time-stepping scheme to discretise with respect to time. Here, special attention is
paid to avoid solving large-banded linear systems. In the next chapter 4, we provide
Matlab/Octave and Python codes which realise the developed fully discrete scheme
of chapter 3. In the last chapter 5, we apply the routine presented in chapter 4 to
particular pricing problems. For each of these problems we again provide codes.

2. Pricing equation

Consider a Rd-valued stochastic process X(t) := (X1(t), . . . , Xd(t))
> solving the

system of stochastic differential equations (SDE)

(2.1) dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW(t) , X(0) = x0 .

Herein, the column vector µ(x, t) ∈ Rd and the matrix σ(x, t) ∈ Rd×m are given by

µ(x, t) :=


µ1(x, t)
µ2(x, t)

...
µd(x, t)

 , σ(x, t) :=


σ11(x, t) σ12(x, t) . . . σ1m(x, t)
σ21(x, t) σ22(x, t) . . . σ2m(x, t)

...
σd1(x, t) σd2(x, t) . . . σdm(x, t)

 ,

with functions µi, σij : Rd × R+
0 → R, (x, t) 7→ µi(x, t), σij(x, t). Furthermore, the

column vector W(t) = (W1(t), . . . ,Wm(t))> ∈ Rm in (2.1) contains m independent
standard Brownian motions. The process X(t) with dynamics (2.1) is assumed to
model the time evolution of at least one financial underlying.

We consider a European style financial derivative with payoff function Rd 3 x 7→
g(x) ∈ R and maturity T > 0 written on X. Then, if r(t) denotes the (deterministic)
continuously compounded risk free, the value V (x, t) of the derivative is

(2.2) V (x, t) = E
[
e−

∫ T
t r(u)dug(X(T )) | X(t) = x

]
.

Under certain conditions satisfied by the problem data µ,σ, r, g, the Feynman-Kac
theorem (see e.g. [HS00]) states that the function V equivalently solves the partial
differential equation

(2.3)

{
∂tV +AV − r(t)V = 0 in G× [0, T [

V (x, T ) = g(x) in G
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where A is the generator of the process X and where G ⊂ Rd. If X is as in (2.1),
then the generator is

(2.4) Af :=
1

2
tr[σ(x, t)σ(x, t)>D2f ] + µ(x, t)>∇f .

Herein, D2f = (∂xixjf)1≤i,j≤d and ∇f = (∂x1f, . . . , ∂xdf)> denote the Hessian and

the gradient, respectively, of f . Furthermore, tr[M] =
∑d

i=1mi,i denotes the trace
of a d× d-matrix M.

Example 2.1. i) In the multivariate Black-Scholes model, the d underlying
follow a d-dimensional geometric Brownian motion, where µi(x, t) = (r −
qi)xi (qi ≥ 0 denotes the continuous dividend yield of the i-th underlying)
and

σ(x, t) =


x1

x2
. . .

xd

L .

The d× d-matrix L is such that LL> = Σ = (σij), the covariance-matrix of
the log-returns ln(Xi(t)/Xi(0)) of the underlying. Thus, the ij-entry of the
matrix σ(x, t)σ(x, t)> is σijxixj and the generator A becomes

A =
1

2

d∑
i,j=1

σijxixj∂xixj +
d∑
i=1

(r − qi)xi∂xi .

For d = 2 in particular, we have with x := x1, y := x2 and σii := σ2i (the
variance of the i-th underlying)

(2.5) A =
1

2
σ21x

2∂xx +
1

2
σ22y

2∂xx + σ12xy∂xy + (r − q1)x∂x + (r − q2)y∂y .

The domain G is in this case (x, y) ∈ G = R+ × R+.
ii) The Jacobi-Heston model is introduced in [AFP18] and is a generalisation of

the benchmark stochastic volatility model of Heston [Hes93]. In this model,
the bivariate process X(t) := (X(t), V (t))>, where X(t) is the underlying
and V (t) denotes its (stochastic) variance, solves (under an non-unique mar-
tingale measure) the system (2.1) with coefficients

µ(x, t) =

(
(r − q)x
κ(m− v)

)
, σ(x, t) =

(
ρ
√
Q(v)x

√
v − ρ2Q(v)x

δ
√
Q(v) 0

)
.

Herein, x = (x, v) and the function Q is, for a minimum and maximum level
variance 0 ≤ vmin < vmax, given as

Q(v) :=
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

≥ 0 .
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Applying (2.4), the generator becomes

(2.6) A =
1

2
vx2∂xx +

1

2
δ2Q(v)∂vv + ρδxQ(v)∂xv + (r − q)x∂x + κ(m− v)∂v .

The domain G is G = R+×]vmin, vmax[.

The described European style setting can be relaxed to certain exotic derivatives,
for which the payoff g depends on additional stochastic factors derived from X(t).
See section 5 for examples. For the rest of this note, we restrict to two stochastic
factors, d = 2, and assume for simplicity time-independent coefficients µ(x), σ(x).
Thus, we consider pricing problems taking the form: Find V = V (x, y, t) such that

(2.7)

{
∂tV +AV − r(t)V = 0 in G× [0, T [

V (x, y, T ) = g(x, y) in G
,

where the operator A is given by

(2.8) A = a1(x, y)∂xx + a2(x, y)∂yy + a3(x, y)∂xy + b1(x, y)∂x + b2(x, y)∂y

for some bivariate functions ai, bi and c, and where the domain is G =]xl, xr[×]yl, yr[
for some −∞ ≤ xl < xr ≤ ∞, −∞ ≤ yl < yr ≤ ∞. To solve the PDE (2.7) by the
finite-difference-method, we change to the time-to-maturity t 7→ T − t and restrict
the domain G if necessary to an open finite rectangular set, i.e, xl,r as well as yl,r are
real numbers. Furthermore, we need to set conditions for the unknown function on
the boundary ∂G of G. In this regard, we assume that the n-th (partial) derivative

(n = 0, 1, 2) with respect to x and/or y on ∂G vanishes, i.e., ∂
(n)
x w(xl,r, y, t) = 0 and

∂
(n)
y w(x, yl,r, t) = 0. Thus, the truncated version of (2.7) is a particular case of the

problem: Find w(x, y, t) such that

(2.9)



∂tw +Aw + c(x, y)w = 0 in G×]0, T ]

∂
(nxl

)
x w(xl, y, t) = 0 in ]yl, yr[×]0, T ]

∂
(nxr )
x w(xr, y, t) = 0 in ]yl, yr[×]0, T ]

∂
(nyl

)
y w(x, yl, t) = 0 in ]xl, xr[×]0, T ]

∂
(nyr )
y w(x, yr, t) = 0 in ]xl, xr[×]0, T ]

w(x, y, 0) = g(x, y) in G

with A as in (2.8). Note that for certain pricing problems, some of the boundary
conditions in (2.9) might be void, i.e., the PDE holds also on subsets of the boundary
∂G of G and no conditions for w are needed on these subsets. To investigate wether
a boundary condition has to be set, we employ the theory of PDEs of second order
with non-negative characteristic form, see for example [OR73].

2.1. Do we need boundary conditions? For nxl = nxr = nyl = nyr = 0, the
PDE (2.9) is a particular problem of the following abstract equation. For a given
set Ω ⊂ Rn with boundary B := ∂Ω and given functions f(z), ω(z) consider the
problem: Find w(z) such that

(2.10)

{
Lw = f in Ω
w = ω in B2 ∪ B3

.



32 LINES OF CODE TO PRICE TWO FACTOR DERIVATIVES 6

The sets B2,B3 ⊂ B are subsets of the boundary of Ω and are defined below. Note
that on the remaining boundary B \ (B2 ∪B3) no conditions on w are set. In (2.10),
the operator L is - for given functions qij , bi, c - defined as

L :=
n∑

i,j=1

qij(z)∂zizj +
n∑
j=1

bj(z)∂zj + c(z) .

We collect the n2 functions qij in the n × n-matrix Q = (qij) and the n functions
bi in the column vector b = (bi). Furthermore, we assume that Q is symmetric. If
there holds for all z ∈ Ω

ξ>Q(z)ξ ≥ 0 ∀ξ ∈ Rn ,
then the equation (2.10) is called a second-order PDE with non-negative character-
istic. All linear pricing problems fall into this class of PDEs, see the example 2.2
below. For which points z ∈ B on the boundary B we need to specify a boundary
condition or not depends wether the characteristic vanishes. To be more precise,
for z ∈ B consider its unit inward normal vector ν = (ν1, . . . , νn)> and divide the
boundary B into the subsets B0 and B3 as follows

B0 := {z ∈ B | ν>Q(z)ν = 0}
B3 := {z ∈ B | ν>Q(z)ν > 0} = B \ B0 .

Furthermore, for z ∈ B0 consider the so-called Fichera function

(2.11) β(z) :=

n∑
i=1

(
bi(z)−

n∑
j=1

∂zjqij(z)
)
νi .

On the subset B0 the characteristic of the PDE is zero and we further subdivide B0
into the subsets (depending on the sign of β)

B0 = B0 ∪ B1 ∪ B2
with

B0 := {z ∈ B0 | β(z) = 0}
B1 := {z ∈ B0 | β(z) > 0}
B2 := {z ∈ B0 | β(z) < 0} .

Thus, we have split the boundary B into the four subsets B = B0 ∪B1 ∪B2 ∪B3; we
do not need to specify a boundary condition on B0 ∪ B1.

Example 2.2. Consider the Jacobi-Heston model in example 2.1 with generator A
as in (2.6). The truncated pricing problem −∂tw + Aw − rw = 0 has then to be
solved on Ω :=]0, xr[×]vmin, vmax[×]0, T [. The matrix Q and the vector b read for
z = (x, v, t)

(2.12) Q(z) =

 1
2vx

2 1
2ρδxQ(v) 0

1
2ρδxQ(v) 1

2δ
2Q(v) 0

0 0 0

 , b(z) =

 (r − q)x
κ(m− v)
−1

 .
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Hence, the characteristic is

ν>Q(z)ν =
1

2
vx2ν21 + ρδxQ(v)ν1ν2 +

1

2
δ2Q(v)ν22

from which is it possible to prove that it is indeed non-negative (the eigenvalues
of Q are ≥ 0, compare with the appendix A.1). We study the sign of the char-
acteristic on all six faces of the cube Ω. The five faces where the characteris-
tic is zero (the set B0) are {0}×]vmin, vmax[×]0, T [, ]0, xr[×{vmin, vmax}×]0, T [ and
]0, xr[×]vmin, vmax[×{0, T}. Thus, on the remaining face (the set B3) we need to
a specify boundary condition. In particular, on the face {xr}×]vmin, vmax[×]0, T [
we need to specify w(xr, v, t) = ω1(v, t) for some function ω1. To find the splitting
B0 = B0 ∪ B1 ∪ B2, we calculate the Fichera function

β(z) =
(
(r − q)x− (vx+ ρδxQ′(v))

)
ν1

+
(
κ(m− v)− (ρδQ(v) +

1

2
δ2Q′(v))

)
ν2 − ν3 .

Since Q′(v) = (−2v + vmin + vmax)/(
√
vmax −

√
vmin)2, we have for the five faces

belonging to B0

• the face {0}×]vmin, vmax[×]0, T [. Since x = 0 (zero stock price) and ν =
(1, 0, 0)> we have β = 0, such that this face belongs to B0 and no boundary
condition has to be set.
• the face ]0, xr[×{vmin}×]0, T [. Since Q(vmin) = 0 and ν = (0, 1, 0)> we have
β = κ(m− vmin)− 1

2δ
2Q′(vmin), such that we need no boundary condition if

(2.13) κ(m− vmin) ≥ 1

2
δ2

vmax − vmin

(
√
vmax −

√
vmin)2

.

• the face ]0, xr[×{vmax}×]0, T [. Since Q(vmax) = 0 and ν = (0,−1, 0)> we
have β = −κ(m − vmax) + 1

2δ
2Q′(vmax), such that we need no boundary

condition if

(2.14) κ(m− vmax) ≤ 1

2
δ2

vmin − vmax

(
√
vmax −

√
vmin)2

.

• the face ]0, xr[×]vmin, vmax[×{0}. Since ν = (0, 0, 1)> we find β = −1 such
that this face belongs to B2 and we have to specify a boundary condition
w(x, v, 0) = ω2(x, v). Because t = 0 (zero time-to-maturity, i.e., physical
time equal to maturity) the function ω2 is the payoff function of the option.
• the face ]0, xr[×]vmin, vmax[×{T}. Since ν = (0, 0,−1)> there holds β = 1

and this face belongs to B1. There is no boundary condition needed (we
solve the PDE by some time stepping scheme up to t = T ).

The conditions (2.13) and (2.14) can be summarised as

(2.15) δ2
vmax − vmin

(
√
vmax −

√
vmin)2

≤ 2κmin{m− vmin, vmax −m} ;

this is the condition such that the variance process V (t) stays in the interval
]vmin, vmax[ for all t ≥ 0, compare with [AFP18, Theorem 2.1]. If (2.15) is violated,
we need to specify a boundary condition on the faces ]0, xr[×{vmin, vmax}×]0, T [.
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In the next section, we develop a second order finite-difference-method to solve
(2.9) numerically under the assumption that the coefficient functions ai, bi and c
factorise with respect to the coordinates.

3. Finite difference method

We first discretise the PDE (2.9) in space; the resulting linear system of ODEs
(with respect to time) is then approximatively solved by a time-marching scheme.

3.1. Finite difference discretisation with respect to space. As mentioned
above, we now assume that the functions ai, bi and c in (2.8) can be written as
products

(3.1) ai(x, y) = axi (x)ayi (y), bi(x, y) = bxi (x)byi (y), c(x, y) = cx(x)cy(y)

for univariate functions axi , a
y
i , b

x
i , b

y
i and cx, cy. The idea of the finite-difference-

method is to consider the PDE not for all (x, y) ∈ G but only for a finite number
of (equidistant) grid points (with Nx, Ny ∈ N× and hx = (xr − xl)/(Nx + 1), hy =
(yr − yl)/(Ny + 1))

(xi, yj) ∈ G := {(xl + ihx, yl + jhy) | i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1} ⊂ G

and to replace at these grid points the partial derivatives by their corresponding
finite difference quotients. To do so, we introduce the following difference-operators

δxhf(x, y) :=
f(x+ h, y)− f(x− h, y)

2h

δykf(x, y) :=
f(x, y + k)− f(x, y − k)

2k

δ2,xh f(x, y) :=
f(x− h, y)− 2f(x, y) + f(x+ h, y)

h2

δ2,yk f(x, y) :=
f(x, y − k)− 2f(x, y) + f(x, y + k)

k2

δx,yh,kf(x, y) :=
f(x− h, y − k)− f(x+ h, y − k)− f(x− h, y + k) + f(x+ h, y + k)

4hk

The PDE in (2.9) thus becomes with (3.1) at grid points (xi, yj), i = 1, . . . , Nx,
j = 1, . . . , Ny,

∂tw(xi, yj , t) + ax1(xi)a
y
1(yj)δ

2,x
hx
w(xi, yj , t) + ax2(xi)a

y
2(yj)δ

2,y
hy
w(xi, yj , t)

+ ax3(xi)a
y
3(yj)δ

x,y
hx,hy

w(xi, yj , t) + bx1(xi)b
y
1(yj)δ

x
hxw(xi, yj , t)

+ bx2(xi)b
y
2(yj)δ

y
hy
w(xi, yj , t) + cx(xi)c

y(yj)w(xi, yj , t) = 0 +O(h2x) +O(h2y) .

By replacing w(xi, yj , t) with wi,j(t), the above is equivalent to the linear system of
N := NxNy ODEs

(3.2)

{
w′(t) + Aw(t) = 0

w(0) = g
,
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where the `-th component of the (column) vector w(t) is given by

w`(t) = w(j−1)Nx+i(t) = wi,j(t) , i = 1, . . . , Nx , j = 1, . . . , Ny .

Similarly, the `-th component of w′(t) is ∂tw`(t) = ∂tw(j−1)Nx+i(t) = ∂twi,j(t) and
the `-th component of g is g` = g(j−1)Nx+i = g(xi, yj). Furthermore, if we set
Dirichlet conditions on ∂G, i.e., nxl = nxr = nyl = nyr = 0 in (2.9), then the
N ×N -matrix A in (3.2) is a sum of Kronecker products

A := M
(0)

ay1
⊗M

(2)
ax1

+ M
(2)

ay2
⊗M

(0)
ax2

+ M
(1)

ay3
⊗M

(1)
ax3

(3.3)

+M
(0)

by1
⊗M

(1)
bx1

+ M
(1)

by2
⊗M

(0)
bx2

+ M
(0)
cy ⊗M

(0)
cx .

For a function f and k ∈ {0, 1, 2}, the matrices M
(k)
f are defined in [Hil19]. For

non-Dirichlet boundary conditions, we have to use non-centered finite-difference-

quotients and the matrices M
(k)
f have to be changed to matrices r

lM
(k)
f . Here, the

lower prescript l ∈ {n, s, i} indicates the typ of the boundary condition on the
left boundary of the corresponding interval and the upper prescript r ∈ {n, s, i}
specifies the condition on the right boundary of the interval. The letter n stands for
a Neumann condition, the letter s means that the second derivative is specified, and
i indicates that we solve the PDE also on the boundary (no boundary condition is

needed in this case). The matrices r
lM

(k)
f are defined in [Hil19].

Example 3.1. Consider the pricing equation for a plain vanilla option in the Jacobi-
Heston model. We have seen in example 2.2 that if the condition (2.15) is vio-
lated, we need to specify conditions on the faces ]0, xr[×{vmin, vmax}×]0, T [. Sup-
pose we set a homogeneous second derivative on these faces, i.e., ∂vvw(x, vmin, t) =
∂vvw(x, vmax, t) = 0. If we additionally set a homogenous Neumann condition on
the set B3 = {xr}×]vmin, vmax[×]0, T [, then, according to the generator A in (2.6),
the matrix A in (3.3) becomes

A := M(0)
v ⊗ iM

(2)

− 1
2
x2

+ s
sM

(2)

− 1
2
δ2Q(v)

⊗ iM
(0)
1 + s

sM
(1)
−ρδQ(v) ⊗ iM

(1)
x

+M
(0)
1 ⊗ iM

(1)
−(r−q)x + s

sM
(1)
−κ(m−v) ⊗ iM

(0)
1 + M

(0)
1 ⊗ iM

(0)
r .

3.2. Time stepping. The finite difference discretisation (with respect to space) of
the pricing PDE (2.3) leads to the system (3.2) of ordinary differential equations
satisfied by the w`(t). These functions approximate at the grid points (xi, yj) the
value of the option under consideration, w`(t) ≈ V (xi, yj , T − t). The system (3.2)
has the closed form solution w(T ) = e−ATg. Typically, the matrix A has a large
dimension such that calculating the matrix exponential is infeasible. Thus, it is
computationally (much) better to approximate w(T ) by some time-stepping scheme.
Applying the so-called Padé approximation of order 2 to e−x (see e.g. [Tho06]), we
end up with the Crank-Nicolson time stepping scheme as follows. Chose M ∈ N×,
let tj = jk, j = 0, 1, . . . ,M with k = T

M the time step. Set w0 = g and let wj be

an approximation to w(tj). For θ = 1
2 and for j = 0, 1, . . . ,M − 1 successively solve
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the systems

(3.4)
(
I + kθA

)
wj+1 =

(
I− k(1− θ)A

)
wj .

The `-th component w`,M of the vector wM is then an approximation to V (xi, yj , 0).
We will not apply (3.4), since the matrix A has a large bandwidth such that solving
the corresponding M linear systems is slow.

A square matrix M has upper bandwidth q if mi,j = 0 for j > i + q and lower
bandwidth p if mi,j = 0 for i > j + p. The matrix A in (3.4) is a sum of Kronecker
products, whence its bandwidths are O(Nx) (recall that Nx denotes the number of
inner grid points in the interval ]xl, xr[) with constants that depend on the boundary
conditions. Indeed, let α := 1{nxl

=3} + 1{nxr=3} ∈ {0, 1, 2} and define, for n ∈
{0, 1, 2, 3} the functions

n 7→ β(n) := 1 + n− 1{n>0} ∈ {1, 2, 3}, n 7→ γ(n) := 2 · 1{n≥2} + 1{n<2} ∈ {1, 2} .

Then, the matrix A has lower (p) and upper (q) bandwidth

p ≤ max{β(nyr)(Nx + α), γ(nyr)(Nx + α) + γ(nxr)}
q ≤ max{β(nyl)(Nx + α), γ(nyl)(Nx + α) + γ(nxl)}

and so does the matrix I + kθA (unless θ = 0, and the scheme becomes explicit in
this case). Clearly, solving a (sparse) linear system becomes the faster the smaller
the bandwidths are. For example, if M is n× n-matrix with p, q � n, then solving
Mx = f via LU factorization without pivoting requires about 2n(pq + p + q) flops,
see [GVL13]. The idea of any so-called Alternating Direction Implicit (ADI) time-
stepping scheme is to avoid solving systems with large bandwidths. To do so, we
split the matrix A into the sum A = A0 + A1 + A2 with

A0 := M
(1)

ay3
⊗M

(1)
ax3

A1 := M
(0)

ay1
⊗M

(2)
ax1

+ M
(0)

by1
⊗M

(1)
bx1

+
1

2
M

(0)
cy ⊗M

(0)
cx(3.5)

A2 := M
(2)

ay2
⊗M

(0)
ax2

+ M
(1)

by2
⊗M

(0)
bx2

+
1

2
M

(0)
cy ⊗M

(0)
cx .

We now observe that the matrix A1 has bandwidths which are independent of Nx

and are given by p ≤ β(nxr) and q ≤ β(nxl). Furthermore, the matrix A2 can be
made small-banded by some suitable permutation, see below and figure 1. Only the
matrix A0 is not and can not be made small-banded, such that any ADI scheme
treats this term explicit.

Classical ADI schemes are the Douglas scheme, the (modified) Craig-Sneyd scheme
and the scheme proposed by Hundsdorfer and Verwer (HV), which we apply in the
present situation. For a description and a stability analysis of the mentioned schemes
see [I’HM13]. The HV scheme reads as follows: For w0 = g and j = 0, . . . ,M − 1
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do

(3.6)


y0 =

(
I− kA

)
wj(

I + kθAi

)
yi = yi−1 + kθAiwj , i = 1, 2
z0 = y0 − 1

2kA(y2 −wj)(
I + kθAi

)
zi = zi−1 + kθAiy2, i = 1, 2

wj+1 = z2

Note that the two systems involving the matrix B1 := I + kθA1 are small-banded
and their solution can be therefore calculated efficiently. The matrix B2 := I+kθA2,
however, is still large-banded with p ≤ β(nyr)(Nx + α) and q ≤ β(nyl)(Nx + α). As
an example, consider the Jacobi-Heston model from example 3.1. Herein, we have
nxl = 3, nxr = 1 (such that α = 1) and nyl = nyr = 2 and the matrix

A2 = M
(2)

− 1
2
δ2Q(v)

⊗M
(0)
1 + M

(1)
−κ(m−v) ⊗M

(0)
1 +

1

2
M

(0)
1 ⊗M(0)

r

has p = q = β(2)(Nx + 1) = 2(Nx + 1), compare also with figure 1. A typical
summand of B2 (respectively A2) is of the form Y⊗X, where Y denotes a matrix
in the y-coordinate direction and X denotes a matrix in the x-coordinate direction.
Whereas the matrix Y ⊗X is not small-banded, the matrix X ⊗Y is, and we try
therefore to solve a system involving the matrix X ⊗Y instead of Y ⊗X. This is
possible since for matrices X ∈ Rn×n and Y ∈ Rm×m there exists a perfect shuffle
matrix Pnm×nm with P>P = PP> = I and such that

Y⊗X = P(X⊗Y)P> .

Using these properties of P, it is easy to see that solving (Y ⊗X)w = f for w is
equivalent to solving (X⊗Y)w̃ = P>f for w̃ and then setting w = Pw̃. In the HV
scheme (3.6), the matrix A2 from (3.5) need thus to be replaced by the matrix

(3.7) Ã2 = M
(0)
ax2
⊗M

(2)

ay2
+ M

(0)
bx2
⊗M

(1)

by2
+

1

2
M

(0)
cx ⊗M

(0)
cy .

For example, the matrix Ã2 corresponding to the Heston-Jacobi model has p =
q = 2. For the definition and calculation of the matrix P we refer, for instance, to
[HS81].

Hence, in each time step of (3.6), we do not solve one large-banded system as in

(3.4), but four small-banded systems (two involving A1, two involving Ã2). The
latter is by factors faster than the former.

Whereas Matlab’s mldivide (the backslash operator) recognises the structure of
the sparse matrix and uses then a (sparse) banded solver, Python does not seem to
provide any solver for sparse banded systems. As a consequence, we use Python’s
solve banded, which however requires the extraction of all the non-zero k-th diag-

onals of the matrices A1 and Ã2, compare with the Python code below.
We denote by w`,M the `-th component of the vector wM . If the payoff function

g is continuous, the fully discrete scheme (3.6) yields approximations w`,M to the
solution w(xi, yj , T ), ` = (j − 1)Nx + i, of the PDE (2.9) satisfying

eh,k := |w`,M − w(xi, yj , T )| = O(h2x) +O(h2y) +O(k2) .
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Figure 1. Sparsity pattern of the matrices A2 (left) and Ã2 =
P>A2P (right) for the Jacobi-Heston model. For better visibility,
we use Nx = 31 inner grid points in ]0, xr[ and Ny = 7 inner grid
points in ]vmin, vmax[. Due to the chosen boundary conditions, these
matrices have dimension (Nx + 1)Ny× (Nx + 1)Ny = 224× 224; only
672 entries are non zero. For the matrix A2 the bandwidths are
p = q = 2(Nx + 1) = 64; for the matrix Ã2 there holds p = q = 2.
In the HV scheme (3.6), we avoid therefore solving linear systems
involving A2.

In terms of the total number of unknowns N = NxNy there holds eh,k = O(N−1) (if

we let the number of time steps M = O(
√
N)). More generally, the above described

fully discrete scheme of order two applied to derivatives pricing problems involving
d stochastic factor yields convergence rates at most

eh,k = O(N−
2
d ) .

The curse of dimensionality is clearly visible.

4. Code

The considerations of the previous sections lead to the following pseudo-code to
find the approximative value of a two-factor derivative. Note/recall that n = 0 indi-
cates a Dirichlet boundary condition, n = 1 a Neumann boundary condition, n = 2
the second derivative and n = 3 no boundary condition. The input parameters
to the routine are the problem dependent “parameters” given by the coefficients
axi (x), ayi (y), i = 1, 2, 3, bxi (x), byi (y), i = 1, 2 and cx(x)cy(y) of the PDE, the ini-
tial condition g(x, y), the domain G =]xl, xr[×]yl, yr[, and the type of boundary
conditions (via nxl , nxrnyl , nyr). Furthermore, we have to specify the discretisation
parametersNx, Ny (number of (inner) grid points in ]xl, xr[ and ]yl, yr[, respectively),
M (number of time steps) and θ ∈ [0, 1] in the HV scheme (3.6). The perfect shuffle
matrix P is also taken as an input. The routine called pricing 2d then returns the
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array of all grid points (xi, yj) ∈ G as well as the functions values w(xi, yj , T ) of
w(x, y, t) at these grid points at time t = T .

Define the functions axi , a
y
i , b

x
i , b

y
i , c

x, cy, and g. Define T > 0.
Define xl, xr, yl, yr ∈ R, nxl , nxr , nyl , nyr ∈ {0, 1, 2, 3}.
Chose Nx, Ny,M ∈ N×. Chose θ ∈ [0, 1]. Set k := T/M .

Get the matrices Ai, i = 0, 1, 2, in (3.5), and the matrix Ã2 in (3.7),
boundary conditions already incorporated.

Define the matrices A := A0 + A1 + A2, B := I− kA.

Define the matrices B0 := k/2A, B1 := I + θkA1, B2 := I + θkÃ2.
Define the matrices Ci := kθAi, i = 1, 2. Set w0 := g.

For j = 0, . . . ,M − 1,
Set y0 := Bwj . Solve the system B1y1 = y0 + C1wj .

Solve the system B2ỹ2 = P>(y1 + C1wj). Set y2 := Pỹ2.
Set z0 := y0 + B0(wj − y2). Solve the system B1z1 = z0 + C1y2.

Solve the system B2z̃2 = P>(z1 + C2y2). Set wj+1 := Pz̃2.

Output the array G of grid points and the function values wM

at these grid points.

Table 1. Description of the fully discrete scheme to solve the PDE (2.9)
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In Matlab/Octave, the pseudo code may thus take the following form. The sub-
routine matgen outputs for any of the discussed boundary conditions the matrices
r
lM

(k)
f , see the appendix A.2.

1 function [x,y,w] = pricing_2d(a,b,c,T,g,G,BC,N,M,P,theta)

2

3 % some aux vars

4 xl = G(1); xr = G(2); yl = G(3); yr = G(4);

5 hx = (xr -xl)/(N(1)+1); hy = (yr-yl)/(N(2)+1); k = T/M;

6 nxl = BC(1); nxr = BC(2); x = (xl -(nxl ==3)*hx:hx:xr+(nxr ==3)*hx) ’;

7 nyl = BC(3); nyr = BC(4); y = (yl -(nyl ==3)*hy:hy:yr+(nyr ==3)*hy) ’;

8

9 % the matrices

10 [M2a1x ,M1a3x ,M1b1x ,M0a2x ,M0b2x ,M0cx] = matgen ({{’M2’,a{1}},{’M1’,a{5}} ,...

11 {’M1’,b{1}},{’M0’,a{3}},{’M0’,b{3}},{’M0’,c{1}}} ,BC(1:2) ,xl ,xr,N(1));

12 [M2a2y ,M1a3y ,M1b2y ,M0a1y ,M0b1y ,M0cy] = matgen ({{’M2’,a{4}},{’M1’,a{6}} ,...

13 {’M1’,b{4}},{’M0’,a{2}},{’M0’,b{2}},{’M0’,c{2}}} ,BC(3:4) ,yl ,yr,N(2));

14

15 A1 = kron(M0a1y ,M2a1x)+kron(M0b1y ,M1b1x)+1/2* kron(M0cy ,M0cx);

16 A2 = kron(M2a2y ,M0a2x)+kron(M1b2y ,M0b2x)+1/2* kron(M0cy ,M0cx);

17 A2t = kron(M0a2x ,M2a2y)+kron(M0b2x ,M1b2y)+1/2* kron(M0cx ,M0cy);

18 A0 = kron(M1a3y ,M1a3x);

19

20 A = A0+A1+A2; I = speye(length(A)); B = I-k*A; B0 = 0.5*k*A; PT = P’;

21 B1 = I+theta*k*A1; B2 = I+theta*k*A2t; C1 = k*theta*A1; C2 = k*theta*A2;

22

23 % initial condition

24 [x,y] = ndgrid(x(2:N(1) +1+( nxl ==3)+(nxr ==3)),y(2:N(2) +1+( nyl ==3)+(nyr ==3)));

25 w = g(x,y); w = w(:);

26

27 % HV time -stepping

28 for j = 1:M

29 y0 = B*w; y1 = B1\(y0+C1*w); y2 = B2\(PT*(y1+C2*w)); y2 = P*y2;

30 z0 = y0+B0*(w-y2); z1 = B1\(z0+C1*y2); w = B2\(PT*(z1+C2*y2)); w = P*w;

31 end

32 w = reshape(w,N(1)+(nxl ==3)+(nxr ==3),N(2)+(nyl ==3)+(nyr ==3));

The corresponding Python code is (significantly) longer, since solve banded re-

quires not the matrices A1 and Ã2 directly, but all their non-zero diagonals. The
extraction of those is provided by the sub-function get diagonals.

1 import numpy as np; from matgen import matgen;

2 from scipy import sparse; from scipy.linalg import solve_banded

3

4 def get_diagonals(B,nl,nr):

5 bp1 = np.concatenate ((np.asarray ([0]) ,np.diag(B,1))); b0 = np.diag(B,0)

6 bm1 = np.concatenate ((np.diag(B,-1),np.asarray ([0])))

7 M = np.vstack ((bp1 ,b0,bm1))

8

9 if nl >1: # upper

10 for j in range(1,nl):

11 b = np.concatenate ((np.zeros(j+1),np.diag(B,j+1))); M = np.vstack

((b,M))
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12

13 if nr >1: # lower

14 for j in range(1,nr):

15 b = np.concatenate ((np.diag(B,-j-1),np.zeros(j+1))); M = np.

vstack ((M,b))

16

17 return M

18

19 def pricing_2d(a,b,c,T,g,G,BC,N,M,P,theta):

20

21 # some aux vars

22 xl = G[0]; xr = G[1]; yl = G[2]; yr = G[3]

23 hx = (xr -xl)/(N[0]+1); hy = (yr-yl)/(N[1]+1); k = T/M

24 nxl = BC[0]; nxr = BC[1]; x = np.arange(xl -(nxl ==3)*hx,xr+hx+(nxr ==3)*hx,

hx)

25 nyl = BC[2]; nyr = BC[3]; y = np.arange(yl -(nyl ==3)*hy,yr+hy+(nyr ==3)*hy,

hy)

26 beta = lambda n:1+n-(n>0);

27

28 # the matrices

29 Matx = matgen ([["M2",a[0]],["M1",a[4]] ,["M1",b[0]],["M0",a[2]],

30 ["M0",b[2]],["M0",c[0]]] ,[nxl ,nxr],xl,xr ,N[0])

31 Maty = matgen ([["M2",a[3]],["M1",a[5]] ,["M1",b[3]],["M0",a[1]],

32 ["M0",b[1]],["M0",c[1]]] ,[nyl ,nyr],yl,yr ,N[1])

33

34 A1 = (sparse.kron(Matx[0],Maty [3])+sparse.kron(Matx[2],Maty [4])+

35 0.5* sparse.kron(Matx[5],Maty [5]))

36 A1t = (sparse.kron(Maty[3],Matx [0])+sparse.kron(Maty[4],Matx [2])+

37 0.5* sparse.kron(Maty[5],Matx [5]))

38 A2 = (sparse.kron(Matx[3],Maty [0])+sparse.kron(Matx[4],Maty [2])+

39 0.5* sparse.kron(Matx[5],Maty [5]))

40 A0 = sparse.kron(Matx[1],Maty [1])

41

42 I = sparse.eye((N[0]+( nxr ==3)+(nxl ==3))*(N[1]+( nyr ==3)+(nyl ==3)))

43 A = A0+A1+A2; B1 = I+k*theta*A1t; B2 = I+k*theta*A2; B0 = 0.5*k*A

44 B = I-k*A; C1 = k*theta*A1; C2 = k*theta*A2; PT = P.T;

45 B1 = get_diagonals(B1.A,nxl ,nxr); B2 = get_diagonals(B2.A,nyl ,nyr)

46

47 # initial condition

48 x = np.linspace(xl+(1-(nxl ==3))*hx,xr -(1-(nxr ==3))*hx,N[0]+( nxl ==3)+(nxr

==3))

49 y = np.linspace(yl+(1-(nyl ==3))*hy,yr -(1-(nyr ==3))*hy,N[1]+( nyl ==3)+(nyr

==3))

50 y,x = np.meshgrid(y,x); w = g(x,y); w = w.flatten(’C’)

51

52 #HV scheme

53 for j in range(0,M):

54 y0 = B*w; y1 = solve_banded ((beta(nxr),beta(nxl)),B1,PT*(y0+C1*w));

55 y1 = P*y1; y2 = solve_banded ((beta(nyr),beta(nyl)),B2,y1+C2*w);

56 z0 = y0+B0*(w-y2); z1 = solve_banded ((beta(nxr),beta(nxl)),B1,PT*(z0+

C1*y2));

57 z1 = P*z1; w = solve_banded ((beta(nyr),beta(nyl)),B2,z1+C2*y2)
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58

59 w = np.reshape(w,(N[0]+( nxl ==3)+(nxr ==3),N[1]+( nyl ==3)+(nyr ==3)))

60

61 return x,y,w

5. Examples

In this section, we give examples which fit into framework of the pricing problem
(2.3). For each of these, we provide (uncommented) Matlab and Python codes.
Whereas both languages yield the same prices, Matlab is typically two to three
times faster than Python.

5.1. European call in the Jacobi-Heston model. We consider a European call
option with strike K and maturity T in the Jacobi-Heston model, compare with
example 2.1. We solve the PDE on the domain [0, xr[×]vmin, vmax[, hence we set
no boundary condition on the set {0}×]vmin, vmax[. We assume that the condition
(2.15) is not satisfied such that we need to specify boundary conditions. We chose
homogeneous second derivatives on [0, xr[×{vmin, vmax}, i.e., nyl = nyr = 2 in (2.9).
Additionally, we consider a homogeneous Neumann condition on {xr}×]vmin, vmax[,
i.e., nxr = 1.

The function calljacobiheston realises this in Matlab/Octave (note that nxl =
3; no boundary condition)

1 function V = calljacobiheston(x0,y0,K,T,r,q,param)

2

3 delta = param (1); kappa = param (2); m = param (3);

4 vmin = param (4); vmax = param (5); rho = param (6);

5

6 L = [10 ,5]; N = 2.^L-1; M = ceil (0.05* max(N));

7 Q = @(v)(v-vmin).*(vmax -v)/(sqrt(vmax)-sqrt(vmin))^2;

8 a = {@(x) -0.5*x.^2,@(y)y,@(x) -0.5* delta ^2*x.^0,@(y)Q(y),@(x)-rho*delta*x,@(y)

Q(y)};

9 b = {@(x) -(r-q)*x,@(y)y.^0,@(x)x.^0,@(y)-kappa*(m-y)}; c = {@(x)r*x.^0,@(y)y

.^0};

10 g = @(x,y)max(x-K,0).*y.^0; G = [0 4*K vmin vmax];

11

12 BC = [3 1 2 2]; P = perm_matrix(N(2)+(BC(3) ==3)+(BC(4) ==3) ,...

13 N(1)+(BC(1) ==3)+(BC(2) ==3));

14 [x,y,w] = pricing_2d(a,b,c,T,g,G,BC,N,M,P,1);

15

16 V = interpn(x,y,w,x0,y0);

respectively in Python

1 import numpy as np; from pricing_2d import pricing_2d

2 from scipy.interpolate import interpn; from perm_matrix import perm_matrix

3

4 def calljacobiheston(x0 ,y0,K,T,r,q,param):

5

6 delta = param [0]; kappa = param [1]; m = param [2];

7 vmin = param [3]; vmax = param [4]; rho = param [5];

8
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9 L = np.asarray ([10 ,5]); N = 2**L-1; M = np.int(np.ceil (0.05* max(N)));

10 Q = lambda v: (v-vmin)*(vmax -v)/(np.sqrt(vmax)-np.sqrt(vmin))**2;

11

12 a = [lambda x: -0.5*x**2, lambda y:y,lambda x: -0.5* delta **2*x**0,

13 lambda y:Q(y),lambda x:-rho*delta*x,lambda y:Q(y)];

14 b = [lambda x:-(r-q)*x,lambda y:y**0, lambda x:x**0, lambda y:-kappa *(m-y)

];

15 c = [lambda x:r*x**0, lambda y:y**0];

16 g = lambda x,y: np.maximum(x-K,0)*y**0; G = [0,4*K,vmin ,vmax];

17

18 BC = [3,1,2,2];

19 P = perm_matrix(N[0]+(BC [0]==3) +(BC [1]==3) ,N[1]+( BC [2]==3) +(BC [3]==3))

20

21 [x,y,w] = pricing_2d(a,b,c,T,g,G,BC,N,M,P,1)

22

23 return interpn ((x.T[0],y[0]),w,(x0 ,y0))

Now consider the particular example of a call option with strikeK ∈ {e−0.1, e0, e0.1}
and maturity T = 1/12 written on a stock with initial price x0 = 1 which pays no
dividend, q = 0. The model parameters are chosen to be

{δ, κ,m, vmin, vmax, ρ} = {1, 0.5, 0.04, 10−4, 0.08,−0.5} .

Note that for this choice of the parameter values the condition (2.15) is not satisfied.
The risk free is r = 0. The function calljacobiheston then gives call prices V ∈
{0.0969003, 0.0221449, 0.0008354}. In [AFP18], the authors state the corresponding
(model) implied volatilities σimpl ∈ {22.75%, 19.23%, 19.25%}, which lead to option
prices V ∈ {0.0969001, 0.0221433, 0.0008347} via the Black-Scholes formula. We
remark that Matlab finds the option values about 3 times faster than Python.

5.2. Discretely monitored Lookback option in the CEV model. For t ≥ 0,
let St be a subset of R+

0 with St ⊂ Ss for t < s. Let X(t) , t ≥ 0, be a stochastic
process with continuous paths. We define the maximum and minimum process of
X as follows

Xmax(t) := max
τ∈St

X(τ), Xmin(t) := min
τ∈St

X(τ) ,

For continuous monitoring, we have St = [0, t], for discrete monitoring, there holds
St = {tj ∈ T | tj ≤ t} for some (finite) set T := {t0, t1, t2, . . . , tJ} of observation
dates tj with t0 = 0 and tj < tj+1. The payoff of a fixed strike lookback option with
strike K and maturity T is

max{Xmax(T )−K, 0}

if it is a call and

max{K −Xmin(T ), 0}
if it is a put. The value of a (call) option depends on the vector process X(t) =
(X(t), Xmax(t))>;

V (x,m, t) = EQ[e−r(T−t)g(Xmax(T )) | (X(t), Xmax(t)) = (x,m)] .
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If the monitoring is discrete, then V is the solution of the following sequence of J+1
PDEs. Let t0 = 0 and tJ+1 = T . For j = J + 1, J, . . . , 1 successively solve

(5.1)

{
∂tVj +AVj − rVj = 0 in G× [tj−1, tj [

Vj(x,m, tj) = Vj+1(x, f(x,m), tj) in G

with VJ+2(x, f(x,m), tJ+1) = g(s,m) and domain G = R+ × R+, see for example
[ZWCS13]. The price of the lookback option at inception is then V1(x0, x0, 0). Note
carefully the different role played by the variable m. For a put, m denotes the
running minimum of X whereas for a call it denotes the maximum of X. Hence, the
function f appearing in the continuitiy condition Vj(x,m, tj) = Vj+1(x, f(x,m), tj)
at tj is f(x,m) = min{x,m} for a put and f(x,m) = max{x,m} for a call. The
operator A is the infinitesimal generator of X(t); if we assume that the dynamics of
X follow the CEV model, there holds A = 1

2δ
2x2β∂xx + (r− q)x∂x, where δ > 0 and

β ∈ R are model parameters. To solve each PDE in (5.1) with pricing 2d, we switch
to time-to-maturity and restrict to the domain ]0, xr[×]0,mr[; on all four faces of
this domain we chose a homogeneous second derivative. We take Nx = Ny = 210−1
(inner) grid points in each coordinate direction and M = d2/JNxe time steps with
θ = 1 in the HV scheme. Note that since A operates in the x-coordinate direction
only, the matrix A0 in the splitting (3.5) is the zero-matrix and A2 is diagonal.
Hence, an application of the HV scheme is not necessary in this particular case and
it would be sufficient to apply the Crank-Nicolson time stepping (3.4).

The function lookbackcev below gives the price of a fixed strike lookback put.
Tau is array containing the observation dates T .

1 function V = lookbackcev(x0,beta ,delta ,r,q,T,K,Tau)

2

3 J = length(Tau); Tau = [0,Tau]; tau = diff(Tau); G = [0 2 0 2]*x0;

4 a = {@(x) -0.5* delta ^2*x.^(2* beta),@(y)y.^0,@(x)0*x,@(y)0*y,@(x)0*x,@(y)0*y};

5 b = {@(x) -(r-q)*x,@(y)y.^0,@(x)0*x,@(y)0*y}; c = {@(x)r*x.^0,@(y)y.^0};

6 g = @(x,y)max(K-y,0); BC = [2 2 2 2]; f = @(x,y)min(x,y);

7

8 L = [9,9]; N =2.^L-1; M = ceil (1/J*max(N));

9 P = perm_matrix(N(2)+(BC(3) ==3)+(BC(4) ==3),N(1)+(BC(1) ==3)+(BC(2) ==3));

10

11 [x,y,w] = pricing_2d(a,b,c,T-Tau(end),g,G,BC,N,M,P,1);

12 for j = 1:J

13 g = @(x,y)interpn(x,y,w,x,f(x,y));

14 [x,y,w] = pricing_2d(a,b,c,tau(end+1-j),g,G,BC,N,M,P,1);

15 end

16

17 V = interpn(x,y,w,x0,x0);

and in Python

1 import numpy as np; from pricing_2d import pricing_2d

2 from scipy.interpolate import interpn; from perm_matrix import perm_matrix

3

4 def lookbackcev(x0 ,beta ,delta ,r,q,T,K,Tau):

5

6 J = len(Tau); Tau = np.hstack ((0,Tau)); tau = np.diff(Tau);
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7 G = np.asarray ([0,2,0,2])*x0;

8 a = [lambda x: -0.5* delta **2*x**(2* beta),lambda y:y**0, lambda x:0*x,lambda

y:0*y,lambda x:0*x,lambda y:0*y];

9 b = [lambda x:-(r-q)*x,lambda y:y**0, lambda x:0*x,lambda y:0*y];

10 c = [lambda x:r*x**0, lambda y:y**0];

11 g = lambda x,y:np.maximum(K-y,0); BC = [2,2,2,2];

12 f = lambda x,y: np.minimum(x,y);

13

14 L = np.asarray ([10 ,10]); N = 2**L-1; M = np.int(np.ceil (1/J*max(N)));

15 P = perm_matrix(N[0]+(BC [0]==3) +(BC [1]==3) ,N[1]+( BC [2]==3) +(BC [3]==3)).

tocsr();

16

17 [x,y,w] = pricing_2d(a,b,c,T-Tau[-1],g,G,BC ,N,M,P,1);

18 for j in range(1,J+1):

19 g = lambda x,y: interpn ((x.T[0],y[0]),w,(x,f(x,y)))

20 [x,y,w] = pricing_2d(a,b,c,tau[J-j],g,G,BC ,N,M,P,1);

21

22 return interpn ((x.T[0],y[0]),w,(x0 ,x0))

We now consider the particular case of J equidistant observation dates tj = j
J T

and a put with strike K = 105 and maturity T = 0.5. The underlying has value
s0 = 100 and pays no dividend, q = 0. The CEV parameters are set to β = 0.5 and

δ = 0.25/(sβ−10 ), the risk free is r = 0.1. For these values and the number J of obser-
vation dates J ∈ {52, 104, 252, 504, 1008} the function lookbackcev finds the option
prices V (x0, x0, 0)

.
= {14.5402, 14.8829, 15.1860, 15.3480, 15.4602}. In [SMF14], the

authors state the values V (x0, x0, 0) = {14.5430, 14.8864, 15.1910, 15.3542, 15.4709}.
We do not compare computation times for this example, since the interpolation re-
quired by the update Vj(x,m, tj) = Vj+1(x, f(x,m), tj) is slow in Python.

5.3. Autocallable Multi Barrier Reverse Convertible in the BS model.
Multi Barrier Reverse Convertibles (MBRC) are structures products written on
d > 1 underlyings. There are different versions of MBRCs available on the market
(ordinary, callable, autocallable), in this example we focus on autocallable MBRCs.
The specification of the redemption of such a MRBC is as follows. If there was no
early redemption, then the holder of the product (with nominal N) receives (at the
redemption date) the cash flow of the corresponding ordinary MRBC

(5.2) g = C(J) +N −N max
{

1−min
i

Xi(T )

Ki
, 0
}

1{∃i∈{1,2,...,d}|mint∈]0,T ]Xi(t)≤Bi} ,

where X(t) = (X1(t), . . . , Xd(t))
> denotes the price of all involved underlyings Xi(t)

at time t, Ki is the strike price of the i-th underlying (typically, Ki = Xi(0)), and
Bi < Xi(0) is the barrier of the i-the underlying, i = 1, . . . , d. The indicator function
1{·} returns the value 1 if any of the underlyings hits its barrier (from above) during
the period ]0, T ], and zero else. In (5.2), C(J) denotes the value at time T of the
coupon payments (with size C) the investor receives at the coupon payment dates
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tCj ∈ T C := {tC1 , tC2 , . . . , tCJ }, i.e.,

(5.3) C(J) := C

J∑
j=1

er(T−t
C
j ) .

If an early redemption occurs at a (pre-defined) autocall observation date tAh , the
product expires immediately and the holder receives (at the next corresponding
coupon payment date tCj ) the denomination plus the coupon amount, N +C. Typi-

cally, there are J ≥ H > 1 autocall observation dates T A := {tA1 , tA2 , . . . , tAH} and the
last of these dates is equal to the maturity of the product, T = tAH . Furthermore,
there are a few days between the observation dates tAh and the following coupon

payment date tCJ−H+h and the time spans δh := tRh − tAJ−H+h have to be taken into
account when it comes to the pricing of the product. An early redemption occurs
if all underlyings at the autocall observation date tAh are at or above their early

redemption level `i, i.e., if Xi(t
A
h ) ≥ `i, ∀i. Usually, `i = Xi(0) = Ki. We collect the

early redemption levels in the vector ` = (`1, `2, . . . , `d).
In the following, assume `i = Ki, ∀i. To understand the pricing of the product via

PDEs, assume for a brief moment that there is only one observation date tA1 before
maturity, i.e., H = 2. If at tA2 = T all the underlyings are at or above the early
redemption level, the investor receives C + N . Since the investor did also receive
all previous coupon payments (at dates tCj ), the time T -value of all the received

cash flows is C(J) + N . Note that since `i = Ki, miniXi(T )/Ki ≥ 1 in this case
and the cash flow C(J) + N is equal to g in (5.2). If at tA2 at least one of the
underylings is below the early redemption level, the investor receives at tCJ the cash
flow g in (5.2). Hence, no matter which value Xi(T ) the underlyings may take at
maturity, the payoff function is equal to g2 := g in (5.2). Thus, in the time interval
t ∈ [tA1 , T [, we solve the PDE ∂tV

2 + AV 2 − rV 2 = 0 with the terminal condition
V 2(x, T ) = g2(x)e−rδ2 for the unknown value function V 2(x, t). To apply the pricing
function pricing 2d, we need to split the payoff g2. Since

1{∃i∈{1,2,...,d}|mint∈]0,T ]Xi(t)≤Bi} = 1− 1{∀i∈{1,2,...,d}|mint∈]0,T ]Xi(t)>Bi}

we can write g2 = g21 − (g22 − g̃23), where

g21 := C(J) +N

g22 := N max
{

1−min
i

Xi(T )

Ki
, 0
}

g̃23 := g221{∀i∈{1,2,...,d}|mint∈]0,T ]Xi(t)>Bi} .

The options with payoffs g21 and g22 are of European style and the corresponding
pricing equations have to be solved on the domain Gi = R+× . . .×R+, i = 1, 2. The
option with payoff g̃23 is a (multivariate version of a) down-and-out barrier option;
it becomes worthless if at least one of the underlyings hits its barrier from above
(Xi(0) > Bi). Whence, the corresponding pricing PDE (with terminal condition g22)
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has to be solved on the domain

G3 :=]B1,∞[×]B2,∞[× . . . ,×]Bd,∞[

subject to zero Dirichlet boundary conditions. Since the operator ∂t + A − rId is
linear, we obtain the value of the product at time tA1 by solving the PDEs (note that
g23 = g22) {

∂tV
2
i +AV 2

i − rV 2
i = 0 in Gi × [tA1 , T [

V 2
i (x, T ) = g2i (x)e−rδ2 in Gi

.

To find the value of the option at inception, we need to solve the same PDEs
once more, but with different “payoff” functions. Indeed, suppose that at tA1 all
underlyings are at or above the early redemption level. In this case, the product
expires and the investor receives (at the next coupon payment date tCJ−1) the cash
flow N+C; since she also received all the previous coupons, the payoff of the product
(at tA1 ) is (N+C(J−1))e−rδ1 , with C(j) as in (5.3). If at least underlying is below the
early redemption level, the autocallable MBRC corresponds to an ordinary MBRC.
Thus, to find the value V = V 1(x, 0) = V 1

1 (x, 0)−V 1
2 (x, 0)+V 1

3 (x, 0) of the product
we solve the PDEs{

∂tV
1
i +AV 1

i − rV 1
i = 0 in Gi × [0, tA1 [

V 1
i (x, tA1 ) = g1i (x) in Gi

subject to the terminal conditions

g11(x) := (C(J − 1) +N)e−rδ11{x≥`} + V 2
1 (x, tA1 )(1− 1{x≥`})

g12(x) := V 2
2 (x, tA1 )(1− 1{x≥`})

g13(x) := V 2
3 (x, tA1 )(1− 1{x≥`}) .

Herein, the indicator function 1{a≥b} has - for vectors a := (a1, . . . , ad) and b :=
(b1, . . . , bd) - to be understood component wise, i.e.,

1{a≥b} :=
d∏
i=1

1{ai≥bi} .

For a general number of early redemption dates, we thus need to solve a sequence
of 3H PDEs as follows. For h = H,H − 1, . . . , 1 successively solve (i = 1, 2, 3)

(5.4)

{
∂tV

h
i +AV h

i − rV h
i = 0 in Gi × [tAh−1, t

A
h [

V h
i (x, tAh−1) = ghi (x) in Gi

where, for h = H,

gH1 (x) = (C(J) +N)e−rδH , gH2 (x) = gH3 (x) = N max
{

1−min
i

xi
Ki
, 0
}
e−rδH ,

and for h = H − 1, H − 2, . . . , 1,

gh1 (x) := (C(J −H + h) +N)e−rδh1{x≥`} + V h+1
1 (x, tAh−1)(1− 1{x≥`})

gh2 (x) := V h+1
2 (x, tAh−1)(1− 1{x≥`})

gh3 (x) := V h+1
3 (x, tAh−1)(1− 1{x≥`}) .
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The value of an autocallable MBRC at inception is then V =
∑3

i=1(−1)i+1V 1
i (x0, 0).

Now we consider two underlyings from which we assume that the joint dynam-
ics X(t) := (X(t), Y (t))> follow a two-dimensional geometric Brownian motion.
Hence, the operator A in (5.4) is given by (2.5). We switch to time-to-maturity
and restrict the PDEs to bounded domains. In particular, we restrict G1 and G2 to
[0, xr[×[0, yr[ and solve the corresponding equations up to the boundaries {0}×]0, yr[
and ]0, xr[×{0}. In the equations for V h

i we chose a homogeneous Neumann (Dirich-
let) condition on ]0, xr[×{yr} and on {xr}×]0, yr[ if i = 1 (i = 2). Furthermore, we
set homogeneous Dirichlet conditions on the whole boundary of G3. The function
mbrc autocall bs (see below) is a realisation of the sequence (5.4). Herein, x0, q, K,
B and l are all vectors/arrays of length d = 2 containing the stock prices (x0, y0) at
t = 0, the continuous dividend yields (q1, q2) of the stocks, the strikes (K1,K2), the
barriers (B1, B2) and the early redemption levels (`1, `2). Furthermore, TauC and
TauA are vectors/arrays containing (in increasing order) the coupon payment dates
tCj and the early redemption dates tAh , respectively. Finally, S is (a point-estimator

of) the covariance matrix

Σ =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
of (the log-returns of) the stocks. The function mbrc autocall bs becomes in Mat-
lab

1 function V = mbrc_autocall_bs(x0,S,r,q,K,B,l,Nom ,C,TauC ,TauA)

2

3 H = length(TauA); c = C/Nom;

4 U = exp(-r*TauC); U = cumsum(U); R = U.*exp(r*TauC);

5

6 D = exp(-r*(TauC(end+1-H:end)-TauA)); R = R(end+1-H:end).*D;

7 Tau = [0; TauA]; tau = diff(Tau);

8 L = [9 9]; N = 2.^L-1; M = ceil (0.1* max((N))); theta = 1;

9 a = {@(x) -0.5*S(1,1)*x.^2,@(y)y.^0,@(x)x.^0,@(y) -0.5*S(2,2)*y.^2 ,...

10 @(x)-S(1,2)*x,@(y)y};

11 b = {@(x) -(r-q(1))*x,@(y)y.^0,@(x)x.^0,@(y)-(r-q(2))*y};

12 cf = {@(x)r*x.^0,@(y)y.^0};

13

14 g1 = @(x,y)x.^0.*y.^0*(D(end)+c*R(end));

15 g2 = @(x,y)max(1-min(x/K(1),y/K(2)) ,0)*D(end); g3 = g2;

16

17 BC1 = [3 1 3 1]; G1 = [0 4*x0(1) 0 4*x0(2)];

18 P1 = perm_matrix(N(2)+(BC1(3) ==3)+(BC1 (4) ==3),N(1)+(BC1(1) ==3)+(BC1 (2) ==3));

19 BC2 = [3 0 3 0]; BC3 = [0 0 0 0]; G2 = [B(1) 5*B(1) B(2) 5*B(2)];

20 P2 = perm_matrix(N(2)+(BC3(3) ==3)+(BC3 (4) ==3),N(1)+(BC3(1) ==3)+(BC3 (2) ==3));

21

22 tic

23 for h = 1:H

24 [x1 ,y1,w1] = pricing_2d(a,b,cf,tau(end+1-h),g1,G1,BC1 ,N,M,P1,theta);

25 g1 = @(x,y)(x1 >=l(1)).*(y1 >=l(2))*(D(end -h)+c*R(end -h))+w1.*(1-(x1 >=l(1))

.*(y1 >=l(2)));

26 [x2 ,y2,w2] = pricing_2d(a,b,cf,tau(end+1-h),g2,G1,BC2 ,N,M,P1,theta);

27 g2 = @(x,y)w2.*(1 -(x2 >=l(1)).*(y2 >=l(2)));
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28 [x3 ,y3,w3] = pricing_2d(a,b,cf,tau(end+1-h),g3,G2,BC3 ,N,M,P2,theta);

29 g3 = @(x,y)w3.*(1 -(x3 >=l(1)).*(y3 >=l(2)));

30 end

31 toc

32 V = Nom*interpn(x1 ,y1,w1 ,x0(1),x0(2))-Nom*( interpn(x2,y2 ,w2,x0(1),x0(2)) -...

33 interpn(x3,y3,w3 ,x0(1),x0(2)));

and in Python, respectively.

1 import numpy as np; from pricing_2d import pricing_2d

2 from perm_matrix import perm_matrix; from scipy.interpolate import interpn

3 import timeit

4

5 def mbrc_autocall_bs(x0 ,S,r,q,K,B,l,Nom ,C,TauC ,TauA):

6

7 H = len(TauA); c = C/Nom;

8 U = np.exp(-r*TauC); U = np.cumsum(U); R = U*np.exp(r*TauC);

9

10 D = np.exp(-r*(TauC[H-2:]- TauA)); R = R[H -2:]*D;

11 Tau = np.hstack ((0,TauA)); tau = np.diff(Tau);

12 L = np.asarray ([9 ,9]); N = 2**L-1; M = np.int(np.ceil (0.1* max(N))); theta

= 1;

13 a = [lambda x: -0.5*S[0 ,0]*x**2, lambda y:y**0, lambda x:x**0, lambda y:-0.5*

S[1 ,1]*y**2, lambda x:-S[0 ,1]*x,lambda y:y];

14 b = [lambda x:-(r-q[0])*x,lambda y:y**0, lambda x:x**0, lambda y:-(r-q[1])*

y];

15 cf = [lambda x:r*x**0, lambda y:y**0];

16

17 g1 = lambda x,y: x**0*y**0*(D[-1]+c*R[-1]);

18 g2 = lambda x,y: np.maximum(1-np.minimum(x/K[0],y/K[1]) ,0)*D[-1];

19 g3 = lambda x,y: np.maximum(1-np.minimum(x/K[0],y/K[1]) ,0)*D[-1];

20

21 tic = timeit.default_timer ();

22 BC1 = [3,1,3,1]; G1 = [0,4*x0[0],0,4*x0 [1]];

23 P1 = perm_matrix(N[0]+( BC1 [0]==3) +(BC1 [1]==3) ,N[1]+( BC1 [2]==3) +(BC1

[3]==3));

24 BC2 = [3,0,3,0]; BC3 = [0,0,0,0]; G2 = [B[0],5*B[0],B[1],5*B[1]];

25 P2 = perm_matrix(N[0]+( BC3 [0]==3) +(BC3 [1]==3) ,N[1]+( BC3 [2]==3) +(BC3

[3]==3));

26

27

28 for h in range(0,H):

29 [x1 ,y1,w1] = pricing_2d(a,b,cf,tau[H-1-h],g1,G1 ,BC1 ,N,M,P1,theta);

30 g1 = lambda x,y: (x1 >=l[0])*(y1 >=l[1])*(D[H-1-h]+c*R[H-1-h])+w1*(1-(

x1 >=l[0])*(y1 >=l[1]));

31 [x2 ,y2,w2] = pricing_2d(a,b,cf,tau[H-1-h],g2,G1 ,BC2 ,N,M,P1,theta);

32 g2 = lambda x,y: w2*(1-(x2 >=l[0])*(y2 >=l[1]));

33 [x3 ,y3,w3] = pricing_2d(a,b,cf,tau[H-1-h],g3,G2 ,BC3 ,N,M,P2,theta);

34 g3 = lambda x,y: w3*(1-(x3 >=l[0])*(y3 >=l[1]));

35

36 toc = timeit.default_timer (); display(toc -tic)

37



32 LINES OF CODE TO PRICE TWO FACTOR DERIVATIVES 24

38 V = Nom*interpn ((x1.T[0],y1[0]),w1,x0)-Nom*( interpn ((x2.T[0],y2[0]),w2 ,x0

)

39 -interpn ((x3.T[0],y3[0]),w3,x0));

40 return V

We now consider the particular example of such a product (with ISIN
CH0434743727) on AMS and Logitech SA where t = 0 corresponds to 10/10/18 with
X(0) = x0 = (x0, y0) = (47.54, 39.13) and where N = 1000, J = 8, H = 5, `1 =
K1 = x0, `2 = K2 = y0, (B1, B2) = (26.147, 21.5215) and C = 25. Furthermore,
the coupon payment dates and the early redemption dates are tC1 = 17/01/19,
tC2 = 17/04/19, tC3 = 17/07/19, tC4 = 17/10/19, tC5 = 17/01/20, tC6 = 17/04/20,
tC7 = 17/07/20, tC8 = 17/10/20 as well as tA1 = 10/10/19, tA2 = 10/01/20, tA3 =
08/04/20, tA4 = 10/07/20, tA5 = 12/10/20. To measure time spans, we apply the
so-called 30/360 European rule, which leads to the sets (all values need to be divided
by 360)

T C = {tC1 , . . . , tCJ } = {97, 187, 277, 367, 457, 547, 637, 729}
T A = {tA1 . . . , tAH} = {360, 450, 539, 630, 722} .

At t = 0, we take from Bloomberg the values q1 = ln(1.01362), q2 = ln(1.01867) and
r = −0.00473. To get the covariance matrix Σ, we use a time series of prices of the
underlyings up to t = 0 and estimate σ1 = 0.391, σ2 = 0.207 and ρ = 0.503. The
function mbrc autocall bs then returns V (x0, 0)

.
= 988.37. Matlab is about 1.75

times faster than Python.
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Appendix

A.1. The eigenvalues of Q. We show that the eigenvalues of the matrix Q defined
in (2.12) are non-negative, for all (x, v) ∈ R+

0 × [vmin, vmax]. The characteristic
polynomial is

pQ(λ) = −λ
[(1

2
vx2 − λ

)(1

2
δ2Q(v)− λ

)
− 1

4
ρ2δ2x2Q2(v)

]
.

Clearly, λ = 0 is an eigenvalue. The other eigenvalues are solutions of the quadratic
equation λ2 + bλ + c = 0 with b := −1

2(vx2 + δ2Q(v)) and c := 1
4(δ2x2vQ(v) −

δ2ρ2x2Q2(v)). The corresponding discriminat can be simplified to

D :=
1

4

[(
vx2 − δ2Q(v)

)2
+ 4δ2ρ2x2Q2(v)

]
≥ 0 .

Whence, the remaining eigenvalues are λ1,2 = 1
2(−b ±

√
D). Since x ≥ 0 and

Q(v) ≥ 0, we have that λ1 = 1
2(−b +

√
D) ≥ 0 and it remains to show that

λ2 = 1
2(−b−

√
D) ≥ 0. The inequality λ2 ≥ 0 is equivalent to the inequality

vx2 + δ2Q(v) ≥
√(

vx2 − δ2Q(v)
)2

+ 4δ2ρ2x2Q2(v) ;

since the quantities to the left and to the right of this inequality are ≥ 0, it is
furthermore equivalent to(

vx2 + δ2Q(v)
)2 ≥ (vx2 − δ2Q(v)

)2
+ 4δ2ρ2x2Q2(v)

and - after simplification - to

(A.5) vQ(v) ≥ ρ2Q2(v) .

For v ∈ {vmin, vmax}, Q(v) = 0 and the inequality (A.5) obviously holds. If v ∈
]vmin, vmax[, Q(v) > 0 and (A.5) further reduces to v ≥ ρ2Q(v). From [AFP18] we
know that v ≥ Q(v), and since ρ2 ∈ [0, 1], the inequality v ≥ ρ2Q(v) therefore holds.
Thus, λ2 ≥ 0 and we are done.
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A.2. Matlab/Python code matgen. The function matgen outputs matrices rlM
(k)
f .

1 % matgen(list ,BC ,xl,xr,N) returns NxN -matrices M_f^(k), k = 0,1,2, for

2 % given boundary conditions defined in BC.

3 %

4 % Example. [Mkj means the jth matrix M_f^(k)]

5 %

6 % [M21 ,M22 ,M11 ,M01] = matgen(list ,BC ,xl,xr,N)

7 %

8 % with the list

9 %

10 % list = {{’M2’,@(x)x.^2},{’M2’,@(x)x},{’M1’,@(x)x},{’M0’,@(x)x.^0}}

11 %

12 % and boundary conditions BC = [1 2] (0 = Dirichlet , 1 = Neumann ,

13 % 2 = second derivative , 3 intrinsic) returns the finite -difference -quotients

14 % matrices M21 and M22 belonging to x^2*u’’(x) and x*u’’(x), respectively ,

15 % the matrix M11 belonging to x*u’(x) and the matrix M01 corresponding to u(x

)

16 % over the interval G = [xl ,xr]. On the left boundary a Neumann condition

17 % is given , on the right boundary the second derivative is specified.

18

19 function varargout = matgen(list ,BC,xl ,xr,N)

20

21 % aux vars

22 h = (xr-xl)/(N+1); x = (xl-h:h:xr+h)’; nl = BC(1); nr = BC(2);

23 hd = @(x)0.5*x.^2 -1.5*x+1; hn = @(x)-x.^2+2*x; hs = @(x)0.5*(x.^2-x);

24

25 % the matrices M_f^(k)

26 for k = 1: length(list)

27 str = list(k); str = str {:};

28 typ = str (1); typ = typ {:}; f = str(2); f = f{:};

29 if strcmp(typ ,’M2’)

30 M = 1/h^2* spdiags ([f(x(3:N+4)) ,-2*f(x(2:N+3)),f(x(1:N+2))],...

31 -1:1,N+2,N+2);

32 if nl == 3, M(1 ,1:4) = f(xl)/h^2*[2 -5 4 -1];

33 else

34 M(1,:) = []; M(:,1) = [];

35 M(1 ,1:3) = f(x(3))/(h^2)*(hd(nl)*[-2 1 0]+...

36 hn(nl)*[-2/3 2/3 0]+hs(nl)*[1/2 -1 1/2]);

37 end

38 if nr == 3, M(end ,end -3:end) = f(xr)/h^2*[-1 4 -5 2];

39 else

40 M(end ,:) = []; M(:,end) = [];

41 M(end ,end -2:end) = f(x(N+2))/(h^2)*(hd(nr)*[0 1 -2]+...

42 hn(nr)*[0 2/3 -2/3]+hs(nr)*[1/2 -1 1/2]);

43 end

44 elseif strcmp(typ ,’M1’)

45 M = 1/(2*h)*spdiags([-f(x(3:N+4)),zeros(N+2,1),f(x(1:N+2))],...

46 -1:1,N+2,N+2);

47 if nl == 3, M(1 ,1:3) = f(xl)/(2*h)*[-3 4 -1];

48 else

49 M(1,:) = []; M(:,1) = [];
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50 M(1 ,1:3) = f(x(3))/(2*h)*(hd(nl)*[0 1 0]+...

51 hn(nl)*[-4/3 4/3 0]+hs(nl)*[-5/2 3 -1/2]);

52 end

53 if nr == 3, M(end ,end -2:end) = f(xr)/(2*h)*[1 -4 3];

54 else

55 M(end ,:) = []; M(:,end)= [];

56 M(end ,end -2:end) = f(x(N+2))/(2*h)*(hd(nr)*[0 -1 0]+...

57 hn(nr)*[0 -4/3 4/3]+ hs(nr)*[1/2 -3 5/2]);

58 end

59 elseif strcmp(typ ,’M0’)

60 M = spdiags(f(x(2:N+3)) ,0,N+2,N+2);

61 if nl == 3; else M(1,:) = []; M(:,1) = []; end

62 if nr == 3; else M(end ,:) = []; M(:,end) = []; end

63 else

64 end

65 varargout(k) = {M};

66 end

1 import numpy as np; from scipy.sparse import spdiags

2

3 def matgen(matlist ,BC,xl,xr ,N):

4 ’’’matgen(list ,BC ,xl,xr,N) returns NxN -matrices M_f^(k), k = 0,1,2, for

5 given boundary conditions defined in BC.

6

7 Example. [Mkj means the jth matrix M_f^(k)]

8

9 Mat = matgen(matlist ,BC,xl ,xr,N)

10

11 with the list

12

13 matlist = [["M2",lambda x: x**2] ,["M2",lambda x: x],["M1",lambda x: x],["

M0",lambda x: 1]]

14

15 and boundary conditions BC = [1,2] (0 = Dirichlet , 1 = Neumann ,

16 2 = second derivative , 3 intrinsic) returns the finite -difference -

quotients

17 matrices M21 and M22 belonging to x^2*u’’(x) and x*u’’(x), respectively ,

18 the matrix M11 belonging to x*u ’(x) and the matrix M01 corresponding to u

(x)

19 over the interval G = [xl,xr]. On the left boundary a Neumann condition

20 is given , on the right boundary the second derivative is specified.’’’

21

22 # aux vars

23 h = (xr-xl)/(N+1); x = np.arange(xl-h,xr+2*h,h);

24 nl = BC[0]; nr = BC[1];

25 hd = lambda x: 0.5*x**2 -1.5*x+1; hn = lambda x:-x**2+2*x;

26 hs = lambda x: 0.5*(x**2-x)

27

28 U = [None]*len(matlist)*2; count = 0

29

30 # the matrices M_f^(k)

31 for j in range(0,len(matlist)):
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32 count =count +1; v = matlist[j]; f = v[1]

33 if v[0]=="M2":

34 U1 = 1/(h**2)*spdiags ([f(x[2:N+4]) ,-2*f(x[1:N+3]),f(x[0:N+2])],

35 [-1,0,1],N+2,N+2).tolil()

36 if nl==3:

37 U1[0 ,0:4] = f(xl)/h**2*np.array ([2,-5,4,1])

38 else:

39 U1 = U1[1: ,:]; U1 = U1[:,1:]

40 U1[0 ,0:3] = f(x[2])/h**2*(hd(nl)*np.array ([-2,1,0])+

41 hn(nl)*np.array ([ -2/3 ,2/3 ,0])+hs(nl)*np.array ([1/2 , -1 ,1/2])

)

42 if nr==3:

43 U1[-1,-4:] = f(xr)/h**2*np.array ([-1,4,-5,2])

44 else:

45 U1 = U1[:-1,:]; U1 = U1[:,:-1]

46 U1[-1,-3:] = f(x[N+1])/h**2*( hd(nr)*np.array ([0,1,-2])+

47 hn(nr)*np.array ([0 ,2/3 , -2/3])+hs(nr)*np.array ([1/2 , -1 ,1/2])

)

48

49 U[j] = U1.todia ()

50 elif v[0]=="M1":

51 U1 = 1/(2*h)*spdiags([-f(x[2:N+4]),np.zeros(N+2),f(x[0:N+2])],

52 [-1,0,1],N+2,N+2).tolil()

53 if nl==3:

54 U1[0 ,0:3] = f(xl)/(2*h)*np.array ([-3,4,-1])

55 else:

56 U1 = U1[1: ,:]; U1 = U1[:,1:]

57 U1[0 ,0:3] = f(x[2]) /(2*h)*(hd(nl)*np.array ([0,1,0])+

58 hn(nl)*np.array ([ -4/3 ,4/3 ,0])+hs(nl)*np.array

([-5/2,3, -1/2]))

59 if nr==3:

60 U1[-1,-3:] = f(xr)/(2*h)*np.array ([1,-4,3])

61 else:

62 U1 = U1[:-1,:]; U1 = U1[:,:-1]

63 U1[-1,-3:] = f(x[N+1]) /(2*h)*(hd(nr)*np.array ([0,-1,0])+

64 hn(nr)*np.array ([0 , -4/3 ,4/3])+hs(nr)*np.array ([1/2 , -3 ,5/2])

)

65

66 U[j] = U1.todia ()

67

68 else:

69 U1 = spdiags(f(x[1:N+3]) ,[0],N+2,N+2).tolil();

70 if nl <3: U1 = U1[1: ,:]; U1 = U1[: ,1:]

71 if nr <3: U1 = U1[:-1,:]; U1 = U1[:,:-1]

72

73 U[j] = U1.todia ()

74

75 return U

A.3. Matlab/Python code perm matrix. We provide the function which gener-
ates the perfect shuffle matrix Pnm×nm.
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1 function P = perm_matrix(n,m)

2 Im = speye(m); In = speye(n); P = sparse(m*n,m*n);

3 for j = 1:n, P((j-1)*m+1:j*m,:) = kron(Im,In(j,:)); end

1 import numpy as np; from scipy import sparse; from scipy.sparse import eye;

2 from scipy.sparse import vstack

3

4 def perm_matrix(n,m):

5 Im = eye(m,m); x = np.zeros(n); x[0] = 1.0; P = sparse.kron(Im,x)

6 for j in range(1,n):

7 x = np.zeros(n); x[j] = 1.0; P = vstack ([P,sparse.kron(Im ,x)])

8

9 return P
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