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Species distribution models (SDMs) are routinely applied to assess current as well as 
future species distributions, for example to assess impacts of future environmental 
change on biodiversity or to underpin conservation planning. It has been repeatedly 
emphasized that SDMs should be evaluated based not only on their goodness of fit 
to the data, but also on the realism of the modeled ecological responses. However, 
possibilities for the latter are hampered by limited knowledge on the true responses as 
well as a lack of quantitative evaluation methods. Here we compared modeled niche 
optima obtained from European-scale SDMs of 1476 terrestrial vascular plant species 
with empirical ecological indicator values indicating the preferences of plant species 
for key environmental conditions. For each plant species we first fitted an ensemble 
SDM including three modeling techniques (GLM, GAM and BRT) and extracted 
niche optima for climate, soil, land use and nitrogen deposition variables with a 
large explanatory power for the occurrence of that species. We then compared these 
SDM-derived niche optima with the ecological indicator values by means of bivari-
ate correlation analysis. We found weak to moderate correlations in the expected 
direction between the SDM-derived niche optima and ecological indicator values. 
The strongest correlation occurred between the modeled optima for growing degree 
days and the ecological indicator values for temperature. Correlations were weaker 
for SDM-derived niche optima with a more distal relationship to ecological indicator 
values (notably precipitation and soil moisture). Further, correlations were consis-
tently highest for BRT, followed by GLM and GAM. Our method gives insight into 
the ecological realism of modeled niche optima and projected core habitats and can 
be used to improve SDMs by making a more informed selection of environmental 
variables and modeling techniques.
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Introduction

Global biodiversity is currently declining at an unusually  
high rate (Butchart  et  al. 2010, Barnosky  et  al. 2011, 
Tittensor et al. 2014). This brings about a clear demand for 
quantitative models able to project changes in biodiversity in 
response to anthropogenic pressures as well as policy mea-
sures designed to counteract the decline (Pereira et al. 2010, 
Harfoot et al. 2014). Species distribution models (SDMs) are 
quantitative relationships between the occurrence of a spe-
cies and a set of environmental factors (Elith and Leathwick 
2009). These models help to reveal and understand the  
habitat preferences of a species and can be used to project  
its distribution as a function of changing environmental  
conditions, which in turn provides vital information in 
order to underpin biodiversity policy (Araújo  et  al. 2011, 
Visconti et al. 2016, Morán-Ordóñez et al. 2017).

SDMs have been applied to assess the impact of changes in 
environmental conditions, such as climate and land use, on 
a wide range of taxonomic groups, including plants, insects 
and vertebrates (Thuiller  et  al. 2004, Settele  et  al. 2008,  
Morán-Ordóñez  et  al. 2017). Confidence in projections 
of SDMs is typically achieved by means of testing against 
left-out data (Araújo  et  al. 2011, Dubuis  et  al. 2011, 
Mitchell  et  al. 2017). However, validation against left-out 
data may provide overly optimistic estimates of the mod-
els’ predictive ability due to a lack of independence of the 
testing data set (Heikkinen  et  al. 2012, Rapacciuolo  et  al. 
2012, Bahn and McGill 2013). Therefore, it has been repeat-
edly emphasized that SDMs should be evaluated not only 
based on their goodness of fit to data, but also based on their 
ecological realism (Austin et  al. 2006, Elith and Leathwick 
2009, Merow et  al. 2014). The selection of an ecologically 
relevant set of environmental variables is of crucial impor-
tance (Fourcade  et  al. 2017), in particular whether these 
are direct or indirect predictors of species occurrence and 
whether they are appropriate in relation to the grain size, 
extent and species of concern (Pearson and Dawson 2003, 
Austin 2007, Elith and Leathwick 2009). For example, it 
has been suggested that species’ distributions at large scales 
are primarily defined by climatic factors, whereas land use 
and soil properties become increasingly dominant at smaller 
extent and finer grain (Pearson and Dawson 2003). After the 
SDMs have been fitted, the ecological realism of the modeled 
species’ responses to the selected predictors should be evalu-
ated (Austin et al. 2006). However, possibilities are limited 
by a lack of knowledge on the true responses and a lack of 
quantitative approaches to evaluate the modeled responses 
(Austin et al. 2006, Austin 2007).

In this study, we use independent data on species niche 
optima to evaluate the ecological realism of SDMs. To that 
end, we evaluate to what extent SDMs of 1476 vascular plant 
species in Europe adequately capture niche optima based on 
a comparison with independent ecological indicator values. 
This increases our understanding of the ability of SDMs to 
accurately predict core habitat areas, which is key in studies 

aiming to project impacts of environmental change and in 
conservation planning. We used the modeled response curves 
from the SDMs to extract niche optima for various relevant 
habitat variables representative of climate (minimum temper-
ature, annual precipitation, growing degree days), pollution 
(nitrogen deposition), soil properties (carbon, silt and clay 
content, coarse fragments, pH and cation exchange capacity) 
and land use or land cover (arable land, pastures, heteroge-
neous agriculture, scrubs, forests, open spaces and inland 
wetlands). For each environmental variable and species, 
we extracted the niche optimum from the SDM (hereafter, 
modeled indicator value; MIV) as the value of that variable 
corresponding with the highest probability of occurrence. 
We then compared the MIVs with independent empirical 
ecological indicator values (EIVs) indicating the preferences 
of the plant species for various environmental conditions, 
expressed as realized niche optima on ordinal scales (Landolt 
1977, Ellenberg et al. 1991, 2001). EIVs have been derived 
for many vascular plant species occurring in Europe, based on 
field observations of species co-occurrence patterns, in-situ 
measured environmental factors and occasional experiments, 
and are available for various key habitat factors (tempera-
ture, continentality, soil moisture, soil nutrient availability, 
soil acidity, light availability and salinity) (Hill  et al. 1999, 
Ellenberg et al. 2001, Pignatti 2005).

Upfront, we expected to find relationships between MIVs 
and EIVs for pairs of variables representative of the same type 
of site conditions that are key to plants. More specifically, we 
expected the MIVs for growing degree days, annual precipita-
tion, nitrogen deposition and soil pH to be positively related 
to the EIVs for temperature, soil moisture, soil nutrient avail-
ability and soil acidity, respectively. Similarly, we expected 
negative relationships between the MIVs of mean tempera-
ture of the coldest month and forest cover and the EIVs of 
continentality and light availability, respectively. Because of 
the extent (Europe) and resolution (1 km) of our SDMs, we 
expected that the relationships would be stronger for the cli-
mate- and landscape-related EIVs (temperature, continental-
ity and light) than for the soil-related EIVs (soil moisture, 
soil nutrient availability and soil acidity), as soil properties 
are expected to become important for species distributions 
mostly at extents below 10 km and fine-grained resolution 
(Pearson and Dawson 2003). Further, we expected stron-
ger relationships if the environmental variable in the SDM 
was more similar or more directly related to the EIV (Austin 
2007, Petitpierre  et  al. 2017). From this perspective, we 
expected stronger relationships between the MIVs for grow-
ing degree days, soil pH and forest cover and the EIVs for 
temperature, soil acidity and light, respectively, than for the 
other three pairs of MIVs and EIVs. Overall, we therefore 
expected the strongest relationships for growing degree days 
with temperature and forest cover with light (i.e. representa-
tive scale and direct relationships), and the weakest relation-
ships for annual precipitation with soil moisture and nitrogen 
deposition with soil nutrients (i.e. small-scale variables and 
more distal relationships).
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Material and methods

Species

In order to limit computation time, we first retrieved a rep-
resentative selection of terrestrial vascular plant species in 
Europe. To that end, we selected species characteristic of 
distinct, terrestrial EUNIS habitat types that are included 
in the European Red List of Habitats (Janssen et al. 2016), 
and 10 additional anthropogenic habitat types derived from 
the EuroVegChecklist (Supplementary material Appendix 1 
Table A1; Mucina et al. 2016). Lists of characteristic spe-
cies are available for the EUNIS habitat types of forests  
(37 types), heathlands, shrub and tundra (38 types) and 
grasslands (50 types; Schaminée  et  al. 2013, 2014, 2015, 
2016). To identify species characteristic of the remaining 66 
EUNIS habitat types of coastal habitats, mires and bogs and 
sparsely vegetated habitats and of the 10 anthropogenic hab-
itat types, we used species lists reported by Hennekens et al. 
(2017). The selection procedure yielded a total of 4541 
vascular plant species (Supplementary material Appendix 1 
Text section A1).

Vegetation plots

We retrieved a total of 1 310 202 vegetation plots from 
the European Vegetation Archive (EVA; Chytrý  et  al. 
2016). An overview of datasets included is provided in the 
Supplementary material Appendix 1 Table A2. We excluded 
plots according to the following criteria.

1) plots located in ‘inland waters’, ‘marine waters’ and 
‘maritime wetlands’, according to the Corine Land Cover 
map (Hazeu et al. 2008).

2) plots recorded before 1990, to minimize temporal dif-
ferences between the plots and the environmental variables 
(see the section on environmental variables).

3) plots with a known spatial uncertainty larger than 1 km.
4) plots with missing values for one or more environmental 

variables.
With these selection criteria we retained 45% of the veg-

etation plots retrieved from EVA (= 599 038 plots) for further 
analysis (Supplementary material Appendix 1 Fig. A1). As we 
extracted the data in 2017, plots added after 2016 were not 
included.

Ecological indicator values

We used a dataset of ecological indicator values (EIVs) 
of temperature, continentality, soil moisture, soil nutri-
ent availability, soil acidity, light and salinity compiled by 
Louette et al. (2010), which was in turn based on the lists 
with ecological indicator values of plant species for central 
European (Ellenberg  et  al. 2001), Switzerland (Landolt 
1977), eastern Germany (Frank et al. 1990), Great Britain 
(Hill  et  al. 1999) and Italy (Pignatti 2005). Louette  et  al. 
(2010) harmonized the taxon names by adopting the names 
from the SynBioSys Taxon Database, which are also used in 

EVA (Chytrý et al. 2016). The scale used by Landolt (1977), 
which runs from 1 to 5, was linearly extrapolated to the gen-
eral scale of 1 to 9 and 1 to 12 for moisture (Louette et al. 
2010). The extended range of 1 to 12 that Pignatti (2005) 
used for the indicator values for light and temperature was 
retained, to reflect the wider range of climatic conditions 
than in the areas represented by the other lists, especially 
in the warmer southern part of Italy, where solar radiation 
is more direct (Louette  et  al. 2010). Per species and envi-
ronmental condition, the EIV is given as an integer that 
represents the optimum of the species on the corresponding 
ordinal scale. For species with different values of EIV in mul-
tiple lists, we calculated a mean EIV across the lists.

Environmental variables

We selected a set of environmental variables covering  
climate, soil, land cover and pollution (nitrogen deposi-
tion) (Table 1). For climate, we selected a set of variables 
which are known to pose physiological limitations on species 
distributions in Europe by imposing energy or water defi-
ciency (Whittaker  et  al. 2007, Araújo  et  al. 2011). These 
are mean temperature of the coldest month, total annual 
precipitation, annual growing degree days and a moisture 
index (Araújo et al. 2011). We calculated the moisture index 
as the sum of the monthly differences between precipitation 
and potential evapotranspiration (Heikkinen  et  al. 2010). 
To calculate monthly potential evapotranspiration (PET), 
we followed Skov and Svenning (2004):

PET 58.93 T above0 C /12( )= × °  (1)

where T(above 0°C) represents the monthly mean temper-
ature values above 0°C. We obtained the climatic variables 
from monthly mean temperature and precipitation values for 
the time period of 1979–2013 retrieved from the CHELSA 
data set (Karger et al. 2017). Soil variables included organic 
carbon, silt, sand and clay content, bulk density, volume of 
coarse fragments, pH and cation exchange capacity, which 
we retrieved from the SoilGrids dataset (Hengl et al. 2017). 
We selected values from the top 5 cm of the soil. Land cover 
was represented by the non-urban land cover types (classi-
fication level 2) of the Corine land cover map for the year 
2000 (Hazeu et al. 2008). We aggregated the land cover class 
of permanent crops, where less than 4000 vegetation plots 
were recorded, with the class of arable land (Table 1). Finally, 
we used nitrogen deposition in the year 2013 as a proxy for 
nitrogen input in the soil (Fagerli et al. 2015).

We resampled all continuous environmental variables 
to a 1 km resolution using the mean value, based on the 
ETRS89 Lambert Azimuthal Equal-Area projection. For 
the land cover variables we quantified the fraction of each 
type within the 1 km grid cell. In order to minimize collin-
earity while keeping both energy and water-related climate 
variable, we selected only variables with a variance inflation 
factor (VIF) below 5 for inclusion in the SDMs. This led to 
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the omission of the moisture index, sand content and bulk 
density. The first was positively correlated with total annual 
precipitation. Sand content had a negative correlation with 
clay and silt content. Bulk density was negatively correlated 
to the cation exchange capacity and carbon content. We used  
the remaining set of 17 variables to fit the SDMs and to 
retrieve modeled indicator values. We reduced the skewness 
of the distributions of total annual precipitation, annual 
growing degree days and nitrogen deposition by means of a 
square root transformation.

Fitting the SDMs

For each species we fitted an SDM based on three modeling  
techniques (generalized linear model, GLM; generalized 
additive model, GAM; boosted regression trees, BRT) 
that are frequently used and have proven to perform well 
(Rapacciuolo et al. 2012). Moreover, the range of complexity 
of the modeling techniques enabled us to capture simple linear 
or unimodal as well as skewed and more complex responses 
(Merow et al. 2014). We fitted the SDMs with the BIOMOD2 
package using default settings (ver. 3.3–7; Thuiller et al. 2016). 
In order to reduce spatial bias and pseudo-replication, we ran-
domly selected only one plot where the species was present 
per 1 km grid cell. We then selected species with at least 100 
presence points, thus ensuring about five presences per envi-
ronmental variable after setting aside 20% of the observations 
for model evaluation (17 variables × 5 observations/0.8 = 106 

observations, which we rounded down to 100). This left us 
with 1500 species for which we had enough presence points 
as well as EIVs available. Because of the large number of avail-
able vegetation plots (599 038 plots), we made a selection of 
absences for the model fitting, in order to limit calculation 
time. For each species we sampled absences from plots where 
the species was not recorded. We sampled the absences ran-
domly, such that for each species there was not more than 
one absence record per 1 km grid cell, equal to the selection 
of the presence records. For the GLM and GAM we used at 
least 10 000 absence records and for the BRT 1000 (Barbet-
Massin  et  al. 2012). When the number of presence records 
was larger than either 1000 or 10 000, we sampled a number 
of absence records equal to the number of presences. Presences 
and absences were given an equal weight in the model fitting. 
We calibrated the models using a single random sample of 
80% of the presences and absences and evaluated the models 
against the remaining 20% of the data. Then, we build for 
each species an ensemble model based on the three modeling 
techniques, each weighted based on the cross-validated TSS 
value. We discarded species if one or more of the modeling 
techniques did not converge, leaving 1481 of the 1500 spe-
cies. We further discarded species with an ensemble model 
with true skill statistic (TSS) values < 0.3 or area under the 
receiver operating characteristic curve (AUC) values < 0.7 
(Araújo et al. 2011). With these thresholds five more species 
were left out (Supplementary material Appendix 1 Table A3), 
leaving 1476 species for the final analysis.

Table 1. Environmental variables included in the models.

Variable Unit Data source Original resolution Reference

Mean temperature of the coldest month °C Chelsa 30 arc sec Karger et al. (2017)
Total annual precipitation mm Chelsa 30 arc sec Karger et al. (2017)
Annual growing degree days °C Chelsa 30 arc sec Karger et al. (2017)
Moisture index mm Chelsa 30 arc sec Karger et al. (2017)
Arable land and permanent crops (CLC-codes 

211–223)
ha ha−1 Corine land 

cover
100 m Hazeu et al. (2008)

Pastures (CLC-code 231) ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Heterogeneous agricultural areas (CLC-code 
241–244)

ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Scrub and/or herbaceous vegetation associations 
(CLC-code 321–324)

ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Forests (CLC-code 311–313) ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Open spaces with little or no vegetation 
(CLC-code 331–335)

ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Inland wetlands (CLC-code 411–412) ha ha−1 Corine land 
cover

100 m Hazeu et al. (2008)

Organic carbon content g kg−1 Soil Grids 1 km Hengl et al. (2017)
Clay content weight % Soil Grids 1 km Hengl et al. (2017)
Silt content weight % Soil Grids 1 km Hengl et al. (2017)
Sand content weight % Soil Grids 1 km Hengl et al. (2017)
Bulk density (fine earth) kg m−3 Soil Grids 1 km Hengl et al. (2017)
Coarse fragments volumetric volumetric % Soil Grids 1 km Hengl et al. (2017)
Cation exchange capacity of soil (CEC) cmolc kg−1 Soil Grids 1 km Hengl et al. (2017)
Soil pH × 10 in H2O pH Soil Grids 1 km Hengl et al. (2017)
Nitrogen deposition mg m−2 EMEP 0.1 degrees Fagerli et al. (2015)
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Retrieving modeled indicator values

We retrieved species-specific response curves for each vari-
able and modeling technique according to the Evaluation 
Strip method proposed by Elith  et  al. (2005), with the 
response.plot2 tool from the BIOMOD2 package (ver. 
3.3–7; Thuiller et al. 2016). Response curves were obtained 
by varying the variable of interest across its range while fix-
ing the other variables at their mean values across the plots 
where the species of concern was observed. We then cal-
culated species-specific ensemble response curves for each 
variable, as averages of the response curves of the individual 
modeling techniques each weighted by the respective cross-
validated TSS value, similar to the method to calculate 
the ensemble models. We further retrieved species-specific 
variable importance values for each variable and modeling 
technique, using the get_variables_importance tool from 
the BIOMOD2 package (ver. 3.3–7; Thuiller et al. 2016).  
The variable importance per modeling technique was  
calculated as 1 minus the Pearson’s correlation between the 
predictions of the full model and the predictions of the model 
where the variable of concern was randomized. We calculated 
the ensemble variable importance as weighted average of the 
variable importance values of the individual modeling tech-
niques, with the respective cross-validated TSS value as weight. 
Finally, for variables with an ensemble variable importance 
> 0.05, we extracted the modeled niche indicator values of 
each species (MIVs) from the ensemble response curve as 
the value of the environmental variable corresponding to the 
maximum probability of occurrence. In case of multiple val-
ues corresponding to the maximum occurrence probability, 
we calculated their median.

Data analysis

We assessed pairwise correlations between the MIVs and 
the EIVs by means of Spearman rank correlation analyses. 
To test the sensitivity of the correlations to the threshold of 
the ensemble variable importance, which was used to select 
the variables for which MIVs were extracted, we repeated the 
analysis with an ensemble variable importance threshold of 
0.1 instead of 0.05. To test whether the results were robust to 
differences in EIVs for species with different values in mul-
tiple lists, we repeated the analysis based on the minimum 
and maximum EIV values for species across lists. To assess 
possible differences among modeling techniques, we repeated 
the analysis with MIVs retrieved from the response curves 
specific to each modeling techniques. We performed all mod-
eling and data analyses in the R environment (ver. 3.5.2; 
<www.R-project.org>).

Results

The most important variables in the SDMs were annual grow-
ing degree days and mean temperature of the coldest month, 
followed by some of the soil variables (including pH and 

silt content) and nitrogen deposition (Fig. 1). Precipitation 
was clearly less important than the other climate variables. 
Within the land cover and land use variables, forest cover 
generally had the highest importance.

With regard to the directions of the relationships between 
MIVs and EIVs, our expectations were all confirmed, i.e. we 
found negative relationships of forest cover (MIV) with light 
(EIV) and minimum temperature (MIV) with continental-
ity (EIV), and positive relationships for the other four pairs 
of MIVs and EIVs (Fig. 2). As expected, we found the stron-
gest correlation between the MIV of annual growing degree 
days and the EIV of temperature (ρ = 0.53, p < 0.0001, 
n = 1380; Fig. 2a) and the weakest correlation between the 
MIV of total annual precipitation and the EIV of soil mois-
ture (ρ = 0.10, p = 0.0086, n = 656; Fig. 2c). Correlations 
for the other four pairs were all between ρ = 0.3 and 0.4  
(absolute values).

The correlations were slightly stronger when only 
species were included for which the variable had an 
importance above 0.1. This was most obvious for the cor-
relation between forest cover (MIV) and light (EIV), which 
increased from ρ = −0.39 to −0.56 (Supplementary mate-
rial Appendix 1 Fig. A2). Results were robust to the use 
of different EIVs for species occurring in multiple lists 
(Supplementary material Appendix 1 Fig. A3, A4). Among 
the three modeling techniques, the strongest correlations 
between MIVs and EIVs were obtained for BRT, fol-
lowed by GLM and lastly GAM (Supplementary material 
Appendix 1 Fig. A5–A7).

Figure 1. Boxplots of the ensemble variable importance of all vari-
ables used to fit the SDMs for all 1476 species. The boxes show the 
medians, the 25 and 75 percentiles and the whiskers represent 1.5 times 
the inter-quartile distance.
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Discussion

In the present study we assessed the ecological realism of 
European-scale SDMs of 1476 vascular plant species by 
comparing niche optima estimated by the models (modeled 

indicator values; MIVs) with ecological indicator values 
(EIVs) representative of niche optima. Although several 
studies have criticized EIVs, for example for the supposedly 
non-systematic derivation inferred from field experience, the 
review by Diekmann (2003) revealed that multiple studies  

Figure 2. Bivariate correlations between species ecological indicator values (EIV) and modeled indicator values (MIV). n refers to the num-
ber of species included in the bivariate correlation and is equal to the number of species for which the variable of concern had an ensemble 
variable importance > 0.05.



167

have shown that EIVs correlate well with measured site  
conditions. This indicates that EIVs can be reliably used to 
verify niche optima retrieved from SDMs.

Overall, the niche optima retrieved from the SDMs 
showed weak to moderate agreement with the independent 
data, whereby the directions of the six hypothesized rela-
tionships between MIVs and EIVs were all confirmed. As 
expected, we found the strongest correlation between the 
MIV of growing degree days and the EIV of temperature 
(Fig. 2), reflecting that temperature is one of the most impor-
tant factors driving the distribution of species at large scales 
(Thuiller et al. 2005). The low correlation between the MIV 
of total annual precipitation and the EIV of soil moisture 
(ρ = 0.10) may reflect that soil moisture in wet ecosystems 
is largely determined by hydrological factors other than 
precipitation, notably the groundwater level. In ecosystems 
where the groundwater level is far below the root zone, soil 
moisture is more dependent on precipitation (Walter 1985). 
Indeed, we found an increase in correlation from ρ = 0.10 to 
0.33 between the MIVs of precipitation and the EIVs of soil 
moisture when considering only species of dry to moist soils 
(Supplementary material Appendix 1 Table A4). Similarly, 
the relatively weak correlation between the MIV of nitrogen 
deposition and the EIV of soil nutrient availability (ρ = 0.33) 
reflects that soil nutrient availability is also influenced by 
other factors, such as management, soil and land cover type 
(Kooijman et al. 1998, Nissinen and Hari 1998). In addition, 
the EIV of soil nutrient availability is also affected by other 
nutrients, such as phosphorus (Ellenberg et al. 2001).

Against our expectations, we did not find the relationships 
between MIVs and EIVs to be stronger for climate- and 
landscape-related (i.e. large-scale) variables than for the 
soil-related (i.e. small-scale) variables. This might reflect 
complex multi-scale patterns of variation in the respective 
environmental variables. For example, soil variables such as 
pH can vary strongly within meters (Campbell et al. 1989, 
Lechowicz and Bell 1991). This fine-grain heterogeneity was 
neglected in the SDMs, which were based on environmen-
tal variable values averaged to a 1 km resolution. On the 
other hand, there are also large-scale gradients in soil acidity 
(Azevedo et al. 2013), which may be adequately captured by 
the SDMs. Similarly, temperature-related variables show not 
only large-scale patterns (Pearson and Dawson 2003), but 
also local heterogeneity (Scherrer and Körner 2011). This 
fine-grain heterogeneity was not included in our SDMs, 
which may partly explain why the correlations with the  
temperature-related EIVs were only weak to moderate.

We found various correlations between MIVs and EIVs 
that we had not expected upfront, due to remaining correla-
tions between environmental variables after the VIF-based vari-
able selection. For example, the MIVs of several soil variables 
showed weak to moderate correlations with the EIV of tem-
perature (Table 2). This can be explained by similarities in the 
large-scale gradients of these soil variables and climatic condi-
tions in Europe, due to the formation of the current soil by past 
climatic conditions (Hengl et al. 2017). Thus, the niche optima 

of the soil variables retrieved from the SDMs partly reflect  
species’ response to soil conditions and partly to climate variables.

We found systematic differences in the correlations 
between the MIVs and EIVs between the different models 
in our ensemble. Although the BRT retrieved niche optima 
for the smallest numbers of species (i.e. the least cases 
where the variable importance was larger than the thresh-
old), the optima were ecologically more realistic than for 
the GLM and the GAM. This is confirmed by Elith and 
Graham (2009), who also found that BRT described spe-
cies’ responses better than GLM. Moreover, several studies 
show that BRT has a higher predictive accuracy than GLM 
and GAM (Elith and Graham 2009, Marmion et al. 2009). 
Together these results indicate that BRT is more suitable 
to project species’ core habitat than GAM and GLM. 
However, BRT can have poor predictive accuracy in case 
of temporal or spatial bias in the data (Bell and Schlaepfer 
2016). This could lead to reduced predictability outside of 
the core habitat, even when MIVs for niche optima show 
high correlations with corresponding EIVs.

Our evaluation method can be used to improve the selec-
tion of environmental variables and evaluation of SDMs. 
First, models should be selected based on a good fit on an 
independent test set of observations, for example based on 
TSS-values. Subsequently, our method can be used to iden-
tify and discard environmental variables which have a low 
variable importance as well as weak correlations with the EIV, 
such as total annual precipitation (Fig. 1, 2). Furthermore, 
our method can be used to identify alternatives for variables 
with a high variable importance and an ecologically realistic 
but relatively weak correlation with the EIV, such as nitrogen 
deposition and pH. For plant SDMs, a possible improvement 
could be to retrieve site-specific soil variables from process-
based models, such as VSD+ (Bonten et al. 2016). However, 
often better data sources will not be available. In that case it is 
important to be aware that projected core habitats might not 
fully capture optimal conditions of the variable of concern, 
either because fine-grain heterogeneity is ignored, e.g. for 
pH, or due to the complex relationship of indirect variables 
with direct variables, e.g. for nitrogen deposition (Pearson 
and Dawson 2003, Austin 2007).

The novel evaluation approach as presented in this study 
provides insights into the ecological realism of species niche 
optima as captured by SDMs. Hence, our methodology can 
be used for a more informed selection of modeling techniques 
and ecologically relevant environmental variables, which is 
particularly relevant to prevent spurious model relationships 
and consequently false extrapolations (Merow  et  al. 2014, 
Fourcade et al. 2017). Moreover, this evaluation method gives 
insight into the ecological realism of projected core habitats, 
and consequently can affect the underpinning of conserva-
tion planning. Our approach requires an independent source 
of information on species’ habitat preferences. Next to EIVs, 
indicator values derived from other sources, such as labora-
tory or field experiments, and for taxonomic groups other  
than terrestrial vascular plants, can be considered. Further,  
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the approach may be extended to niche characteristics other 
than optima, notably upper and lower tolerance limits or 
shapes of response curves, depending on the availability of 
suitable data. For example, the extensive availability of lab 
test data on thermal tolerance of particularly ectotherms 
(Bennett et al. 2018) provides a promising opportunity to val-
idate niche width of these species as captured by SDMs. This 
would allow for a more in-depth analysis of the transferability 
of SDMs, as transferability depends not only on optima but 
also on the niche width and the shape of the response curve.
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