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Abstract. We present some work in progress on the development of a
probabilistic chemical compiler, being able to make a plan of how to cre-
ate a three-dimensional agglomeration of artificial hierarchical cellular
constructs. These programmable discrete units offer a wide variety of
technical innovations, like a portable biochemical laboratory being able
to e.g. produce macromolecular medicine on demand, and of scientific
investigations, like contributions to questions regarding the origin of life.
This paper focuses on one specific issue of developing such a compiler,
namely the problem of simulating the experimentally observed spatial
transition from an originally one-dimensional lineup of droplets into a
three-dimensional, almost spherical arrangement, in which the droplets
form a network via bilayers connecting them and in which they are con-
tained within some outer hull. The network created by the bilayers allows
the droplets to “communicate” (like agents in a multi agent system) with
each other and to exchange chemicals contained within them, thus en-
abling a complex successive biochemical reaction scheme.
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1 Introduction

Over the last decades, huge progress has been made in biochemistry. A large
amount of knowledge about the constituents and the processes within a cell has
been gathered [1]. Even a new research field of synthetic biology has evolved
[2], in which natural objects like the DNA in cells are purposedly altered or
replaced in order to achieve some desired outcome, like producing a specific drug.

? Supported by the European Horizon 2020 project ACDC – Artificial Cells with
Distributed Cores to Decipher Protein Function under project number 824060

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of 
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-030-45016-8_16

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-030-45016-8_16


2 J. J. Schneider et al.

Still, some questions remain unanswered so far, like one of the basic questions
for the origin of life: Which constituent of a cell came first, the RNA or the
cell membrane? Another problem turning up when considering the anthropic
principle in cosmology is the discrepancy between the age of the earth and the
time which would be needed by an ungoverned random evolutionary process to
allow for the existence of higher-developed beings like humans.

In our approach, which we intend to follow within the European Horizon
2020 project ACDC – Artificial Cells with Distributed Cores to Decipher Protein
Function, we do not consider fully equipped cells but the most simplified cell-like
structures, being droplets comprised of some fluid, containing some chemicals,
and surrounded by another fluid. As an additional feature, we also allow for
droplets being contained within some outer hulls, playing the role membranes
have for cells. These droplets arrange themselves in a three-dimensional way.
Neighboring droplets, whose midpoints have a smaller distance to each other
than the sum of their original radius values, can form bilayers between each
other. Chemicals contained within the droplets can move to neighboring droplets
through pores within these bilayers. Thus, a complex bilayer network is created,
with the droplets being the nodes of this graph and the existing bilayers being
represented by edges between the corresponding droplets. This bilayer network
allows a controlled successive biochemical reaction scheme, leading to the in-
tended macromolecules.

We aim at developing a probabilistic chemical compiler for a portable bio-
chemical mini-laboratory, in which various desired macromolecules, like person-
alized antibiotics, can be produced on demand. Besides, we want to use this
approach in order to determine up to which complexity higher-order macro-
molecules can be created by random agglomerations of droplets in order to
make some contributions to Alexander Oparin’s origin of life theory [3]. In small
droplets, some metastable intermediate compounds can survive with larger prob-
ability than in the primordial soup, such that the generation of some macro-
molecules becomes more likely. Consequently, the time needed according to this
theory for the development of life might be strongly reduced.

Summarizing, in the final stage of the project, our compiler for this biochem-
ical device shall be able to solve the task to provide a recipe for producing the
desired macromolecule, i.e., be able

– to determine the chemicals needed for the production of the macromolecule,

– to determine the gradual reaction steps leading finally to the desired macro-
molecule, with each reaction step being performed through a pore at the
corresponding bilayer,

– to determine the bilayer network needed allowing for this reaction scheme,
with the nodes of this network being the droplets filled with the chemicals
determined in the first step and the edges being the bilayers, and finally

– to determine the experimental setup and parameters, leading to just this
desired bilayer network.
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Of course, in order to get there, our research has to start at the last item, in
order to answer the question of how to design an experiment for generating and
agglomerating droplets in a desired way.

2 Droplet generation

Fig. 1. Sketch of a so-called T-junction (schematically redrawn from [4]): the stream
of the inner fluid is broken up under appropriate conditions. Spherical droplets are
produced in the so-called dripping regime, in which the pressure within the fluid is
neither too small nor too large.

Droplet generation, especially in the field of microfluidics, has been exten-
sively studied over the past years [4–11]. A stream of fluid is broken up into
droplets within a T-junction or some other antechamber, as shown in Fig. 1.
The breaking-up of the stream is due to the fact that the shape of spherical
droplets is energetically favorable when compared to a continuous stream of fluid
under specific pressure conditions. The size of the droplets can be controlled by
the respective flow rates. Due to the development of 3D printing technologies,
producing such antechambers has become much easier and cheaper. Indeed, 3D
printing has become a widely used technique in the field of microfluidics [12–19].
We thus consider the general problem of producing droplets to be solved, except
that the compiler has to choose appropriate antechambers for the production
process or even to create them using the 3D printing technology.
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Fig. 2. Sketch of the initial and final states of the spatial rearrangement of droplets

3 3D rearrangement of droplets

In the experiments carried out by Jin Li, member of our collaborating group
of David A. Barrow at Cardiff University, the droplets leave the antechamber
and first enter a widening tube, in which they e.g. form a zig-zag line. Then
they move on to an expansion chamber, in which they rearrange themselves in
a three-dimensional way, where several of them are surrounded by some newly
generated hull [4], as shown in Fig. 2. Our first main task in this problem will
be to study and understand this rearrangement process at least so far that we
can simulate it to obtain the same types of three-dimensional arrangements of
droplets as found in experiments. We will of course never be able to reproduce
the experiments exactly, first of all, because not all experimental parameters are
known, secondly also because of lack of computing time.

Fig. 3. Resulting 3D arrangement containing bilayers: These two graphics show the
same configuration, but on the right, the size of the droplets is reduced in order to
visualize the bilayer network.

In some experiments, the resulting three-dimensional arrangements indeed
look like in Fig. 2: Jin Li managed to create configurations with up to roughly
100 small droplets swirling around within an outer hull with a diameter smaller
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than 1cm [20]. We, on the other hand, are interested in those experiments in
which the droplets are rather densely packed and in which they are enabled to
create bilayers, such that resulting configurations look more similar to the one
shown in Fig. 3. Here one finds that the droplets more or less lose their spherical
shapes due to bilayer formation and that a complex graph is formed by these
bilayers which shall be used later on for the successive chemical reaction scheme.

4 Limitations of the rearrangement process

This rearrangement process does not allow for the formation of any desired bi-
layer network, instead, it is restricted by mathematical and physical limitations.
The surface tension of the droplets is rather high compared with the other forces
(adhesion, inertial forces due to changes of the flow field) in the system, so the
shape of the droplets remains more or less close to spherical. Volume changes can
be neglected, as the velocity range is limited to incompressible flow, far below
1/10 of the sound velocity of the fluids involved. Therefore, as starting points of
our discussion of examples for restrictions for the arrangement of the droplets,
the exact solutions of packing problems for rigid spheres are suitable, and we
will augment our discussions by taking into account deformations and bounding
layers in the next step where necessary.

Fig. 4. Kissing number problem in three dimensions: The maximum number of spheres
touching a sphere in their midst is 12. This configuration also resembles the optimum
packing of 13 spheres in a sphere in three dimensions.

The most prominent of these examples limiting the types of achievable bilayer
networks is related to the kissing number problem. The kissing number problem
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is stated as follows: given equal spheres of the same size in D dimensions, what
is the maximum number of spheres being able to touch a sphere in their midst?
While this problem is trivial to solve in one and two dimensions, for which
the kissing number is 2 and 6, rsp., it led to a famous dispute between David
Gregory and Isaac Newton at the end of the 17th century, whose details however
are still under debate [21]. According to the most widely accepted version of the
anecdote, Newton proposed that the number was 12, while Gregory argued that
the number had to be 13, as a further sphere could be placed close enough to
also touch the sphere in the midst. It took till the 1950s to prove that Newton
had been right [22], the space was just not sufficient to allow for a 13th sphere
to touch the central sphere. Thus, if the droplets keep their spherical shapes,
one droplet can only be touched by up to 12 other droplets of the same size.
However, if the droplets lose their spherical shapes due to bilayer formation, 13
or even slightly larger numbers of touching droplets can be obtained.

Fig. 5. One-dimensional sausage and two-dimensional pizza configuration for 13
spheres: The configuration on the right resembles the densest packing of 13 circles
in a circle.

The next example to be considered here is related to the problem of gaining
the densest configuration. If assuming that the volume enclosed in the con-
vex outer hull is to be minimized, the question arises why the droplets re-
arrange themselves in a three-dimensional way at all. One wonders why they
do not stay in a one-dimensional lineup, which is also called “sausage”, or
form a two-dimensional configuration, called “pizza” [23], as shown in Fig. 5.
While it is trivial to determine the optimum one-dimensional lineup, the two-
dimensional arrangement is derived from the optimum packing for N circles
of equal radius r within a circumcircle of minimum radius R. The optimum
value for the radius of the circumcircle of this two-dimensional arrangement
was proven to be R2D = (2 +

√
5)r [24] for N = 13. Then the convex outer

hull does of course not need to be spherical, as depicted in Fig. 5, but it
could enclose e.g. the one-dimensional lineup in a cylindric way with two half-
spheres attached to the ends of the cylinder. For N = 13 spheres of radius
r, the enclosed volume of this one-dimensional lineup would only have to be
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V1D = πr2 × 2r(N − 1) + 4π/3r3 = 25 1
3r

3π, while for the corresponding three-
dimensional configuration shown in Fig. 4, the enclosed volume would almost
have to be V3D . 4π/3(3r)3 = 36r3π. (Please note that the minimum value
for the volume of the three-dimensional arrangement is slightly smaller than
this value, as some small parts of the surrounding spherical hull can be cut off
because surfaces over triangles of spheres can be made partially planar, while
the hull still remains convex.) Only at larger numbers N of spheres, like N = 56
[25], a three-dimensional cluster is more densely packed than the one-dimensional
sausage. This transition, which is also called sausage catastrophe, is still under
research debate. According to the sausage assumption, intermediate dimensional
structures like pizzas are never optimum. This can also be seen for our exemplary
two-dimensional pizza configuration shown in the right half of Fig. 5: the four
inner spheres can be neglected when calculating the volume V2D of the convex
surrounding hull of this configuration. V2D consists of three parts: the inner part
is given by the area A within the polygon, formed by the midpoints of the nine
outer spheres, multiplied with the height 2r. To each of the nine side planes,
a half cylinder with radius r and a length corresponding to the length of the
edge between the midpoints is attached. These lengths sum up to the length
U of the closed polygon. At each node of the polygon, a spherical wedge is at-
tached, connecting the two half cylinders ending at that node with each other.
These spherical wedges add up to a sphere with radius r. Summarizing, we get
V2D = A×2r+U×r2π/2+4πr3/3 ∼ 29.6×2r3+19.8×r3π/2+4πr3/3 ∼ 94.5r3.
Therefore, we have V1D < V2D < V3D. Thus, the minimization of the volume
within a hull has no dominating effect on the arrangement process, on the con-
trary, one even finds in configurations resulting in experiments that also the
three-dimensional clusters are not most densely packed. They sometimes even
contain holes in which a further droplet could be placed [4].
Another picture is obtained if we aim at minimizing the surface of the sur-
rounding hull. If we again have a look at our example with 13 spheres, we find
S1D = 12 × 2r × 2rπ + 2 × 2r2π = 52πr2 ∼ 163r2 for the surface of the one-
dimensional sausage, S2D = 2 × A + πr × U + 4πr2 ∼ 134r2 for the surface of
the two-dimensional pizza, and S3D . 4π(3r)2 = 36πr2 ∼ 113r2 in the case of
three dimensions. Summarizing, we find that S3D < S2D < S1D, i.e., the min-
imization of the surface of the hull or, physically speaking, the surface tension
could have a large effect on the agglomeration process of the droplets. However,
the minimization of the surface does not totally dominate this process, as the
resulting shapes of the hulls as seen in the videos generated by Jin Li show per-
fectly spherical or elliptical shapes or sometimes oval shapes due to boundaries,
but never shapes with triangular planes. But one must not forget that on the
one hand not only droplets but also some fluid around them is contained within
the outer hull and that on the other hand the surface tension tends to minimize
local deviations from the average curvature radius.

Finally, we want to deal with the quest for the one and only central sphere.
The so-called ideal picture which is often drawn on blackboards depicts a central
sphere being surrounded by some number N−1 of other spheres touching it and



8 J. J. Schneider et al.

Fig. 6. Configuration consisting of five spheres with their centers being placed on the
corners of a regular pentagon touching their neighbors and a sixth sphere touching all
other spheres

touching their neighbors, as shown in Fig. 6. This picture is motivated by its
two-dimensional analogon, in which six circles can be placed around a seventh
circle. However, this picture with a central circle is only valid for N ≤ 9 in two
dimensions, as there are at least two inner circles in optimum packings of cir-
cles for N ≥ 10. Transferring this picture to three dimensions by replacing the
circles with spheres, the situation becomes unstable for N ≥ 7 spheres, as the
sphere in the center can move freely in the third dimension and would thus fall
through the ring, due to the law of gravity. The densest packing of seven spheres
within a spherical hull is obtained for R ∼ 2.59r but it does not contain a sphere
which could be classified as center sphere [26]. Stable configurations with N − 1
spheres being placed on a regular N − 1-gon and touching their neighbors and
an Nth sphere touching all the others can only be obtained for N = 4, 5, and
6, under the condition that the radius R of the outer hull has a specific value,
such that the Nth sphere at the bottom of the configuration neither drops down
nor presses the other spheres apart such that the connections between them are
destroyed:
If placing three spheres on the edges of an equilateral triangle with side length
2r and a fourth sphere centered below them, touching the other three spheres,
one gets the densest packing of four spheres in a sphere, which remains stable
in a spherical hull with radius R = (1 +

√
6/2)r ∼ 2.22r.

If placing four spheres on the edges of a square with side length 2r and a fifth
sphere centered below them, touching the other four spheres, one gets the dens-
est packing of five spheres in a sphere [26]. It remains stable within a spherical
hull with radius R = (1 +

√
2)r ∼ 2.41r. One can even place a sixth sphere
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symmetrically to the fifth sphere on the opposite side of the center square, thus
achieving the densest packing of six spheres in a sphere.
If placing five spheres on the edges of a regular pentagon with side length 2r and
then a sixth sphere below them, touching all of them, as shown in Fig. 6, one has
to make a larger effort to determine a radius R of the spherical surrounding hull
to get a stable configuration. The radius of the pentagon formed by the midpoints
of the spheres can be easily determined as r

√
2/(1− cos(2π/5)) ∼ 1.7r geomet-

rically or as r
√

50 + 10
√

5/5 making use of the golden ratio. If imagining the
pentagon formed by the midpoints of the five spheres being placed in the xy-plane
centered around the origin, one can place the sixth sphere, which is supposed to
touch all the other spheres, on the z-axis at z6 = −r

√
4− 2/(1− cos(2π/5)) ∼

−1.05r. In order to get a stable configuration in which this sixth sphere does
not drop down, we need to blow up the radius of the surrounding hull to
R = r − 2r2/z6 − z6 ∼ 3.95r, its midpoint lies at zM = −2r2/z6.
Thus, mathematically speaking, for each of these scenarios, there is only one ex-
act value R for the radius of the surrounding spherical hull, for which the inner
configuration of hard spheres is stable. But, of course, if allowing some amount
of deformation of the spheres and also of the hull, one gets a range of possible
radius values instead of one exact sharp value only.

5 Simulating the rearrangement process

After these initial considerations, we now describe how we intend to simulate
the rearrangement process. We will perform macroscale Monte Carlo movement
simulations, imitating the movement behavior of the droplets being first lined
up in an almost one-dimensional structure within the T-junction or some other
antechamber and then entering the expansion chamber, in which they rearrange
themselves in a three-dimensional way within some outer hull, as shown schemat-
ically in Fig. 2. During this rearrangement process, some droplets touching each
other will form bilayers [27]. These bilayers can be reshaped, broken up, and
newly formed, depending on the stability of the bilayers [28]. When bilayers are
created, the droplets lose their spherical shape. We will test various ways to
simulate the formation, change, and destruction of bilayers and the change of
the shape of the cores in a computationally not too expensive way. A cheap way
would be to place the particles on a regular or irregular lattice [29, 30] and even
to make use of a cellular automata approach as in traffic dynamics [31, 32], but
this approach is not feasible as it restricts the possibilities for resulting bilayer
configurations too much. We intend to invent an entirely new method of Monte
Carlo movement simulations of such droplets, as existing methods like in [33]
put too much emphasis on the resulting network of droplets, introducing springs
between these particles already from the very beginning, while these droplets
move rather independently of each other at first in the experiments, as seen in
movies generated by Jin Li [20]. Only at a later stage when they are already
surrounded by some hull, the droplets gradually settle down, reducing their in-
dividual behaviors, and start to move coherently. While the specific spatial setup
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of an experiment with preset values for widths and lengths of various parts of the
junction can be easily employed also in the Monte Carlo simulation, it is a harder
task to find appropriate values for the probabilities for braking and acceleration
of droplets as well as for bilayer formation and destruction and also for some
introduction of random movement. These values depend on various experimental
parameters, like pressure and viscosity. We intend to adjust the parameters for
the Monte Carlo simulation in a way that the resulting configurations reflect the
three-dimensional arrangements of droplets as found in experiments.

In order to perform fast simulations with our limited computing time, we
will at first consider spherical droplets only. If two droplets form a bilayer with
each other, we will compensate the overlapping volumes by increasing the radii
of the corresponding droplets. Furthermore, we will either select particles in
random sequential order and ask the process which move to perform with them
(but then some larger gaps in the configurations could occur and only be slowly
resolved) or we start off with the outermost droplet at the right (if they are
moving from left to right), then the second rightest droplet, and so on, until at
last the outermost left droplet is chosen. Furthermore, we retain the information
whether a droplet is connected to other droplets via bilayers, such that they
can move with each other, or already part of a group of droplets, with which it
moves more and more coherently within an outer hull. In this case, all droplets
within such a group are simultaneously updated. The movement of the various
droplets within a group is split in a movement process for the center of mass of
that group and a movement process for the specific droplet relative to the center
of mass.

Summarizing, we need to implement the following processes in the Monte
Carlo movement simulation:

– acceleration process: With some probability, a droplet is accelerated until it
reaches its desired velocity.

– braking process: If walls or other droplets provide obstacles for the move-
ment of a droplet, it of course has to brake. Otherwise, there is also some
probability for braking.

– random movement process: We will to some extent also allow random move-
ment, i.e., the velocity vector can be slightly altered.

– bilayer formation process: With some probability, droplets touching (or in the
simulation even overlapping) each other can form bilayers. The probability
for bilayer formation increases with increasing overlap and increasing time
for which the overlap already lasted.

– bilayer destruction process: With some probability, a bilayer formed can also
be destroyed again. This probability could depend on the length of time for
which the bilayer was in existence.

Related to these processes, we thus have the probabilities paccelerate, pbrake,
prandommovement, pbilayerformation, and pbilayerdestruction. Thus, our simulations will
not contain experimental parameters like viscosity in an explicit way, but we
will find that implicitly e.g. the probabilities for braking and acceleration will
depend on viscosity and other parameters, such that one task will be to find an
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appropriate mapping between experimental input values and parameters in the
computer simulations.

6 Summary

In this paper, we described the first step to be undertaken in the development
of a chemical compiler for a biochemical micro-laboratory device, with which
e.g. macromolecules shall be produced on demand. For this device, we want
to make use of the ACDC technology, i.e., systems of droplets which agglom-
erate in a three-dimensional way, forming bilayers between them. This bilayer
network will allow for a step-wise generation of some desired macromolecules,
which are gradually constructed from smaller units, being contained in the vari-
ous droplets, with the successive chemical reactions being enabled via the bilayers
formed between neighboring droplets. Such a compiler has been exemplarily al-
ready developed for one specific molecule [34]. In this project, this compiler has
to be generalized and also made probabilistic because of the variability in the
rearrangement process. When performing simulations for the three-dimensional
rearrangement of droplets as seen in experiments, our objective is not to find
e.g. the densest configuration possible [35, 36], but to find configurations most
similar to those resulting in experiments.
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