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a b s t r a c t 

Cancer immunotherapies rely on how interactions between cancer and immune system cells are consti- 

tuted. The more essential to the emergence of the dynamical behavior of cancer growth these interactions 

are, the more effectively they may be used as mechanisms for interventions. Mathematical modeling can 

help unearth such connections, and help explain how they shape the dynamics of cancer growth. Here, 

we explored whether there exist simple, consistent properties of cancer-immune system interaction (CISI) 

models that might be harnessed to devise effective immunotherapy approaches. We did this for a fam- 

ily of three related models of increasing complexity. To this end, we developed a base model of CISI, 

which captures some essential features of the more complex models built on it. We find that the base 

model and its derivates can plausibly reproduce biological behavior that is consistent with the notion of 

an immunological barrier . This behavior is also in accord with situations in which the suppressive effects 

exerted by cancer cells on immune cells dominate their proliferative effects. Under these circumstances, 

the model family may display a pattern of bistability , where two distinct, stable states (a cancer-free, and 

a full-grown cancer state) are possible. Increasing the effectiveness of immune-caused cancer cell killing 

may remove the basis for bistability, and abruptly tip the dynamics of the system into a cancer-free state. 

Additionally, in combination with the administration of immune effector cells, modifications in cancer 

cell killing may be harnessed for immunotherapy without the need for resolving the bistability. We use 

these ideas to test immunotherapeutic interventions in silico in a stochastic version of the base model. 

This bistability-reliant approach to cancer interventions might offer advantages over those that comprise 

gradual declines in cancer cell numbers. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Mathematical modeling of cancer-immune system interactions

CISI) can reveal the fundamental mechanisms that govern the dy-

amics of tumor growth ( Altrock et al., 2015; Eftimie et al., 2010 ),

nd represent and important tool to devise and test new forms

f immunotherapy in silico ( Talkington et al., 2018 ). The model-

ng relies on the appropriate integration of how cancer and im-
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une cells affect one another ( De Boer et al., 1985; de Pillis

t al., 2005; Goldstein et al., 2004; Kronik et al., 2008; Kuznetsov

t al., 1994 ). Recent studies have uncovered a plethora of interac-

ions by which cancer cells affect immune cells, and vice versa

 Mellman et al., 2011; Eftimie et al., 2010 ). For instance, can-

er cells elicit immune responses by a variety of effector cells

 Parish, 2003; Smyth et al., 2001; Mellman et al., 2011 ). These

ffector cells, in particular white blood cells, natural killer cells

NKs) and cytotoxic T lymphocytes (CTLs) can lyse cancer cells

 Quesnel, 2008 ), inhibiting tumor growth or even eliminating mi-

roscopic tumors altogether — a process termed immunosurveil-

ance ( Burnet, 1957; 1967 ). However, cancers have also been shown
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.jtbi.2020.110185
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2020.110185&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:victor.garcia_palencia@alumni.ethz.ch
https://doi.org/10.1016/j.jtbi.2020.110185
http://creativecommons.org/licenses/by/4.0/


2 V. Garcia, S. Bonhoeffer and F. Fu / Journal of Theoretical Biology 492 (2020) 110185 

Fig. 1. Cancer-immune system interactions and effects of immunotherapy . A) Interactions governing the dynamics between cancer cells (T) and immune cells targeting 

the cancer cells —termed effector cells— (E). A complex web of interactions has been identified ( Mellman et al., 2011; Eftimie et al., 2010; Altrock et al., 2015 ), with both cell 

types capable to both stimulate and suppress each others’ growth. B) Immunotherapy acts by either increasing the killing rate of effector cells, for example by administrating 

new effector cells into the host ( adoptive T cell transfer ), or by impairing the escape mechanisms cancer cells adopt to avoid being cleared, for example by monoclonal antibody 

therapy . 
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to be able to suppress the proliferation of effector cells, which

typically target cancer cells with specific biochemical signatures

( Kooi et al., 1996; Hamanishi et al., 2007 ). Cancer cells accrue mu-

tations that, by changing these signatures, enable them to par-

tially evade immune recognition ( Altrock et al., 2015; Parsa et al.,

2007; Hanahan and Weinberg, 2011 ). Furthermore, cancers may ac-

tively downregulate immune responses elicited against them ( Keir

et al., 2008; Mellor and Munn, 2004; Aggarwal and Pittenger,

20 05; Munn and Mellor, 20 04; Marigo et al., 20 08 ), for example

by recruiting the action of T regulatory cells ( Mellman et al., 2011;

Ohta et al., 2006; Facciabene et al., 2011 ), leading to immunosu-

pression . A summary of these interactions shows that all combi-

nations of stimulation and suppression on growth between cancer

and immune cells may act simultaneously (see Fig. 1 A). These in-

teractions direct the interplay between the cancer and the immune

system. Thus, their integration into mathematical models can re-

veal how immunotherapeutic approaches may be employed with

maximum efficiency. The main immunotherapy approaches today

work by impairing mechanisms that allow cancers to suppress im-

mune action or by the administration of effector cells to the host

( Dougan and Dranoff, 2009; Mellman et al., 2011 ) (see Fig. 1 B). 

Due to their importance for immunotherapy, mathematical

models of cancer-immune interactions have been the focus of in-

tense theoretical effort s over the last decade ( Altrock et al., 2015;

Eftimie et al., 2010 ). At the heart of this effort lies the task of

identifying what features of cancer-immune dynamics are most

effectively used to achieve immunotherapeutic success, i.e. can-

cer eradication. Following this tradition, we focus on determin-

istic, population based non-spatial models for analysis. We do

this for two reasons. First, their mathematical simplicity is bet-

ter suited to unambiguously reveal those model properties that

are crucial for the modification of a cancer’s state, since the num-

ber of factors influencing the dynamics is manageable and un-

derstandable ( Eftimie et al., 2010 ). Second, we can draw from

a broad body of theory about immune system pressures devel-

oped within cancer research ( Kuznetsov et al., 1994; Kuznetsov
nd Knott, 20 01; d’Onofrio, 20 05; 20 08; Eftimie et al., 2011; 2010;

opez et al., 2014 ) as well as in virus dynamics, and in par-

icular, human immunodeficiency virus (HIV) dynamics research

 Nowak and May, 20 0 0; Wodarz, 20 07; De Boer, 20 07a; Althaus

nd De Boer, 2008; Conway and Perelson, 2014; Garcia and Regoes,

015; Graw and Regoes, 2009; Graw et al., 2011; Yates et al., 2007;

lthaus and De Boer, 2008; Elemans et al., 2014; Garcia et al.,

015; Regoes et al., 2007 ). To explore immunotherapeutic interven-

ions in silico , we use a stochastic version of one of the models

nalyzed. 

In this study, we have explored whether there exist consistent

roperties of cancer-interaction models that facilitate effective im-

unotherapy approaches. We investigated this question in a fam-

ly of three related models of increasing complexity. To this end,

e first developed a base model of cancer immune system interac-

ion that captures some essential features of more complex mod-

ls. The purpose of the model is to gain qualitative insights and

hen to serve as a guide for treatment therapies based on immune

ction. We analyzed under what parameter regimes the model pro-

uces biologically plausible behavior, and investigated how steady

tates are affected by changes in these parameters. We then suc-

essively extended the model to first include more complex fea-

ures of cancer-immune system interactions ( Conway and Perel-

on, 2014 ), such as saturating proliferative stimulation and exhaus-

ion and in a second step, to include the action of NKs and CTLs.

he common properties identified in these models were then used

o study how combinations of immunotherapeutic treatments may

ork together to achieve eradication. To this end, we implemented

tochastic simulations of the base model and analyzed how the dy-

amics are affected by adoptive T cell transfer ( Rosenberg, 1991;

osenberg et al., 2004; Dudley et al., 2002; Rosenberg et al.,

008 ), as well as by the disruption of immune evasion mechanisms

f the cancer through for example monoclonal antibody therapy

 Mellman et al., 2011 ; Brahmer, Drake, Wollner, Powderly, Picus,

harfman, Stankevich, Pons, Salay, McMiller, Gilson, Wang, Selby,

aube, Anders, Chen, Korman, Pardoll, Lowy, Topalian, 2010 ). 
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Table 1 

Standard parameter values for the base model. 

Parameter Description Value 

a maximum replication rate of cancer cells ( de Pillis et al., 2005 ) 0.514 day 
−1 

b inverse carrying capacity of tumor ( de Pillis et al., 2005 ) 1 . 02 · 10 −9 cells 
−1 

k killing efficacy of immune cells ( Ganusov et al., 2011; Wick et al., 2005 ) 10 −4 − 10 cells 
−1 

day 
−1 

σ replenishment rate of immune cells ( Althaus and De Boer, 2008 ) 10 cells · day −1 

d immune cell death rate ( Ogg et al., 1999; Casazza et al., 2001 ) 1 · 10 −2 day 
−1 

m maximum immune cell proliferation rate −10 −6 day 
−1 
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The R code used to produce the figures of this manuscript, as

ell as to run the computations and stochastic simulations, is pub-

icly available under https://doi.org/10.6084/m9.figshare.11536824.

1 . 

. Materials and methods 

To analyze the algebraic properties of a system of equations in-

olving cancer-immune interactions, we used the program Math-

matica ( Wolfram Research, 2011 ). To find equilibrium points in

ituations where this was not algebraically possible, we used the

ootSolve package in R ( Soetaert and Herman, 20 08; Soetaert, 20 09;

oetaert et al., 2010 ). 

Since all ordinary differential equations (ODEs) here described

re deterministic, the time course of the decline of cancer cell

umbers will always follow the same continuous trajectory given

dentical initial conditions. However, when small cancer cell num-

ers are reached, the temporal order at which the discrete events

ccur that underpin the dynamics will become important. Such

vents include the replenishment of immune cells and cancer cell

eaths. Thus, at small cell numbers, accounting for the stochastic-

ty of these events will add realism to the simulation, and help de-

ide when eradication has effectively been achieved. To this end,

e employed the Gillespie algorithm, where the interactions be-

ween cell types are explicitly simulated. Stochastic simulations

f all ODEs were run in the R language for statistical comput-

ng ( Team, 2012 ) by using the Gillespie algorithm ( Gillespie, 1977 )

ith tau leaping in the adaptivetau package ( Johnson, 2011 ). If

ot stated otherwise, simulations were run with the set of pa-

ameter values given in Table 1 . For alternative strategies to ac-

ount for the stochasticity of CISI at the temporal mesoscale see

 d’Onofrio, 2010 ). 

To model treatment, two possible procedures were considered.

irst, an increase in the ability of immune cells to detect and elim-

nate cancer cells — their killing rate or efficacy . Second, adop-

ive immune cell transfer, corresponding to the injection of im-

une cells into the system ( Rosenberg, 1991; Rosenberg et al.,

004 ). Both of these mechanisms enhance the suppression of can-

er growth by the immune system and can be applied in concert

s combination immunotherapy . The time at which the killing rate

s first enhanced, the treatment time τ k , can differ from the time

t which cancer-specific immune cells are first injected into the

ystem τ E . Also, the time period during which each of these treat-

ent approaches are administered can vary, with �τ k the treat-

ent period for killing efficacy enhancement, and �τ E the period

or immune cell transfer. 

We assume that treatment always consists of the administration

f either immunoactivating compounds or immune cells into the

ost system, and we denote the amount of compound delivered as

he administered dose . In the increased killing efficacy approach,

e assume that the alteration induced by the administration of

he compound is permanent, which is reflected in a change of the

illing efficacy parameter of NK or CTLs, �c , or �k , respectively.

he change occurs gradually over the time course of the treatment.

or example, an initial CTL killing efficacy k before treatment ini-
iation will by increased by �k / �τ k every day, leading to a final

fficacy of k + �k . 

In the immune cell transfer approach the change in immune

ell numbers is not permanent. Prior to the transfer, immune cells

re assumed to be rendered ineffective at a predefined rate (for

xample by the shedding of NKG2D ligands such as MIC-A, MIC-B

 Mellman et al., 2011 ) or alternatively, by the upregulation the lig-

nds PD-L1 or PD-L2 ( Kooi et al., 1996; Hamanishi et al., 2007 )).

nce transferred into the system, immune cell numbers will be af-

ected by already present cancer cells. Thus, immune cell numbers

ill change depending on the state of the cancer, because the can-

er exerts a suppressive effect on immune cell proliferation. Con-

ersely, cancer cell numbers will vary due to immune cell killing.

nalogously to the dosage of killing efficacy increasing compounds,

ffector cells are administered at daily doses of �E / �τ E cells, until

he full dose of �E has been dispensed. 

. Results 

ase-model of cancer-immune system interactions 

We develop a base model of cancer-immune cell interaction.

he model follows a large body of theory that uses two-equation

eterministic ODEs to describe the interaction between cancer

umor cells and immune system cells ( Kuznetsov et al., 1994;

uznetsov and Knott, 2001; d’Onofrio, 2005; 2008; Eftimie et al.,

011; 2010; Lopez et al., 2014 ). This model aims to replicate some

asic features of cancer dynamics with a minimum of added com-

lexity. With such an approach, qualitative insights about the be-

avior of the system can be obtained by relatively simple mathe-

atical analysis. To this end, we make four fundamental assump-

ions. First, we assume the existence of immune cells, which are

ble to detect and kill tumor cells ( Parish, 2003; Smyth et al.,

001 ). These cells may eliminate microscopic tumors before they

row to endanger the organism; a process termed immunosurveil-

ance ( Burnet, 1957; 1967 ). Second, these immune cells comprise

he action of all cells that control tumor growth by antigen recog-

ition and subsequent elimination ( Eftimie et al., 2010 ), including

atural killer (NK) cells ( Khar, 1997 ) and CTLs ( Boon and van der

ruggen, 1996 ) and are termed effector cells . The process by which

he cancer cells are neutralized is called lysis ( Quesnel, 2008 ). A

ackground level of effector cells is present at all times ( de Pil-

is and Radunskaya, 2003 ). Third, we assume that tumor growth is

ell described by a logistic growth in the absence of immune cells

 Eftimie et al., 2010 ). Fourth, the interactions between tumor and

ancer cells are governed by mass-action kinetics ( Kuznetsov et al.,

994 ). 

The third assumption of logistic growth warrants special discus-

ion. The dynamics of tumor growth remain a debated issue in the

iterature. Benzekry et al. compared different theoretical growth

ynamics in lung and breast tumor data of mice ( Benzekry et al.,

014 ). They concluded that Gompertzian growth typically best pre-

icts data. Gompertzian growth dynamics are motivated by the

bservation that tumor growth prior to detection appears to be

aster than after detection ( Eftimie et al., 2010 ). This suggests that

https://doi.org/10.6084/m9.figshare.11536824.v1
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Fig. 2. Bistability of immune control of tumor growth. Increasing values of k lead to 

the emergence of a bifurcation in equilibrium tumor cell numbers. The emergence 

of the bifurcations is indicated by black, vertical dashed lines. The upper blue line 

shows the largest stable steady states and the lower dashed blue line shows the 

smallest of the steady states, while red lines show unstable steady states for a given 

k value. If bT is one, the cancer has reached carrying capacity. At bT = 0 , no cancer 

cells exist. Thus, above a threshold value k u , the cancer is cleared. The parameter 

values are m = −10 −6 , σ = 10 ( Althaus and De Boer, 2008; De Boer, 2007 ), d = 2 ×
10 −2 ( Ogg et al., 1999; Casazza et al., 2001 ), a = 0 . 514 ( de Pillis et al., 2005 ), b = 

1 . 02 × 10 −9 ( de Pillis et al., 2005 ). (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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the initial unbounded growth may be limited by the exhaustion

of growth resources or cancer cell’s mutual growth impairment.

Gompertzian growth dynamics, developed on the basis of birth

and death processes, account for this behavior, and yield a sig-

moidal type of growth curve for cancer cell numbers. However,

the Gompertz model suffers from serious drawbacks, while other

models did almost equally as well as the Gompertzian in predict-

ing data ( Benzekry et al., 2014 ). Because an upper bound of the

proliferation rate is imposed by cell division time, the Gompertz

model cannot adequately describe the dynamics of very small tu-

mors ( d’Onofrio, 2008; Eftimie et al., 2010 ). Furthermore, theoret-

ical analysis reveals that Gompertzian growth is at odds with the

immuno-surveillance hypothesis, because the immune response is

unable to eradicate cancers that grow in a Gompertzian fashion

( Eftimie et al., 2010; d’Onofrio, 2005 ). Thus, given these assess-

ments, we chose a growth model that retains a sigmoidal cancer

growth curve shape, namely logistic growth. With this, we preserve

the notion of an exhaustion of growth resources. We note how-

ever, that alternative growth models may also successfully capture

tumor growth patterns. 

Our base model differs from most models in the literature in

that it combines proliferative and suppressive effects of cancer

cells on immune cells in one single term that describes its net

effect. In this way, we can analyze how the systems behaves de-

pending on the net effect of these opposing forces. 

The equations for the base model are: 

dT 

dt 
= aT (1 − bT ) − kT E, (1)

dE 

dt 
= σ − dE + mET . (2)

Tumor or cancer cells T , grow at a maximal rate a in a logistic

fashion. The population density of the cancer cells is regulated by

the coefficient b , which acts as an inverse carrying capacity. The

cancer cells are detected and killed by effector cells E at a net rate

k ( Kuznetsov et al., 1994 ). We assume a constant supply of effector

cells at a rate σ ( Althaus and De Boer, 2008; De Boer, 2007a ), and

a death rate d per effector cell ( Wodarz, 2007 ). Effector cells can

either be stimulated to proliferate or be impaired in their growth

at a rate m , the net growth increase or decrease due to the pres-

ence of cancer cells. In other words, m can attain positive as well

as negative values. 

We proceed to analyze the possible equilibria of this system.

We start by observing that (T ∗
1 
, E ∗

1 
) = (0 , σ/d) is always a fixed

point of the ODEs above. Two further solutions for T ∗ can be rep-

resented by the quadratic formula (see Appendix A ): 

T ∗2 , 3 = 

a (m + bd) ±
√ 

�s 

2 abm 

, (3)

where 

�s = (a (m + bd)) 2 − 4 abm (ad − kσ ) . (4)

A closer inspection of the properties of the dynamics of (1)–

(2) reveals that all biologically relevant cases, namely those in

which T ∗
2 , 3 

> 0 , are consistent with m < 0 (see Appendix A ). This

corresponds to a net immune cell proliferation suppression by can-

cer, which can arise by various mechanisms ( Conway and Perelson,

2014; Keir et al., 2008; Mellor and Munn, 2004; Aggarwal and Pit-

tenger, 2005; Munn and Mellor, 2004; Marigo et al., 2008; Kooi

et al., 1996; Hamanishi et al., 2007 ). m < 0 is also where a bista-

bility pattern in the steady states of (1)–(2) emerges. The alterna-

tive m > 0, leads to scenarios that are at odds with well estab-

lished concepts of cancer modeling, and produce incomplete dy-

namics (see Appendix A ). In particular, they conflict with the well-

established notion of an immunological barrier ( Kuznetsov et al.,
994 ); the idea that tumors have to grow above a critical threshold

o reach a large size close to carrying capacity ( Eftimie et al., 2010 ).

emporary changes in the activity of the immune system can lead

o fluctuations in tumor size which place its size above the barrier,

hich then gives rise to cancer. 

There are three possible cases of sign arrangements of the roots

f (3) under m < 0: i) both negative, ii) one positive and one neg-

tive, iii) both positive. Scenario i) has T ∗
1 

as only biologically plau-

ible solution. Only the cancer-free state exists. Case ii) signifies

 single attractive equilibrium at a non-zero tumor size. The emer-

ence of a cancerous cell suffices to ignite a replicative process that

nduces the establishment of a tumor close to carrying capacity

/ b . Thus iii), where T ∗
2 , 3 

> 0 , is the only case which admits sta-

le equilibria compatible with an existing immunological barrier. 

For T ∗
2 , 3 

> 0 to be satisfied, and while assuming that a > 0 and

 > 0 for biological reasons, we obtain the following conditions

see Appendix A ): 

 < 0 (5)

 + bd < 0 (6)

 > k l ≡ ad /σ (7)

 < k u ≡
(
ad − ( a ( m + bd ) ) 

2 

4 abm 

)
1 

σ
(8)

 k l −
(

(a (m + bd)) 2 

4 abm 

)
1 

σ
. (9)

These results reveal a bistability pattern that is mediated by the

illing efficacy k . Fig. 2 shows how the increase in the parameter k

eads to a bifurcation in the stable states of T and to bistability for

 . At k < k l the system will reside in the aforementioned case ii).

y increasing k above k l but below k u , the system will enter case

ii), and move to i) as k > k u . In line with our expectations, val-

es of k below the threshold value k represent a similar situation
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1  
s would be expected in the absence of immune cells: unchecked

ancer growth. If k is gradually increased above k l , the tumor cells

ould have to begin replicating at increasingly large initial sizes in

rder to avoid being absorbed by the attractor at T ∗
1 

= 0 , that is,

o be suppressed by the immune system. This is where the bifur-

ation appears, and now three equilibria, of which two are stable,

ominate the dynamics. The parameter range spanned between k u 

nd k l , | k u − k l | = 
(a (m + bd)) 2 

4 abmσ
is highly dependent on the ratio of b

nd m , as well as σ . Lastly, large values of k above k u entail that

ven few effector cells are able to clear the tumor, and even large

umors are eliminated with certainty. 

At intermediate k (case iii) the base level of effector cells cru-

ially affects the dynamics. In the absence of cancer, the equilib-

ium level of effector cells is at σ / d . The appearance of cancer cells

ill induce a killing process mediated by k . High enough effector

ell levels will suppress tumor growth. In reality, the tumor might

uctuate above some threshold within which effector cells control

t, and the suppression of further T cell proliferation ( m < 0) by

he cancer will dominate over the killing. Thus, the conditions (5)–

8) mark the region of killing efficacy values that constitute an im-

unological barrier to the cancer. Increasing k values imply that

his barrier is heightened: existing effector cells improve their ca-

acity to completely eliminate the cancer. 

This analysis may serve as a model to think about how to effi-

iently combine immunotherapy approaches. These results suggest

hat one mechanism to generate biologically plausible bistability is

onsistent with situations in which the cancer’s immunosuppres-

ive effects outweigh its immunoproliferative effects ( m < 0). The

xistence of a bifurcation implies that increasing killing efficacies

ill not simply gradually diminish cancer cell numbers. Instead,

n increase above a critical value k u can terminally clear the can-

er. Equally, if k is located in the range k l < k < k u , the adoptive

ransfer of effector cells may work by perturbing cancer cell num-

ers below the unstable equilibrium point T ∗
2 
, after which it will

e absorbed into T ∗
1 

= 0 and be cleared. 

odel variations 

The here presented base-model, despite being strongly simpli-

ed, can help us intuitively understand more complex models of

ancer-immune system interactions. In the following, we demon-

trate that the basic bistability phenomenon can be replicated in

wo related, but more complex variations of the base-model. When

ossible, we also analyze whether multistability can arise, since it

s relevant to cancer dormancy , and also because it might mitigate

he effect of treatment. 

ncorporating saturation effect of tumor cells on immune response 

A natural way to extend the base-model is to include more bio-

ogically plausible assumptions about the behavior of effector cells.

ere, we retain the basic assumptions going into the base model,

ut refine the way that effector cells are reacting to the presence of

umor cells. In particular, we follow the approach by Conway et al.,

hich allows for a very general set of behaviors of effector cells to

rise and also provides estimates for the parameters ( Conway and

erelson, 2014 ). This study is set in the context of HIV, where a

reat body of theory has been devoted to the particulars of CTL

ehavior ( Wodarz, 2007 ). The equations are: 

dT 

dt 
= aT (1 − bT ) − kT E, (10)

dE 

dt 
= σ − dE + b e 

T 

κe + T 
E − d e 

T 

κ + T 
E. (11)
d 
Here, the interactions governing the rate of change in tumor

ells have remained intact. Effector cell growth can now be stim-

lated at a maximum rate b e ( Davenport et al., 2004; Conway and

erelson, 2014 ). The proliferation rate saturates with the number

f tumor cells T , and is half-maximal at the Michaelis-Menten con-

tant κe ( Conway and Perelson, 2014 ). In contrast, effector cells can

e exhausted by contact with tumor cells, and die from its conse-

uences at a maximal rate d e ( Johnson et al., 2011; Conway and

erelson, 2014 ). As with proliferation, the effects of exhaustion –

ediated by κd – saturate. For typical values of these parameters

ee Table S1 in Appendix B . Models with a saturation term in dT 
dt 

ave been analyzed before ( Kirschner and Panetta, 1998 ), and have

een thoroughly discussed in for example ( Talkington et al., 2018 ).

As with the base model, T ∗
1 

= 0 is always a fixed point. The rest

f the fixed points are determined by the roots of a cubic equation

see Appendix B ). For the system of equations to generate bistabil-

ty, that is, to give rise to exactly two positive equilibria in T , the

ollowing set of conditions needs to be satisfied (see Appendix B ):

8 ABCD − 4 B 3 D + B 2 C 2 − 4 AC 3 − 27 A 2 D 
2 > 0 (12)

−2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

( 

1 

3 
arccos 

( 

B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (B 2 − 3 AC) 

√ 

9 A 2 

B 2 − 3 AC 

) ) 

− B 

3 A 
< 0 (13) 

2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

( 

1 

3 
arccos 

( 

B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (3 AC − B 2 ) 

√ 

9 A 2 

B 2 − 3 AC 

) 

− 2 π

3 

)
− B 

3 A 
> 0 , (14) 

here 

 = −ab ( d − b e + d e ) , (15) 

 = ab(b e κd − d e κe − d(κd + κe )) + a (d e + d − b e ) − σ k, (16)

 = a (d e κe − b e κd ) + ad(κd + κe − bκd κe ) − σ k (κd + κe ) , (17)

 = κd κe ( ad − σ k ) . (18) 

Analogously to the base model, a closer inspection of this re-

ult reveals that biologically plausible dynamics are consistent with

 = ab ( b e − d e − d ) < 0 (see Appendix B.1 ). Interestingly, this ex-

ression is independent of κe or κd . Since a, b > 0, this im-

lies that b e < d + d e which is analogous to the situation where

 < 0 in the base model. The treatment rationale identified in the

ase model may therefore also be applicable for the extended base

odel with saturation (10)–(11) . 

In Conway et al’s work ( Conway and Perelson, 2014 ), this con-

ition is satisfied by b e < d e , which is also functionally equiva-

ent to m < 0 in our base-model: the effector cell population de-

reases due to cancer-mediated exhaustion. Importantly, the pa-

ameter choice in Conway et al. is also consistent with the emer-

ence of bistable and multistable equilibira. 

Besides bistable patterns, the system (10)–(11) can also generate

 pattern of multistability. The conditions to obtain four equilibria

n T for (10)–(11) reads: 

8 ABCD − 4 B 3 D + B 2 C 2 − 4 AC 3 − 27 A 2 D 
2 > 0 (19)
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i  
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l  
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a  

b  

c  

t  

m  
−2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

(
1 

3 
arccos 

(
B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (B 2 − 3 AC) √ 

9 A 2 

B 2 − 3 AC 

) ) 

− B 

3 A 
> 0 , (20)

where A, B, C and D are as in (15) . Again, a biologically plausi-

ble arrangement of equilibrium points is in agreement with A < 0.

Figure A1 shows that bistability becomes common for d e > 1 and

k > 5 · 10 −4 , with the elimination of cancer ensuing after a critical

k threshold is surpassed. 

The existence of multiple stable equilibria may be interpreted

as cancer dormancy (see Discussion ). Cancer dormancy is the phe-

nomenon of a period of non-growth of tumors. Often, this oc-

curs in small, nearly undetectable tumors residing within body tis-

sues ( Wilkie, 2013 ). Fig. A1 shows that multistability is possible

in (10)–(11) . The existence of multistability in two-equation mod-

els has been predicted and shown in other work ( d’Onofrio, 2008;

de Vladar and González, 2004; Kuznetsov et al., 1994 ). Here, we

give precise analytical conditions for its emergence under (10)–

(11) . When in a multistable regime, an increase in killing efficacy k

might not directly lead to cancer eradication if treatment is started

when the cancer is near carrying capacity 1/ b . Instead, a new mi-

croscopic steady state (MISS, ( d’Onofrio, 2008 )) might be attained

before a further increase in k leads to cancer clearance. 

Incorporating natural killer (NK) cells and tumor-specific CTL 

response 

In a next step, we incorporated a further level of complexity by

distinguishing between two types of effector cells: natural killer or

NK cells, and cytotoxic T lymphocytes or CTLs. Models that account

of the different roles between NK and CTL can be highly com-

plex ( de Pillis et al., 2005 ). To better understand where possible

bistabilities originate from, we restrict ourselves to an extension

of the base model with saturation, following an approach inspired

by de Pillis et al. (2005) and Conway and Perelson (2014) . Effector

cells are now split into NK cells N and CTLs E : 

dT 

dt 
= aT (1 − bT ) − cNT − kT E, (21)

dN 

dt 
= σ − μN + b n 

T 

κbn + T 
N − d n 

T 

κdn + T 
N, (22)

dE 

dt 
= −dE + b e 

T 

κbe + T 
E − d e 

T 

κde + T 
E + ωNT . (23)

Here, cancer cells T are killed at rates c by NK cells, and at rates

k by CTLs. The dynamics of the NK is now analogous to the dy-

namics of immune cells in (10)–(11) . We assume a constant sup-

ply of NK cells σ stemming from the host’s hematopoesis. NK cells

die naturally at a rate μ. The maximum NK proliferation rate in-

duced by the presence of cancer cells is b n , and the saturation co-

efficient is κbn . Again, exhaustion occurs at a maximum rate d n 
and the saturation in T is half-maximal at κdn . For CTLs, follow-

ing ( de Pillis et al., 2005 ), we assume that there is no constant

supply of cells. Instead, CTL growth is stimulated by the NK-cancer

cell interactions at a rate ω. This modeling approach ensures that

CTLs are activated only after the emergence of the NK immune re-

sponse ( de Pillis et al., 2005 ). Several biological mechanisms ap-

pear to exist by which NKs can stimulate CTL growth ( Pallmer and

Oxenius, 2016 ). The work of Fan et al. suggests that already acti-

vated NK cells can facilitate the priming of CTLs by means of IFN-

γ ( Fan et al., 2006 ). The proliferation and exhaustion terms are as

in the extended base model. 
The model (21)–(23) can generate substantially more complex

ehavior than the two previously analyzed. As in the previous

odels (1)–(2) and (10)–(11) , T ∗
1 

= 0 is always a fixed point. How-

ver, the NK-CTL model may allow for up to five other fixed points

see Appendix C ). This is because finding the steady states of (21)–

23) can be reduced to finding the roots of the rate of change of T ,
dT 
dt 

(T ) , which is a polynomial of sixth order. The five fixed points

esides T ∗
1 

= 0 , are the roots of a fifth order polynomial, for which

o general solutions exist. Thus, we cannot draw similar conclu-

ions for the existence of real fixed points as in the previous, re-

ying on analogous conditions on discriminants �s > 0 or � > 0.

owever, similarly to the base model (1)–(2) , a similar condition

o m < 0 is compatible with biologically plausible arrangements of

xed point’s stabilities. The expression analogous to m < 0 is (see

ppendix C ): 

ab ( ( b e − d e − d ) ( b n − d n − μ) ) − kσω < 0 (24)

The analogy to m < 0 arises from k, σ , ω > 0, valid bounds

n most biological contexts. If tumor cells are able to exhaust NKs

nd CTLs, that is, if both ( b e − d e − d ) < 0 and ( b n − d n − μ) < 0 ,

hen the system can display biologically reasonable behavior. Note

hat unlike the previous models, this condition can be satisfied by

ther means as well, such as increasing k . Again, the condition is

ndependent of the four saturation coefficients κbe , κde , κbn , κdn . 

Due to the analytical unfeasability of the model (21)–(23) , we

esorted to numerical methods to prove the existence of basic

istability patterns (see Appendix C ) ( Soetaert and Herman, 2008;

oetaert, 2009 ). We found that the system is able to display bista-

ility similar to that found in the extended base model with satu-

ation (see Fig. A2 ). 

istability-based Strategies of Cancer Immunotherapy 

The existence of bistability patterns in simple non-spatial can-

er models as well as its variations, can be informative to the as-

essment of immunotherapeutic options and of their efficacy. Tak-

ng the base model (1)–(2) as a foundation, three intervention ap-

roaches seem apparent. First, the elimination of the exhaustive ef-

ects of cancer on the immune cells ( m < 0 → m > 0). Second, the

ncrease of the killing efficacy of effector cells above some thresh-

ld ( k < k u → k > k u ). Third, the administration of effector cells

 E → E + �E). In terms of the dynamics, this represents pushing

he state of the system into the attraction basin of T = 0 . Combi-

ations of these therapy approaches have previously been explored

n simulations ( Kirschner and Panetta, 1998 ). 

In current immunotherapy, the two main available tools for

ancer cell reduction correspond to the second ( antibody ther-

py ) and third ( adoptive T cell transfer ) options ( Dougan and Dra-

off, 2009; Mellman et al., 2011 ). In antibody therapy, an in-

rease in killing efficacy is attained by disrupting cancer cells’

echanisms for impairing T cell action. This impairment oc-

urs by the acquisition of mutations in cancer cells that, for ex-

mple, lead to the expression of the PD-L1 and PD-L2 ligands

 Kooi et al., 1996; Hamanishi et al., 2007 ). These ligands are known

o bind to the PD-1 receptors on T cell surfaces, thereby downreg-

lating the activation of the T cells. Thus, a direct effect of PD-1

mmune checkpoint blockade is to halt cancer-induced T cell an-

rgy and exhaustion ( Mellman and Steinman, 2001 ). In this work

e assume that ultimately, monoclonal antibodies binding to the

igands effectively increase k by interrupting this cancer escape

echanism. Possible increases in T cell recruiting and proliferation

re neglected. In adoptive T cell transfer ( Rosenberg, 1991; Rosen-

erg et al., 2004 ), T cells are pre-programmed to kill host cells that

arry particular biochemical signatures, for example certain pep-

ides on their surface. The signatures are chosen such that they

atch characteristic features of cancer cells. Subsequently, these
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Fig. 3. Simulation runs of the base model without A) and with B) immunotherapeutic treatment. A) Cancer replication begins at T (0) = 10 2 , and the natural equilibrium 

of the effectors is at E(0) = 10 3 . The cancer grows to carrying capacity in a time frame of around 45 days. B) Combined immunotherapeutic treatment is initiated at 50 days 

after the cancer has begun to grow. It lasts for 21 days in antibody therapy, and 28 days in adoptive cell transfer. Killing efficacies are increased to �k = 10 −1 , while a total 

of �E = 10 5 cells are injected in a gradual fashion. Immune cells are eliminated rapidly by the powerful immune exhaustion effects exerted by the cancer cells. Parameter 

values are as in Table 1 . In particular, k = 10 −4 . 
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Fig. 4. Cancer cell numbers after combination immunotherapy after 120 days. 

Immunotherapy begins at day 50, after the cancer has grown to full size, and lasts 

for a single day. Combination immunotherapy is implemented by increasing the 

killing efficacy of the effector cells and adoptive immune transfer of effector cells. 

Darker colors indicate high cancer cell numbers, implying that the cancer persists, 

while lighter colors indicate low cancer cell numbers. Parameter values are as in 

Table 1 . 
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pecific T cells are grown and injected into the blood stream of

he patient ( Mellman et al., 2011 ). 

These two novel treatment methods can be combined to take

dvantage of the bistability phenomenon in cancer. We used the

ase model (1)–(2) to investigate how a combination of both ap-

roaches could be used to clear the tumor, while accounting for

he stochastic effects arising from singular cell-to-cell interactions.

tarting from an already established tumor, increasing the efficacy

f killing of effector cells will not by itself necessarily lead to the

limination of the tumor, unless very high levels of killing efficacy

an be attained. Instead, increasing the killing efficacy by two or-

ers of magnitudes will lead the system to equilibrate at tumor cell

umbers lower than the carrying capacity (see Fig. 2 ). If the treat-

ent with monoclonal antibodies has been sufficiently effective, it

ill have shifted the system into a regime with two stable equilib-

ia, out of which one is the cancer-free state. If now the system is

erturbed further with adoptive T cell transfer into the attraction

asin of the cancer-free equilibrium, the waning of the effects of

he first treatment will not lead to the reemergence of the cancer.

hus, the generation of a temporary bistability in the system can

e exploited to perturb it into a cancer-free state. 

To model the combined effects of killing efficacy increases by

D-1 specific monoclonal antibody and adoptive T cell transfer

reatments, we used stochastic version of the base cancer immune

nteraction model (1)–(2) (see Materials and Methods ). Fig. 3 shows

he time courses of the dynamics with and without treatment.

ithout treatment, a cancer that has surpassed the immunolog-

cal barrier will grow unrestricted up to levels very close to car-

ying capacity ( Fig. 3 A). The combined administration of effector

ells and killing efficacy-increasing compounds at first only gradu-

lly reduces cancer numbers ( Fig. 3 B). Daily administered effector

ells �E / �τ E ( Materials and Methods ) can only temporarily affect

he dynamics before they are rapidly suppressed and exhausted

y the cancer ( m < 0). When the state of the system is pushed

nto the attraction basin of the cancer-free state, cancer numbers

apidly go to zero. Further injections of effector cells become un-

ecessary, and effectors build up. 

We then investigated whether an increase in k and the admin-

stration of effector cells E work together in a synergistic or antag-

nistic fashion to remove the tumor. Fig. 4 shows the outcome of

ombination immunotherapy, initiated simultaneously for antibody

nd T cell injections. Each immunotherapeutic approach may clear

he cancer on its own. A marked frontier between cancer presence

nd clearance emerges. A lowering of killing efficacies along this

rontier will lead to insufficient pressure to clear the cancer, but
an be compensated by an increase in adoptive transfer doses. The

inear shape of the frontier indicates that the two approaches do

ot mutually impair each others’ function. 

. Discussion 

In this study, we have shown that the base model can only re-

roduce biologically plausible behavior if the suppressive effects

xerted by cancer cells on immune cells dominate their prolifer-

tive effects. Under these circumstances, the base model displays

 conspicuous pattern of bistability : The cancer-immune interac-

ion dynamics gives rise to two distinct, stable states (a cancer-

ree, and a full-grown tumor state). Under bistability, the modifica-

ion of the killing efficacy can lead to a bifurcation in cancer cell

umbers, where the system may abruptly be tipped into a new,

ancer-free state. Furthermore, in situations where exhaustion pre-

ails over proliferation in immune cells, all analyzed models can

roduce bistability patterns that are biologically plausible. If this

ondition is not satisfied, the base model cannot produce biolog-

cally plausible behavior across a wide range of k values. We also
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formulated more complex extensions of the base model, which can

generate multistability , a dynamic behavior that can be interpreted

as stable microscopic cancers ( d’Onofrio, 2005 ), or cancer dormancy

( Kuznetsov et al., 1994; Wilkie, 2013 ). We gave the exact conditions

under which multistability might arise in one model extension in-

spired by Conway and Perelson (2014) . We also examined how

bistability may be used for effective combination immunotherapy.

We tested a combination of two different immunotherapeutic ap-

proaches in stochastic simulations of the base model. We found

that the combination of treatment interventions is able to clear the

cancer, and that the different treatment approaches do not impair

one another. 

How both treatment approaches investigated here would work

in isolation has been studied in other work ( d’Onofrio, 2008;

Kuznetsov and Knott, 2001; Eftimie et al., 2010 ). However, it is less

apparent that they may be employed to work in concert without

mutual impairment. This is important when considering side ef-

fects of these therapies. For example, the administration of PD-1

antibodies in mice have resulted in lung inflammation and car-

diomyopathy ( Nishimura et al., 2001; 1999; Mellman et al., 2011 ).

Thus, combination immunotherapy may help minimize the risks

associated with standalone approaches. 

Another advantage of this study lies in that it specifically shows

how multistability may arise from standard assumptions about

cancer-immune system interactions (saturation terms), and in that

it gives precise conditions for its emergence. Although the first ex-

tended model with saturation (10)–(11) is not intended to admit

multiple steady states, these arise as a consequence of the basic

assumptions about interactions. 

Intermediate-sized cancers in multi-stable regimes may be in-

terpreted as cancer dormancy ( d’Onofrio, 2008; Kuznetsov et al.,

1994; de Vladar and González, 2004 ), but the model (10)–(11) does

not explicitly explain how they may escape immune control. For

immune escape to arise, additional processes must be assumed,

such as stochastic perturbations or immunoediting ( Wilkie and

Hahnfeldt, 2013a ). A discussion of how tumors might rise to large

numbers in models very similar to the base model with satura-

tion has been given in Kuznetsov et al. (1994) and by Wilkie and

Hahnfeldt (2013b) . In the Kuznetsov et al. model, a separatrix be-

tween the two main attraction basins passes close by the trivial,

cancer-free steady state. When a cancer arises and starts to repli-

cate at low numbers, it should follow a trajectory into a dormant,

stable steady state. However, stochastic fluctuations can push the

system’s state into the other attraction basin. In the Wilkie and

Hahnfeldt model, the saddle point is the dormant state itself. An-

other of the main mechanisms hypothesized to drive the transition

from dormancy to large tumors is immunoediting ( Wilkie, 2013 ):

The prolonged growth suppression of the tumor by the immune

response leads to the selection of cancer mutations that escape im-

mune pressure, effectively reducing the immune killing efficacy k

Wilkie and Hahnfeldt (2013a) . The model (10)–(11) can also offer

an intuitive explanation for this process, whereby a smaller, un-

detectable and stable equilibrium of cancer cells is maintained by

a relatively weak immune response. The further decrease of the

immune response efficacy by means of immune escape processes

leads to the establishment of a full grown tumor. This is exem-

plified by the fact that decreasing k in Fig. A1 pushes the system

into a region of parameter space where there exists a stable steady

state for the tumor at carrying capacity, that is the full grown can-

cer state. 

Most other models of cancer-immune interaction so far have

attributed the phenomenon of dormant states to the existence

of an additional compartment: quiescent cancer cells ( Page and

Uhr, 2005; Wilkie, 2013 ). These cells are assumed to replicate

at a slower rate than normal cancer cells, and can revert back

to a fast growing state by means of phenotypic switching or
y acquiring further mutations ( Wilkie, 2013 ). In line with other

ork, the model (10)–(11) explains the existence of dormancy

y a specific balance of cancer cell growth and killing attained

n cancer-immune interactions, without relying on any additional

ompartments or assumptions. A notable example of how dor-

ancy can emerge from cancer-immune interactions alone is given

n Kuznetsov et al. (1994) . A third mechanism for the emergence of

ormancy has been given by Wilkie and Hahnfeldt (2013b) . In this

echanism, dormant states are represented by saddle nodes tra-

ersed by a separatrix demarcating the adjacent attractor regions

f either growth progression or tumor clearance. 

This point emphasizes a last advantage of non-spatial ODE

odels: Understanding cancer growth requires an appropriate de-

cription of cancer-immune system interactions at multiple scales

 Altrock et al., 2015 ). These scales range from cancer microenvi-

onments to large numbers of already systemic cancers. ODE mod-

ls offer useful tools to combine the behavior of both into a sin-

le framework ( Eftimie et al., 2010 ), accounting for the frequency-

ependent growth at early stages as well as the dominant im-

unosuppressive effects achieved by cancer when approaching

arrying capacity levels. 

A major caveat of the base model is that it cannot elicit an im-

une response. The elicitation of an immune response by a can-

er, with a subsequent rise in effector cells, is an important aspect

f cancer-immune system interactions. To achieve this, the base

odel would have to include a proliferation term for effectors that

akes on different values than the suppression in the T, E -plane.

he base model is thus more useful to study the aspects of how

mmunotherapy can be deployed to return the CISI system below

n immunological barrier by external perturbation. 

While simple modeling frameworks offer greater possibilities

or an in-depth understanding, this approach also has its limita-

ions. For instance, we have largely neglected stochastic attributes

f cancer-immune system interactions in our mathematical anal-

sis. These may mostly arise from the discreteness of cell-to-cell

nteractions, and are well captured by simulating the models by a

illespie algorithm ( Gillespie, 1977 ). We have addressed this short-

oming by adopting a stochastic simulation framework to imple-

ent immunotherapy. Other forms of stochasticity —for example

he random accrual of malignant mutations in cancer cells— are

lso not explictly modeled. Instead, they are assumed to be cap-

ured by model parameter values. Environmentally based fluctu-

tions ( Eftimie et al., 2010; Bose and Trimper, 2009 ), or changes

n the exerted immune pressure due to, for example, disease

 Mina et al., 2015 ), are also neglected. 

The models here analyzed do also not account for spatial struc-

ure (discussed in more detail in Araujo and McElwain, 2006;

oose et al., 2007; Chaplain, 2008 ). Spatial structure may change

he way that effector cell killing affects cancer growth, as well as

ow the presence of cancer cells may mediate immune cell pro-

iferation. In particular, we did not explore the fractional cell kill

aws as introduced by de Pillis et al. (2005) , hypothesized to ac-

ount for some of the geometrical features of tumors ( Lopez et al.,

014 ). In this approach, the total killing exerted by effectors

 ( E, T ) is governed by the de Pillis-Radunskaya-Wiseman (PRW)

aw Lopez et al. (2014) , where K(E, T ) = D (E, T ) T and D (E, T ) =
 

E λ

sT λ+ E λ . Structurally, how ( de Pillis et al., 2005 ) implement the re-

ruitment of NK cells differs only slightly from our implementation

n (21) . However, how CTLs are recruited differs in structure from

he simpler terms analyzed here in our models. With λ < 1 (ob-

ained from model fits to mouse data ( Lopez et al., 2014 )), the be-

avior of the recruiting is qualitatively similar to that studied here:

he recruiting of CTLs would then saturate with increasing cancer

ell numbers T , but continue growing with increasing effector cell

umbers E . 
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We thus assume that while the PRW law introduces an advan-

ageous new concept in the modeling in tumor-immune system

nteractions, our deviating from it will not yield marked qualita-

ive differences. Instead of attempting to capture tumor geometry

ehavior, the models analyzed here are rooted in the tradition of

irus dynamics —especially HIV— which assumes well-mixed cell

ypes ( Nowak and May, 20 0 0; Conway and Perelson, 2014 ). Thus,

he PRW law seems to mainly address problems arising from tu-

or geometry, while this study focuses mainly on systemic cancer

ypes —cancer types that do not manifest in single tumors only

 Eftimie et al., 2010 ). 

We have also not included the action of cytokines in our anal-

sis, which are typically accounted for with a separate, additional

quation ( Arciero et al., 2004; Kirschner and Panetta, 1998; Eftimie

t al., 2010 ). We have therefore not been able to assess the ef-

ectiveness of cytokine-based immunotherapy approaches in com-

ination with the ones studied here. Models with cytokines dis-

lay features like the persistence of large tumors, tumor dormancy,

nd tumor clearance upon immunotherapeutic treatment, as well

s oscillations between these states ( Eftimie et al., 2010; Kirschner

nd Panetta, 1998 ). Including cytokines into a more comprehensive

odeling framework would be an interesting topic for future work.

Our study has to be interpreted in the context of other models

f cancer-immune system interactions. The most comprehensive

athematical analysis of two-equation models has been put forth

y ( d’Onofrio, 20 05; 20 08 ). d’Onofrio analyzed a generalized math-

matical model in two variables —x denotes cancer and y effector

ell densities—, deriving some general results on the existence of

teady states and cancer eradication given some broad mathemat-

cal conditions on the interactions between these two cell types.

olutions were provided for the generalized model, but except for

he rate of adoptive transfers θ ( t ) (where t is time), no specific de-

endence was given on how steady states change with parameter

alue modifications. Our base model corresponds to a special case

f his general model Eqs. (1)–(2) in d’Onofrio (2008) ), with φ(x ) =
, f (x ) = a (1 − bx ) , β(x ) = 0 , q (x ) = 1 and μ(x ) = (d + | m | · x ) . As
n the models investigated in this study, d’Onofrio has observed

hat his generalized model admits a cancer-free state, and also pre-

icted that it may attain multiple stable equilibria, which he in-

erpreted as microscopic steady states (MISS) and which we in-

erpret in the context of cancer dormancy. Our own results thus

onfirm some of d’Onofrios, but go further to explore how spe-

ific cancer-immune system interaction models are concretely af-

ected by changing dynamical properties that may be tailored for

mmunotherapy. In particular, we wanted to explore some of the

roperties of CISI models that underpin the mechanisms that may

ive rise to bistability patterns (the aforementioned dominance

f immunosuppressive effects). In our models, we were therefore

ore interested in explicit analytical results, which would allow

s to study how bistability patterns depend on effector cell killing

fficacy. We also extended this approach to include how adoptive

ransfer might function under conditions with stochasticity. 

A similarly comprehensive analysis of how CISI models may

ive rise to successful adoptive immunotherapy treatments has re-

ently been put forth by Talkington et al. (2018) . Similarly to our

wn conclusions, Talkington et al. identify bistability as a ma-

or prerequisite for successful adoptive immunotherapy. Their ap-

roach is also to review a series of models of increasing complex-

ty, whereby complexity is understood to represent incorporations

f additional aspects of the immune system, such as helper cells,

nterleukin and naïve T cells into a base model. The base model is

uznetsov et al.’s early model from 1994 ( Kuznetsov et al., 1994 ),

hich, akin to our base model, assumes only two compartments:

umor and effector cells. The Kuznetsov model allows for bistabil-

ty, with a stable state of the tumor close to cancer eradication.

or all other models, Talkington et al. show that when they can
ive rise to bistability, adoptive immunotherapy leads to successful

utcomes in simulations. 

Future work could address whether the mechanism for bista-

ility emergence identified in this study, the dominance of im-

unosuppression by cancer over immune cell proliferation, is also

he one that gives rise to bistability in the models examined

y Talkington et al. To this end, it will be useful to embark on

 more comprehensive analysis of how mathematical models as

he ones put forth here, bring about some behavior of interest,

uch as bistability. One approach that could be taken in this di-

ection follows the axiomatic modeling framework pioneered by

omarova et al. (2003) and ( d’Onofrio, 2008; 2005 ). 

In a departure from the work of de Pillis et al. (2005) , we

ave concentrated on model features typically used in HIV model-

ng, borrowing in particular from the study of ( Conway and Perel-

on, 2014 ). The reason for this choice is that ODE-based modeling

as a long tradition in HIV and virus dynamics modeling ( Wodarz,

007; Nowak and May, 2000; Perelson and Ribeiro, 2013 ). A great

ealth of data have helped to validate interaction terms of differ-

nt cell types in mixtures, and particularly, how CTLs kill. In our

iew, these advantages can be fruitfully employed in cancer mod-

ling as well. A more inter-disciplinary integration, in particular

ith respect to CTL behavior, will benefit both fields, and allow for

he analysis of structural similarities between models that might

e harnessed for immunotherapy design. 

Our models show that biologically plausible cancer-immune

ystem interactions may be utilized to induce cancer-free states.

ncreases in the killing efficacy of immune effector cells can de-

troy the bistability pattern inherent in those models, abruptly re-

oving the basis for cancer growth. 
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ppendix A. Mathematical analysis of the base model 

Here, we describe the analysis of the system of Eqs. (1)–(2) and

ts equilibria (termed E ∗ and T ∗ in the following). To this end, we

rst solve d E/d t = 0 for E ∗, and obtain an expression in T ∗. We

hen subsitute E ∗ in dT ∗
dt 

, and obtain a polynomial in T ∗. We aim

o find the roots of dT 
∗

dt 
(T ∗) , which are the fixed points of the sys-

em of equations. Removing the one obvious fixed point given by
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(T ∗
1 
, E ∗

1 
) = (0 , σ/d) , we are left with a quadratic equation in T ∗. To

obtain the other fixed points, we analyze its roots: 

dT ∗

dt 
= F (T ∗, E ∗) = abmT ∗2 − a (m + bd) T ∗ + (ad − kσ ) = 0 (25)

The solutions of (25) are given in (3) . 

With this, we can derive the exact conditions for (i) both T ∗
2 

and T ∗
3 
below zero (ii) T ∗

2 
and T ∗

3 
of different signs and (iii) both T ∗

2 
and T ∗

3 
above zero. 

We go through all cases, starting with case i). For both so-

lutions T ∗
2 , 3 

to be negative, we have two subcases ia) and ib)

of sets of conditions. Either (ia), we require that a (m + bd) < 0 ,√ 

�s < | a (m + bd) | , √ 

�s > 0 and abm > 0, or equivalently (ib),

a (m + bd) > 0 , 
√ 

�s < | a (m + bd) | , √ 

�s > 0 and abm < 0. 

We want to investigate the conditions that are equal in both

sub-cases to simplify the expressions that lead to i). Let us start by

analyzing the condition 
√ 

�s < | a (m + bd) | , which is the same in

both sub-cases. This is equivalent to stating that 4 abm (ad − kσ ) >

0 . In this expression, a, b, d and σ have to be assumed to be pos-

itive for biological reasons. k , the net effector cell killing of cancer

cells can theoretically become negative, which could be the con-

sequence of cancer growth stimulation by the presence of effector

cells as reported in some recent studies ( Mellman et al., 2011 ). The

net growth stimulation from cancer cells m could theoretically be-

come negative also, since cancer cells are known to evolve mecha-

nisms that activate suppressive T regulatory cells and thus escape

effector cell action ( Mellman et al., 2011 ). This immunosuppres-

sive effect could overpower the growth stimulation of T cells in-

duced by the presence of cancer. Thus, for 4 abm (ad − kσ ) > 0 to

be valid, there exist two options: Either ad − kσ > 0 and m > 0, or

ad − kσ < 0 and m < 0. 

The other condition that appears in both sub-cases is �s > 0,

which is required to obtain real solutions for T ∗
2 , 3 

. Depending on

the sign of m , this translates into different conditions for k : if

m > 0, then k > 

(
ad − (a (m + bd)) 2 / 4 abm 

)
/σ, and otherwise if

m < 0, then k < 

(
ad − (a (m + bd)) 2 / 4 abm 

)
/σ . 

These conditions on m must concord with the conditions on

abm derived before, since a, b > 0. And thus if m > 0, we are in

the same sub-case as a (m + bd) < 0 and abm > 0, whereas m < 0

must coincide with a (m + bd) > 0 and abm < 0. 

Thus, to obtain T ∗
2 , 3 

< 0 , we have two sets of conditions depen-

dent on parameter m . The first set of conditions is: 

m > 0 (26)

m + bd < 0 (27)

ad − kσ > 0 (28)

k > 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
, (29)

whereas the second set of conditions reads: 

m < 0 (30)

m + bd > 0 (31)

ad − kσ < 0 (32)

k < 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
. (33)
Case ii) is of greater interest, since it entails that there will be

ne other positive solution to (1)–(2) . As in case i), there exist

wo situations in which T ∗
2 

< 0 and T ∗
3 

> 0 is attained. For these

onditions to be both true, it follows that either a (m + bd) > 0 ,
 

�s > | a (m + bd) | , √ 

�s > 0 and abm > 0, or on the other hand,

 (m + bd) < 0 , 
√ 

�s > | a (m + bd) | , √ 

�s > 0 and abm < 0. Note

hat compared to i), the inequality that compares | a (m + bd) | with
 

�s has been inverted. Fortunately, again, the inequalities on

 a (m + bd) | are equivalent in both sub-cases, so we can proceed

nalyzing it. 

Following an analogous discussion as in i), it follows that for
 

�s > | a (m + bd) | to be true requires either m < 0 and ad − kσ >

 , or conversely, m > 0 and ad − kσ < 0 . The conditions on m must

gain match the previous conditions on abm , since a, b > 0. With

n analogous reasoning for 
√ 

�s > 0 , we ultimately obtain: 

 > 0 (34)

 + bd > 0 (35)

d − kσ < 0 ⇐⇒ k > ad/σ (36)

 > 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
, (37)

r alternatively: 

 < 0 (38)

 + bd < 0 (39)

d − kσ > 0 ⇐⇒ k < ad/σ (40)

 < 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
. (41)

The case iii) is of particular interest, since it entails that there

ould exist two non-negative cancer attractors (stable fixed points

f (1)–(2) ), which are separated by one unstable state. For both

olutions T ∗
2 , 3 

to be positive, we require that a (m + bd) > 0 , 
√ 

�s <

 a (m + bd) | , √ 

�s > 0 and abm > 0, or equivalently, a (m + bd) < 0 ,
 

�s < | a (m + bd) | , √ 

�s > 0 and abm < 0. Thus, this is identical

o case i), except for the fact that the conditions on a (m + bd) are

xactly inverted. We can therefore simply adopt the conclusions

rom the discussions of 
√ 

�s < | a (m + bd) | and √ 

�s > 0 . 

As in i), the m > 0 sub-case (one of the two possible sub-cases

n the discussion of �s > 0) to obtain T ∗
2 , 3 

> 0 , needs to satisfy

he additional conditions a (m + bd) > 0 and abm > 0. Following

he assumptions about the values of a, b and d , this immediately

ntails that m + bd > 0 and that m > 0. The other sub-case ( m < 0)

equires a (m + bd) < 0 and abm < 0, which by analogy entails that

 + bd < 0 . 

Hence, summarizing, for all conditions for T ∗
2 , 3 

> 0 to be sat-

sfied at the same time, there exist two ways in which this can

e achieved that crucially depend on the sign of the effector cell

rowth stimulation parameter m . On the one hand, we will obtain

wo positive solutions to (1) , if: 

 > 0 (42)

 + bd > 0 (43)
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d − kσ > 0 (44) 

 > 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
, (45) 

r otherwise, if: 

 < 0 (46) 

 + bd < 0 (47)

d − kσ < 0 (48) 

 < 

(
ad − (a (m + bd)) 2 

4 abm 

)
1 

σ
. (49) 

This last set of conditions with m < 0 is of particular interest.

n the one hand, m > 0 leads to biologically dissatisfactory sce-

arios: The root at T ∗
1 

= 0 is repulsive, an there exists only one

ositive attractive root T ∗
2 

> 0 . This behavior signifies a departure

rom the concept of an immunological barrier ( Eftimie et al., 2010;

uznetsov et al., 1994 ), whereby a tumor has to first surpass a

hreshold size, from which it is hindered by the immune system,

efore being able to grow to large numbers. On the other hand,

he resulting bistability pattern in the m < 0 case is reminiscent

f key features of cancer establishment and growth, which makes

hem worth studying. 

tability analysis 

To analyze the stability of the equilibria of the system of

qs. (1)–(2) , we perform a classical analysis based on the behavior

f the Jacobian of the map f : ( E, T ) → ( dE / dt, dT / dt ) at equilibrium

oints. To do this, we first interpret (1)–(2) as a map: 

dT 

dt 
= f 1 (T , E) = aT (1 − bT ) − kT E, (50)

dE 

dt 
= f 2 (T , E) = σ − dE + mET . (51)

The Jacobian, J , of the map f is thus: 

 = 

(
a (1 − bT )) − abT − kE −kT 

mE −d + mT 

)
. (52) 

For an equilibrium point to be stable, the trace of J, tr ( J ) needs

o be negative, while the determinant of J, det ( J ), needs to positive.

he trace and determinants of J must therefore satisfy: 

r(J) = d + (ab − m ) T > 0 ⇐⇒ ab > m, (53)

here T > 0 , d > 0 , 

et(J) = m + bd > 2 mbT . (54)

The second condition (54) is equivalent to m + bd 
2 mb 

> T if m > 0,

nd to m + bd 
2 mb 

< T if m < 0. If m > 0, the largest tumor fixed point is

 
∗
3 

= 

a (m + bd)+ 
√ 

�s 

2 abm 
, from (3) . Inserting T ∗

3 
into (54) shows that the

ondition cannot be satisfied. However, T ∗
3 

does satisfy det ( J ) < 0 if

 < 0. Thus, only m < 0 scenarios can lead to the largest of the

xed points being stable. 
ppendix B. Mathematical analysis of the frequency dependent 

mmune response model 

To investigate the steady state solutions for the Eqs. (10)–(11) ,

e first solve for the steady state of E , which can be found analyt-

cally: 

 
∗ = 

σ

d − b e 
T 

κe + T + d e 
T 

κd + T 
. (55) 

Substituting E in the expression for dT / dt with Eq. (55) reduces

he finding of the steady states to a one-dimensional problem in

 
∗: 

dT ∗

dt 
= aT (1 − bT ) − kT 

σ

d − b e 
T 

κe + T + d e 
T 

κd + T 
= 0 . (56)

T ∗ = 0 is a trivial root of dT 
∗

dt 
= 0 . After removing the trivial root

rom (56) , the remaining fixed points of the system (10)–(11) cor-

espond to the roots of: 

 (1 − bT ) − k 
σ

d − b e 
T 

κe + T + d e 
T 

κd + T 
= 0 . (57)

This expression can be converted into a polynomial of third or-

er in T ∗. Solving Eq. (57) is thus equivalent to the problem of

nding the roots of a cubic equation that is obtained from (57) by

liminating the denominators: 

T 3 ab ( b e − d e − d ) 

+ T 2 ( a ( d − b e + d e ) − ab(d(κe + κd ) − b e κd + d e κe )) − σ k ) 

+ T ( a (d(κe + κd ) − b e κd + d e κe ) − abdκe κd − σ k (κe + κd ) ) 

+ κd κe ( ad − σ k ) = 0 (58) 

In other words, (58) is equivalent to a cubic equation of the

orm: 

f (x ) = Ax 3 + Bx 2 + Cx + D = 0 , (59)

here T = x and 

 = ab ( b e − d e − d ) , (60) 

B = a ( d − b e + d e ) − ab ( d ( κe + κd ) − b e κd + d e κe ) ) − σ k, (61) 

 = a ( d ( κe + κd ) − b e κd + d e κe ) − abd κe κd − σ k ( κe + κd ) , (62) 

 = κd κe ( ad − σ k ) . (63) 

The cubic is analytically solvable, but tedious to write out in its

tandard representation. We thus employ a non-standard represen-

ation of these roots to better analyze the systems’ behavior and its

iological meaning. The properties of the roots of (60) are largely

ependent on the discriminant � of the cubic equation, which is

efined by: 

= 18 ABCD − 4 B 3 D + B 2 C 2 − 4 AC 3 − 27 A 2 D 
2 . (64)

f � > 0 all three roots are real and distinct, if � = 0 one root is

 multiple root, and if � < 0 only one root is real, and the other

wo are complex. 

1. Two positive roots of the cubic 

With this information, we can make some assertions about the

onditions that (59) and � must satisfy for bistability to exist. Un-

er bistability, two of the three roots of (58) must be positive.

hen, together with the root T = 0 , there will be three possible
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roots to produce a bistability effect. The case in which all three are

positive will be dicussed next. 

Two positive roots of (58) can be attained in two ways: a) � =
0 , with both the double and the single root being positive and b)

� > 0 and only the smallest root being negative, with the other

two roots both being positive. 

The case a) is likely biologically irrelevant, since all the coeffi-

cients in (59) would have to take values to exactly satisfy � = 0 . In

case b) where � > 0 and all roots exist, we want to find conditions

under which exactly two of the three of the roots are positive. To

this end, we draw on the theory of cubic functions and on some

of its fundamental results about the nature of roots of cubic func-

tions. 

An elegant way to represent the roots of the cubic function

is by a trigonometric approach. This approach consists in mod-

ifying the standard cubic equation by means of the Tschirnhaus

transformation , where x = z − B/ 3 A, and z is the new variable. The

transformation uses the insight that the sum of the roots x N of

any n-order polynomial a n x 
n + a n −1 x 

n −1 · · · + a 1 x + a 0 is given by

−a n −1 /na n . Thus, the Tschirnhaus transformation corresponds to a

shift along the x-axis that relocates the cubic such that the sum

of the roots lies at the origin ( Nickalls, 2006 ). Expressing the stan-

dard cubic representation (59) in terms of the variable z leads to

the depressed cubic : 

f (z) = z 3 + pz + q, (65)

where 

p = 

3 AC − B 2 

3 A 2 
(66)

q = 

2 B 3 − 9 ABC + 27 A 2 D 

27 A 3 
. (67)

If three real solutions exist ( � > 0), the roots of the depressed

equation can be expressed by the use of trigonometric functions

( Zucker, 2008; Nickalls, 2006 ). Then, the real roots of the de-

pressed cubic equation are ( Beyer and Shelby, 1975 ): 

z k = 2 

√ 

− p 

3 
cos 

( 

1 

3 
arccos 

( 

3 q 

2 p 

√ 

−3 

p 

) 

− 2 πk 

3 

) 

, k = 0 , 1 , 2 . 

(68)

This equation is only valid if the argument of the arccosine of θ =
3 q 
2 p 

√ 

−3 
p is ∈ (−1 , 1) . Interestingly, this is equivalent to demanding

that 4 p 3 + 27 q 2 ≤ 0 . This condition implies that p < 0, which is

also a necessary condition for 
√ 

− p 
3 ∈ R . The solution (68) has an

elegant geometric interpretation. The roots can be represented as

the projections of the vertices of an equilateral triangle with a cir-

cle of radius 2 
√ 

− p 
3 onto the x-axis. The center of the circle is lo-

cated at x N . 

Thus, what is needed to ensure that one real root is nega-

tive and two real roots are positive is to demand that the back-

transformation of the smallest root, min k z k − B/ 3 A , be smaller

than zero, and the next largest back-transformed root be positive.

Cubic function theory has produced useful results on how to find

the smallest solution min k z k ( Nickalls, 2006; Beyer and Shelby,

1975 ) as well as the position of the other roots in relation to it.

Let z 0 be interpreted as a function of p and q , that is, z 0 = C(p, q ) .

Then the three roots can be expressed in terms of C ( p, q ), namely

z 0 = C(p, q ) , z 2 = −C(p, −q ) , z 1 = −z 0 − z 2 . (69)

Furthermore, if the three roots are real, we have z 0 ≥ z 1 ≥ z 2 
( Nickalls, 2006; Beyer and Shelby, 1975 ). Thus, z is the smallest
2 
f the solutions, and therefore: 

in 
k 

z k = −2 

√ 

−p 

3 
cos 

( 

1 

3 
arccos 

( 

−3 q 

2 p 

√ 

−3 

p 

) ) 

. (70)

With this, the conditions to obtain one negative and two pos-

tive roots can be specified. First, � > 0 for all roots to be real-

alued, second z 2 − B/ 3 A < 0 to obtain a negative minimal root,

nd third, z 1 − B/ 3 A > 0 to ensure that the second largest root is

ositive. When replacing the values of p and q in (65) with terms

f the coefficients of the standard cubic function (59) , these condi-

ions read as follows: 

8 ABCD − 4 B 3 D + B 2 C 2 − 4 AC 3 − 27 A 2 D 
2 > 0 (71)

−2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

(
1 

3 
arccos 

(
B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (B 2 − 3 AC) √ 

9 A 2 

B 2 − 3 AC 

) ) 

− B 

3 A 
< 0 (72)

2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

( 

1 

3 
arccos 

( 

B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (3 AC − B 2 ) 

√ 

9 A 2 

B 2 − 3 AC 

) 

− 2 π

3 

)
− B 

3 A 
> 0 . (73)

Expressing A, B, C and D in terms of the parameters of model

10)–(11) gives the full solutions to the conditions for bistability.

hese conditions only ensure a certain position of the roots, but

o not establish whether these roots are ordered into stable and

nstable equilibria in a biologically reasonable way. 

2. Three positive roots of the cubic 

The trigonometric interpretation of the cubic also allows us to

dentify the conditions for all roots to be positive. Applying the

ame reasoning as in the two-positive-roots case ( Appendix B.1 ),

e impose that the sum of the smallest root z k and the shift im-

lied in the Tschirnhaus transformation, x N = −B/ 3 A, is larger than

ero. In other words, we ask that the solution z k , which is located

he farthest from x N in negative-x direction should be smaller than

 N itself. In this case, all roots will come to lie on the positive part

f the x-axis, although the circle of radius 2 
√ 

− p 
3 around x N might

each into negative x-values. 

The condition min 
k 

z k − B/ 3 A > 0 is thus the precise condition

or which all roots are positive. By virtue of (70) , and inserting the

alues of p and q in terms of the coefficients of the standard cubic

unction (59) , the conditions for only positive roots become: 

8 ABCD − 4 B 3 D + B 2 C 2 − 4 AC 3 − 27 A 2 D 
2 > 0 (74)

−2 

√ 

B 2 − 3 AC 

9 A 2 
cos 

(
1 

3 
arccos 

(
B (2 B 2 − 9 AC) + 27 A 2 D 

6 A (B 2 − 3 AC) √ 

9 A 2 

B 2 − 3 AC 

) ) 

− B 

3 A 
> 0 . (75)

These are implicit inequalities in A, B, C and D, which in turn

epend on the parameters of model (10)–(11) by means of the re-

ation (60) . 

Expressing the coefficients A, B, C and D in terms of the param-

ters of model (10)–(11) thus gives the exact analytical conditions

nder which four non-negative fixed points to (10)–(11) exist, out
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Table 2 

Parameter values for the extended base model with saturation (10)–(11) . 

Parameter Description Value 

a maximum replication rate of unmutated tumor cells ( de Pillis et al., 2005 ) 0.514 day 
−1 

b inverse carrying capacity of tumor ( de Pillis et al., 2005 ) 1 . 02 · 10 −9 cells 
−1 

k killing efficiency of effector cells or CTLs ( Ganusov et al., 2011; Wick et al., 2005; Elemans et al., 2014; de Pillis et al., 2005 ) 10 −5 − 10 −3 cells 
−1 

day 
−1 

σ replenishment rate of effector cells or CTLs E ( Althaus and De Boer, 2008; De Boer, 2007a ) 5 · 10 3 cells · day −1 

d effector or CTL loss rate ( Conway and Perelson, 2014 ) 2 day 
−1 

d e effector CTL immune impairment rate 10 −3 − 10 3 day 
−1 

b e maximum CTL proliferation rate ( Davenport et al., 2004; Conway and Perelson, 2014 ) 1 day 
−1 

κ e saturation coefficient of effector immune growth 5 · 10 2 cells 
κd saturation coefficient of effector immune exhaustion 2.5 · 10 4 cells 

Fig. A1. Number of possible non-negative steady states of T of the model (10)–

(11) . Shown is the region of parameter space spanned by killing efficacy k and ef- 

fector cell exhaustion d e divided into regions of different non-negative fixed points 

of the model (10)–(11) . The number of roots were identified numerically by means 

of the rootSolve package in R ( Soetaert and Herman, 2008; Soetaert, 2009; Soetaert 

et al., 2010 ). Numbers indicate the number of non-negative fixed points in each pa- 

rameter region. The region that supports multistability is colored in violet. The re- 

gion that admits bistability (3 fixed points) is adjacent to the multistability region. 

The other used paramaters are as in Table 2 . 
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f which three are strictly positive. Writing this expression down

s cumbersome and hard to analyze further. However, numerical

ethods can be employed to examine which regions in parameter

pace can produce this distinctive pattern of multistability. 

3. Analyzing parameter space for existence of multistability 

We analyzed whether the conditions (71) and (74) are satisfied

or realistic parametrizations of model (10)–(11) . To this end, we

xed most parameters at biologically plausible values found in the

iterature (see Table 2 ). We then varied two of those parameters

hich are either expected to have a large impact on the system’s

ynamics, or may be less well understood. 

The standard parameter values used for the extended model

ith saturation are specified in Table 2 . 

Fig. A1 shows the regions of parameter space whose parame-

er values lead to bistability as well as multistability in the model

10)–(11) . The region that supports multistability forms a band

cross a wide range of immune cell exhaustion rate values d e . This

ndicates that when a waning of killing efficacies k occurs, the

ystem may trespass this region. A boundary is shared by a re-

ion with bistability and the parameter region that only admits a
ancer-free state. The mechanism for combination of immunother-

py may thus still be applicable along this boundary, which is

resent at plausible values of d e around unity. The rest of the pa-

ameter values used for the generation of this plot are within the

ange of possible values frequently used in cancer modeling. 

ppendix C. Mathematical analysis of NK-CTL model 

We follow the approach taken for both the base model and the

xtended base model with saturation and attempt to derive a func-

ion dT 
dt 

(T ) to analyze the roots of (21)–(22) , which are the fixed

oints of the system. The steady states of N and E can be found

nalytically: 

 
∗ = 

σ

μ − b n 
T 

κbn + T + d n 
T 

κdn + T 
, (76) 

hereas 

 
∗ = 

ωNT 

d − b e 
T 

κbe + T + d e 
T 

κde + T 
. (77) 

Substituting N and E in the expression for dT 
dt 

(T ) in (21)–

23) reveals that dT 
dt 

(T ) can be expressed as 

dT 

dt 
(T , 

dE 

dt 
= 0 , 

dN 

dt 
= 0) = 

P (T ) 

Q(T ) 
. (78)

Here, P (T ) = F (T ) T is a sixth-order polynomial in T . Again re-

oving the trivial solution T ∗
1 

= 0 , leaves a polynomial F ( T ) of fifth

rder. Q ( T ) is a fourth order polynomial. The roots of P ( T ) consti-

ute the remaining fixed points of the system. In general, an ana-

ytical expression for the roots for such a polynomial can only be

iven up to the fourth order. Thus, we first restrict ourselves to dis-

ussing more general properties that P ( T ) and Q ( T ) need to satisfy

n order to generate biologically plausible situations. 

For this, it is important to keep in mind that dT 
dt 

(T , dE 
dt 

=
 , dN 

dt 
= 0) has a narrow mathematical interpretation. In the three-

imensional state space spanned by T, E and N , it describes the

ehavior of dT 
dt 

along the intersection between the nullclines of E

nd N . In a three-dimensional space, this intersection is typically

 line passing through a steady state. Imagine a point with some

 -value approaching a steady state at T ∗ on the intersecting line.

or the steady state to be stable, dT 
dt 

would have to be positive as

he point, and with it T < T ∗, reaches T ∗ from below. Equally, as

he point moves past the steady state into larger values T > T ∗, dT 
dt 

ould have to grow negative. We call this a stabilizing behavior of
dT 
dt 

at the steady state. If a steady state satisfies this condition, we

all it T -stabilizing. Clearly, this behavior of dT 
dt 

around the steady

tate does not guarantee that it is stable: instability could still be

aused by other properties of the derivatives field perpendicular to

he null cline analyzed. However, it is a pre-requisite for the steady

tate to be stable. 

We begin our discussion by analyzing the simpler problem
dT 
dt 

(T ) = F (T ) T . Here, dT 
dt 

(T ) is a polynomial F ( T ) times T . The or-

er of the polynomial F ( T ) and the sign of the leading coefficient α



14 V. Garcia, S. Bonhoeffer and F. Fu / Journal of Theoretical Biology 492 (2020) 110185 

Fig. A2. Bistability of cancer cell fixed points induced by immune control of tumor growth in model (21)–(23) . Panels A) to C) show the function dT / dt ( T ) (blue lines) 

for different parameter values of c. c is varied from 10 −7 (A) to 10 −3 (B) 10 0 (C). The blue points indicate the numerically found roots of dT / dt ( T ). Bistability emerges at 

c = 10 −3 . The parameter values were as specified in Table 3 . 

Table 3 

Parameter values for the extended model with saturation in NK and CTL (21)–(23) . 

Parameter Description Value 

a maximum replication rate of unmutated tumor cells ( de Pillis et al., 2005 ) 0.514 day 
−1 

b inverse carrying capacity of tumor ( de Pillis et al., 2005 ) 1 . 02 · 10 −9 cells 
−1 

c killing efficacy natural killer cells 10 −7 − 10 0 cells 
−1 

day 
−1 

k killing efficiency of effector cells or CTLs ( Ganusov et al., 2011; Wick et al., 2005; Elemans et al., 2014 ) 10 −5 − 10 cells 
−1 

day 
−1 

σ replenishment rate of effector cells or CTLs E ( Althaus and De Boer, 2008; De Boer, 2007a ) 10 − 10 3 cells · day −1 

b n proliferation rate of natural killer cells N 1.5 cells 
−1 

day 
−1 

d n exhaustion rate of natural killer cells N 1 cells 
−1 

day 
−1 

μ death rate of natural killer cells N 1 day 
−1 

d effector loss rate ( Conway and Perelson, 2014 ) 2 day 
−1 

d e CTL immune impairment rate ( Johnson et al., 2011; Conway and Perelson, 2014 ) 2 day 
−1 

b e maximum CTL proliferation rate ( Davenport et al., 2004; Conway and Perelson, 2014 ) 1 day 
−1 

ω growth stimulation rate of cytotoxic T lymphocytes E by natural killer cells ( de Pillis et al., 2005 ) 1 . 1 · 10 −7 cells 
−1 

day 
−1 

κbe saturation coefficient of CTL immune growth 5 · 10 2 cells 
κde saturation coefficient of CTL immune exhaustion 2.5 · 10 4 cells 
κbn saturation coefficient of NK immune growth 10 4 cells 

κdn saturation coefficient of NK immune exhaustion 10 3 cells 
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T  
of that polynomial, influences the locations of the roots of F ( T ), and

thus also of dT 
dt 

(T ) . F ( T ) also influences how the roots are arranged

into stable fixed points. 

The n th order polynomial will maximally have n real valued

roots. If n is odd, and α < 0, the smallest and largest fixed points of

F ( T ) are T -stabilizing. Conversely, if n is odd, and α > 0, the small-

est and largest fixed points of F ( T ) are unstable. If n is even, and

α < 0, the smallest fixed point of F ( T ) is unstable, while the largest

is T -stabilizing. Analogously, if n is even, and α > 0, the smallest

fixed point of F ( T ) is T -stabilizing, and the largest is unstable. 

These claims follow from the intermediate value theorem. If n

is odd, the limits of the polynomial for T → ∞ and T → −∞ will

be of opposite signs. If the leading coefficient α of the polynomial

is positive, lim 

T →−∞ 

F (T ) = −∞ , and lim 

T →∞ 

F (T ) = ∞ . To attain values

from −∞ to ∞ , F ( T ) must traverse the T -axis from negative to pos-

itive by virtue of the intermediate value theorem. Thus, the first

root must be an unstable fixed point. Since there exist an odd

number of roots, and the roots must alternate from T -stabilizing

to unstable, the last root must also be an unstable equilibrium. The

converse is true for α < 0, with both, the smallest and largest fixed

points being T -stabilizing. For even values of n , if α > 0, F ( T ) will

either be ∞ in the limit T → ± ∞ and −∞ for α < 0. Thus, fol-

lowing the same logic as with n odd, the smallest fixed point must

be T -stabilizing if α > 0, while the largest will be unstable. Con-
 s  
ersely, if α < 0, the smallest fixed point will unstable, whereas

he largest will be T -stabilizing. 

Multiplying F ( T ) with T does not alter the position of F ( T )’s

oots. However, it will have the effect of adding a new root T = 0

o dT 
dt 

(T ) = F (T ) T , and to switch T -stabilizing into unstable (and

ice versa) fixed points if they are negative. 

With this in mind, we can now turn our attention to the full ex-

ression, dT 
dt 

(T ) = 
P(T ) 
Q(T ) 

. Division by Q ( T ) does not alter the position

f the roots (unless the roots of Q ( T ) are identical with the roots of

 ( T ), in which case they would cancel out). However, it can modify

he T -stabilizing properties of the roots. Roots will be T -stabilizing

f the T -derivative of dT 
dt 

(T ) is negative. Let us assume that F ( T ) has

 roots T i ( i ∈ { 1 , . . . , n } ). Then, 
d 

dT 

dT 

dt 
(T ) = 

F (T )(Q(T ) − T d 
dT 
Q(T )) + T Q(T ) d 

dT 
F (T ) 

Q 
2 (T ) 

. (79)

f we evaluate this expression at a stable root of F ( T ), T i , where
d 
dT 

F (T ) < 0 , we obtain that: 

d 

dT 

dT 

dt 
(T i ) = 

T i Q(T i ) 
d 
dT 
F (T i ) 

Q 
2 (T i ) 

. (80)

his entails that the of root T i > 0 (the only biologically plausible

olution) will only be stable if Q ( T ) > 0. Thus, for the roots of F ( T )
i 
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o retain their T -stabilizing properties, they will need to come to

ie in intervals of T where Q ( T ) is positive. 

Since the fixed points of (21)–(23) can be described as F ( T ) T , the

bove reasoning is valid, and we can draw conclusions about what

onditions the leading coefficient α must satisfy to ensure biolog-

cally plausible equilibria. Analyzing the structure of dT 
dt 

(T ) with

athematica ( Wolfram Research, 2011 ), reveals that the coeffi-

ient α = a 5 of the polynomial F (T ) = a 5 T 
5 + a 4 T 

4 + a 3 T 
3 + a 2 T 

2 +
 1 T 

1 + a 0 reads as follows: 

 5 = −ab ( ( b e − d e − d ) ( b n − μ − d n ) ) − kσω. (81) 

Given that the order of the polynomial F ( T ) in NK-CTL model

21)–(23) is odd, the leading coefficient a 5 of the polynomial must

e negative and the value of Q ( T ) at the largest fixed point positive

n order for F ( T ) to have a T -stabilizing largest positive fixed point.

hus, analogously to the situation in the extended base model with

aturation, the biological plausibility of the positioning of the fixed

oints is compatible with a 5 < 0. Again, a 5 expresses the balance

etween proliferative and suppressive forces acting on NK as well

s CTL cells, and is independent from the saturation coefficients.

s in the previous models, we assume that a, b, d, σ , k > 0 and it

s biologically reasonable also to assume ω > 0. Thus, interestingly,

 5 < 0 can be satisfied by increasing k σω. But if k σω is negligible,

 5 will only be negative if ( b e − d e − d ) and ( b n − μ − d n ) are both

egative or both positive. Thus, the NK-CTL model allows for more

exibility to attain biologically plausible scenarios than the two

revious models: if the balance between proliferative and suppres-

ive forces in both NK and CTLs is tipped in favor of exhaustion of

he immune cells, biologically interpretable dynamics can emerge.

his is analogous behavior to an m < 0 situation in the base model.

imilarly, if the balance is tipped towards proliferation in both cell

ypes, the arising scenarios are again biologically sound. However,

he behavior between both immune cell types must be similar to

ttain this. 

Unfortunately, the above analysis does not reveal whether bi-

r multistability can be guaranteed to arise for special combina-

ions of parameters. To show this, we must fall back to numerical

ethods. In the following, we prove that the system (21) can gen-

rate at least bistability patterns of the kind displayed by the base

odel. We only analyzed the effects of changing c , the killing effi-

acy of NKs rather than CTLs, on the system. We chose c because

K have been estimated to have faster cancer suppressing effects

han CTLs in de Pillis et al. (2005) . Fig. A2 shows the emergence of

he bistability pattern for biologically sound parameter choices in

he model (21)–(23) . The parameter values are specified in Table 3 .
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