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Abstract
In this paper, we present CEASR, a Corpus for Evaluating the quality of Automatic Speech Recognition (ASR). It is a data set based on
public speech corpora, containing metadata along with transcripts generated by several modern state-of-the-art ASR systems. CEASR
provides this data in a unified structure, consistent across all corpora and systems, with normalised transcript texts and metadata.
We use CEASR to evaluate the quality of ASR systems by calculating an average Word Error Rate (WER) per corpus, per system and
per corpus-system pair. Our experiments show a substantial difference in accuracy between commercial versus open-source ASR tools
as well as differences up to a factor ten for single systems on different corpora. Using CEASR allowed us to very efficiently and easily
obtain these results. Our corpus enables researchers to perform ASR-related evaluations and various in-depth analyses with noticeably
reduced effort, i.e. without the need to collect, process and transcribe the speech data themselves.
Keywords: automatic speech recognition, evaluation, speech corpus, ASR systems

1. Introduction
Automatic Speech Recognition (ASR) has seen rapid
progress over the past decades, fuelled by increasing de-
mand for the applications it enables, such as in-meeting as-
sistants, voice search, subtitling, virtual speech assistants,
intelligent devices, or dictation tools. Closely linked with
the development of high-quality ASR systems is the task of
ASR quality evaluation, which is essential for both research
and practical applications. The standard metric for mea-
suring ASR performance is the Word Error Rate (WER),
which counts the word-level insertions, deletions and sub-
stitutions in a generated transcript (hypothesis) as compared
to a gold standard transcription (reference).
For commercial ASR providers, it is common practice to
advertise a single WER figure for their system, without
mentioning the properties of the audio and speech on which
this score was obtained. Similarly, open source models
are often evaluated on a very small set of reference cor-
pora, which gives a limited insight into their capability.
The Corpus for Evaluating Automatic Speech Recognition
(CEASR1) fills this gap by providing transcriptions of nine
English and six German speech corpora that were generated
by seven different ASR systems. The current version of
CEASR (1.0) is a snapshot of state-of-the-art ASR technol-
ogy from 2019. It can serve as a benchmark for assessing
and comparing the quality of various ASR systems as well
as tracking the progress in ASR technology over time.2
The speech corpora selected for CEASR are standard cor-
pora often cited in the literature. They represent a vari-
ety of speaking styles (read-aloud vs. spontaneous, mono-
logue vs. dialogue), speaker demographics (native vs. non-
native, different dialectal regions, age, gender and native
language), recording environments and audio quality types
(e.g. recording studio and telephone line), and thus allow
for a nuanced evaluation of ASR performance. The ASR

1Pronounced like ”Caesar”.
2The corpus is publicly available at https:

//ceasr-corpus.github.io.

systems reflect the current market and development land-
scape and as such include both commercial providers and
open-source frameworks. To our knowledge, CEASR is the
first corpus where transcriptions of multiple ASR systems
are collected and published. This allows researchers to ex-
plore the capabilities of ASR systems in various settings
without the tedious and time-consuming effort of creating
the transcriptions. The corpus contains 55’216 utterances
with a total of 79’369 tokens from 69.2 hours of audio
recordings. References and hypotheses are provided in a
unified format, which facilitates the development of scripts
and tools for their processing and analysis. CEASR can be
used for many applications, including but not limited to: a
reference benchmark for ASR quality tracking; detailed er-
ror analysis (e.g. error typology by acoustic setting, devel-
opment of alternative error metrics); detailed ASR quality
evaluation (e.g. in relation to speaker demographic profiles
or spoken language properties); and improving ASR, for
example by developing ensemble learning methods based
on the output of different systems.
CEASR has been created from nine English speech cor-
pora (TIMIT, VoxForge, CommonVoice, LibriSpeech, ST,
RT-09, AMI, Switchboard 1 Release 2, TedLium) and
six German corpora (VoxForge, CommonVoice, Tuda-De,
Hempel, StrangeCorpus 10, Verbmobil II v.21). Section
3.1 describes the corpora in more detail. Seven systems,
including both commercial and open-source, were used to
transcribe the English corpora, while four commercial sys-
tems were applied to the German audio recordings.
The remainder of this paper is structured as follows: Sec-
tion 2 discusses relevant literature, Section 3 describes how
CEASR was created, including information on the under-
lying speech corpora, the ASR systems, as well as the cor-
pus statistics and metadata. In Section 4 we present a de-
tailed analysis of ASR quality as a showcase application of
CEASR, before concluding in Section 5.
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2. Related Work
The accuracy of ASR systems has been the subject of
numerous investigations. There are several research pa-
pers documenting comparative evaluations of ASR systems
quality.
Këpuska and Bohouta (2017) show a comparative evalua-
tion of three ASR tools (Microsoft Azure, Google Cloud
API, and Sphinx-4) on selected utterances from the TIMIT
and International Telecommunication Union (ITU) corpora.
Gaida et al. (2014) present a large-scale evaluation of sev-
eral open-source speech recognition toolkits: HTK with
the decoders HDecode and Julius, CMUSphinx with pock-
etsphinx and Sphinx4, as well as Kaldi are compared in
terms of usability and recognition accuracy. The evalu-
ation basis is the Verbmobil 1 (VM1) corpus with dia-
logues in three languages (English, Japanese and German)
as well as the Wall Street Journal 1 (WSJ1) corpus with
English read-aloud speech based on Wall Street Journal
news. Franck Dernoncourt (2018) developped an ASR
benchmark framework which allows users to evaluate seven
ASR systems on different corpora. The framework sup-
ports the following APIs: Google Chrome Speech API,
Google Cloud Speech API, Houndify API, IBM Speech-
to-Text, Microsoft Bing Speech-to-Text, Speechmatics, and
Wit.ai. The authors also provide scripts allowing to format
CommonVoice and LibriSpeech for use in their evaluation
framework. Moore et al. (2019) present a meta-dataset for
speech intelligibility estimation. This dataset includes the
reference text, the hypotheses of two different ASR sys-
tems, the number of confusion pairs and total words, the
WER, and the time that it took to get the prediction from the
ASR system. The corpus is a collection of healthy native,
healthy accented, and disordered native speech datasets
based on CommonVoice, UASpeech, TORGO, Speech Ac-
cent Archive and TIMIT. The hypotheses are generated by
Google Speech API and CMUSphinx. This dataset, simi-
larly to CEASR, allows detailed error analysis of the tran-
scripts; however it is much smaller in scope. To the best
of our knowledge, CEASR is the most large-scale resource,
containing a larger number of corpora and ASR systems
than previous work.

3. Corpus Description
In the following sections we present CEASR in more de-
tail. Section 3.1 describes the speech corpora that form the
basis of CEASR and Section 3.2 details the ASR systems
and their configurations. The process of generating CEASR
corpus is presented in Section 3.3. The last Section 3.4
is devoted to legal constraints related to the distribution of
CEASR.
CEASR consists of a total of 55’216 utterances: 41’527
for English and 13’689 for German. They stem from 15
speech corpora: each sample contains a reference which
comes from the underlying corpus and was generated by
humans, and a set of machine transcriptions of the corre-
sponding audio recording generated by the ASR systems
(hypotheses). The corpus also contains varying metadata,
depending on the speech corpus which the utterance comes
from. Table 3 contains a detailed description of the meta-
data.

All utterances in CEASR are examples of either dialogue or
monologue human-to-human communication. They exhibit
diverse properties related to speaking style, speaking rate,
utterance duration, speaker demography or speech disflu-
encies. The diversity of properties reflect the variability of
spoken language. All audio samples have been transcribed
with commercial and open-source ASR systems. As a re-
sult, each English utterance is provided with between 15
to 19 hypotheses generated by seven commercial and open-
source ASR systems with different configurations, and each
German sample has four to eight hypotheses by commercial
ASR systems.

3.1. Speech Corpora
CEASR utterances are derived from nine English and
six German public speech corpora. Table 1 provides an
overview of the main corpora properties.
The English subset contains three corpora of sponta-
neous dialogue speech: RT (NIST Multimodal Informa-
tion Group, 2009), AMI (Carletta, 2006), and Switch-
board (Godfrey, John J., and Holliman, Edward, 1997);
one consisting of semi-spontaneous monologue utterances:
TedLium (Hernandez et al., 2018); and five containing
read-aloud monologue speech: Timit (Garofolo et al.,
1993), ST (Surfing Technology Ltd, 2018), LibriSpeech
Clean and LibriSpeech Other (Panayotov, Vassil and Chen,
Guoguo and Povey, Daniel and Khudanpur, Sanjeev, 2015),
VoxForge (MacLean, Ken, 2019), and CommonVoice
(Mozilla Foundation, 2017). RT and AMI are included in
CEASR in two variants: the first one consists of recordings
and transcripts from individual headsets, which means the
recording contains only the speech produced by one partic-
ular speaker. The second version is based on the signals
recorded by all the speakers’ head microphones added to-
gether. As a result, the recording contains overlapping ut-
terances and noise coming from other speakers. The default
test sets were used for TedLium, Timit, VoxForge, Com-
monVoice and LibriSpeech. Since AMI, RT, and ST do
not have standard train/test splits, we created test sets by
randomly sampling three hours from RT and ST and five
hours from AMI, in proportion to the original corpus sizes.
We also took a sample of 5 hours from Switchboard-1 Re-
lease 2. This data set is commonly used as training data for
telephony scenarios, and therefore it should not be used to
evaluate transcription results. Thus, it will not be included
in our evaluations in Section 4, but as it is suitable for other
ASR research purposes, it is included in CEASR.
The German part of CEASR contains transcriptions of four
corpora with read-aloud monologue utterances: Common-
Voice (Mozilla Foundation, 2017), VoxForge (MacLean,
Ken, 2019), Tuda-De (Milde and Koehn, 2015), and the
Strange Corpus 10 subset with read-aloud speech (Mapelli,
2004); two corpora containing spontaneous monologue:
Hempel (Draxler, 2004) and the Strange Corpus 10 sub-
set with retelling speech (Mapelli, 2004); and two with
spontaneous dialogue speech: Verbmobil II v.21 (BMBF,
Projekträger DLR, 2004) and the Strange Corpus 10 sub-
set with spontaneous speech (Mapelli, 2004). Two German
corpora (Tuda-De and CommonVoice) are provided with
default test sets. For all other corpora, random samples of
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English German
Speaking styles Read-aloud mono-

logue, semi-
spontaneous mono-
logue, spontaneous
dialogue

Read-aloud mono-
logue, spontaneous
monologue, sponta-
neous dialogue

Number of corpora in-
cluding corpora subsets
and variants

13 (including two
subsets of LibriSpeech,
two variants of RT,
AMI and TedLium)

10 (including three sub-
sets of Strange Corpus
10)

Size in hours 47.55 21.63
Number of utterances 41’527 13’689
Number of tokens 50’777 28’592
Average utterance du-
ration (in seconds)

4.61 sec 7.67 sec

Number of identified
speakers

1’351 723

Gender distribution 781 male and 509 fe-
male speakers

369 male and 364 fe-
male speakers

Number of identified
non-native speakers

148 194

Native languages of
identified non-native
speakers

n/a en-US, pt, it, es, ar, tr-
TR, en-GB, ru-RU, nl,
de-AT, ja-JP, fi-FI, el-
GR, de-CH, fr, pl-PL,
de, sv, hu-HU

Mean, minimal and
maximal number
utterances per speaker

mean: 107, min: 1
(Voxforge and Switch-
board), max: 757 (RT
both variants)

mean: 32, min: 1 (Vox-
forge and Hempel),
max: 832 (VoxForge)

Number of utterances
per dialect

en-US: 15’200, en-GB:
1044, en-CA: 508, en-
AU: 176, en-IE: 162,
en-IN: 150, en-NZ: 79,
en-PH: 8, en-ZA: 7, en-
MY: 3, en-SG: 1, un-
known: 24’189

de-DE: 4869, de-CH:
84, de-AT: 47, un-
known: 8’689

Average speaking rate 148 words / min 140 words / min
Number of utterances
containing filled pauses

10’992 1’218

Number of utterances
containing only filled
pauses

4’331 0

Number of utterances
containing only speaker
noise

1’380 0

Distribution of overlap-
ping utterances (only
spontaneous dialogue
speech corpora)

78.8 % (RT both vari-
ants), 84.4 % (AMI
both variants), 90.5
(Switchboard) %

n/a

Table 1: Properties of standard speech corpora forming the
basis of CEASR.

three hours were taken, except for the subsets of Strange
Corpus 10: due to their small volumes, the complete sets of
utterances were used.

3.2. ASR Systems
Some commercial systems have confidentiality restrictions
in their Terms of Use, so we cannot disclose their names or
associate themwith theWER scores they obtained. There is
one exception: Microsoft Azure Speech-to-Text3 gave per-
missions to be named and is labelled as System 6. In the
remainder of this paper, we will refer to the other commer-
cial providers simply as Systems 1, 2 and 3.
The open-source systems have no such constraints, so we
can provide their names, but for unity of format we will
also use numbers to refer to them in the graphics: System
4 is Kaldi version 5.5, System 5 is Mozilla DeepSpeech
version 0.5.1 and System 7 is CMUSphinx sphinx4.
The English corpora were transcribed by both commercial
and open-source systems, while the German part of CEASR

3https://azure.microsoft.com/en-us/
services/cognitive-services/speech-to-text/

1.0 was only transcribed with commercial systems. The
integration of open-source systems for German is currently
ongoing and will be part of a future release of CEASR.
The systems differ in terms of applied ASR paradigms:
CMUSphinx is based on Hidden Markov Models (HMMs)
(Dhankar, 2017), while Mozilla implements a more recent
End-to-End architecture, where the entire ASR process is
performed with a single Neural Network ((Amodei et al.,
2016), (Hannun et al., 2014)). Kaldi (Povey et al., 2011)
represents the hybrid approach combining components us-
ing HMMs, Gaussian Mixture Models (GMMs) and Deep
Neural Networks (DNNs).
We have used the cloud (online) versions of all the commer-
cial providers and local (offline) installations of the open-
source systems. However, Systems 1, 3 and Microsoft also
have on-premise options, which we have not yet investi-
gated.
All the systems have been used with their standard mod-
els without any customisation or additional training. We
note that this might influence results as some systems have
been optimised for specific use cases or require customisa-
tion for best results. Mozilla DeepSpeech and Kaldi are the
only systems where we have information about the speech
corpora used for default model training. Mozilla Deep-
Speech was trained on the Fisher corpus (Cieri et al., 2004),
LibriSpeech and Switchboard; Kaldi was trained on Fisher
(model ASpIRE) and LibriSpeech (model LibriSpeech).
We also know that S§ystem 2 has not been trained on any
of the corpora integrated in CEASR. For the remaining sys-
tems, we do not know at this point whether their training
sets overlap with the corpora from CEASR.
We performed transcriptions for each utterance with var-
ious settings per system, trying to find the configurations
with the highest transcription accuracy. Table 3.2 provides
an overview of the configurations of the three open-source
systems.

System Model Audio
Properties

Language

Mozilla
DeepSpeech

Included WAV / 16
kHz / 16 bit

en-US

Kaldi LibriSpeech WAV / 16
kHz / 16 bit

en

Kaldi LibriSpeech WAV / 8 kHz
/ 8 bit

en

Kaldi ASpIRE WAV / 16
kHz / 16 bit

en

Kaldi ASpIRE WAV / 8 kHz
/ 16 bit

en

CMUSphinx Included,
PTM

WAV / 16
kHz / 16 bit

en-US

CMUSphinx Included,
Continuous

WAV / 16
kHz / 16 bit

en-US

Table 2: Configurations of open-source systems. Italics
mark best configuration for each system.

For the four commercial systems, the number of available
configuration options varied significantly. For two out of
four systems, more than one model was available. Apart
from model selection, the commercial systems also allowed
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setting different audio sampling rates and bit depths. We
experimented with two different sampling rates (8 kHz and
16 kHz) and bit depth configurations (8 bit and 16 bit).
Some systems allowed setting additional parameters related
for example to transcripts formatting. We cannot disclose
more details on the configuration of the anonymous com-
mercial systems to ensure their anonymity.

3.3. Corpus Generation Process
The process for generating CEASR consisted of the fol-
lowing steps: pre-processing of the speech corpora in order
to extract and normalise utterances; transcribing the utter-
ances with the ASR systems; and post-processing the gen-
erated transcripts. The steps are described below.
Corpus extraction After retrieving the data from each
corpus, we performed a quality check in order to identify
incomplete utterance data: if the original reference text or
the audio file were missing, or if the utterance start time
was after or equal to the utterance end time, we removed
the utterance from the data set. This step was necessary to
ensure all data required for generating a transcription and
aligning it with its reference was available. In total, we re-
moved 549 utterances from the German corpora. Next, we
normalised the metadata items gender, dialect, and mother
tongue in order to allow cross-corpus filtering and com-
parison of utterances. For dialect and mother tongue, the
original data was mapped to the ISO 639-1 standard lan-
guage codes with country codes (e.g. en-US, de-AT, etc.);
for gender, all entries were normalised to ’male’ and ’fe-
male’. Finally, we transformed each corpus into a uniform
utterance data structure needed for further processing. Ta-
ble 3 provides more details on the structure of the utterance
data object. More detailed documentation is provided on
the corpus website.
Reference segmentation and normalisation If the ref-
erences were provided in one large file containing multiple
annotated utterances, we retrieved each single utterance and
stored it separately according to the annotation. We aimed
at keeping the utterance lengths consistent and not exceed-
ing ten seconds by segmenting longer utterances. How-
ever, we could perform this segmentation only for utter-
ances provided with time stamps. If no time stamps were
available, the utterances were left as provided in the origi-
nal corpus. As a result, mean utterance duration for English
ranges from 2.03 (RT Headset) to 8.16 seconds (TedLium)
and for German lies between 2.78 (Strange Corpus 10 read-
aloud subset) and 24.79 seconds (Hempel).
Furthermore, we removed all meta-tags from the reference
text. These are tags describing speaker noise (e.g. laughing
or coughing), non-speaker noise (e.g. rustle, squeak), or
speaker disfluencies (e.g. speaker restarts, partial words,
mispronounced words, unintelligible speech). Next to the
cleaned reference, the original reference text including the
meta-tags was stored as part of the unified utterance data as
well. A full documentation of meta-tags is available on the
CEASR website.
In order to reliably compare performance between different
systems, the formatting of the references and the hypothe-
ses must be as similar as possible. To this end, we removed
punctuation, transformed all strings to lower-case, spelled

out numbers (”forty-two” instead of ”42”), and applied con-
sistent formatting of integers, decimal values and time of
day.

Audio pre-processing In order to prepare utterances for
transcription, we performed two steps: extracting audio in-
formation, converting and trimming the audio file where
necessary.
Some speech corpora provide a set of audios of several
seconds, each containing one short utterance, while oth-
ers have long audios with long utterances of several min-
utes, or long audios containing multiple short utterances.
When timestamps were available, we segmented all record-
ings into audios of duration less than 10 seconds in order to
ensure consistency between reference text and audio seg-
mentation (see previous paragraph). In the next step, we
converted the audios into the required audio formats. We
also changed the sampling rate and the bit depth according
to the requirements by the particular system. Converted au-
dios were then passed through to the transcription step and
the utterance data object was extended with new informa-
tion such as format, duration, sampling rate, bit depth and
number of channels of both the original audio file as well
as the converted recording.

Corpus transcription The transcriptions were per-
formed in batches: a full set of pre-processed utterances
from one corpus was sent to an ASR system for transcrib-
ing. Each utterance data object was enriched with the orig-
inal hypothesis text and moved to the next step, which was
hypothesis post-processing

Hypothesis post-processing In order to ensure consis-
tency between reference and hypothesis, we performed the
same reference normalisation steps also on the hypothe-
sis(see paragraph ”Reference segmentation and normalisa-
tion”). We tried to discover and eliminate as many discrep-
ancies between references and hypothesis as possible; how-
ever, a complete consistency between the texts in terms of
formatting cannot be guaranteed.
As a result, CEASR contains utterances of the speech cor-
pora together with their metadata, the transcripts and the
transcription details stored in a unified format. As shown
in Table 3, it covers various speaking styles; a variety of
speakers’ demographic profiles related to gender, dialect
and mother tongue; various recording setups (microphone
types and recording environments); properties of the au-
dio signal (duration, sampling rate, number of channels, bit
depth, encoding and number of samples), as well as other
spoken utterance properties such as speaking rate, occur-
rence of speaker noise (e.g. laughing) or filled pauses (such
as e.g. ”hm” or ”mhm”). Utterances in the corpus are pro-
vided with a set of attributes reflecting all these dimensions.
The utterances from one speech corpus transcribed by one
system in a particular configuration are stored in one file,
which also contains job metadata: the corpus name and
system configuration as well as metadata such as language,
speaking style, original reference and audio segmentation,
and dialogue or monologue speech categorisation.4

4More detailed corpus documentation is provided on the
CEASR website.
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Utterance Attribute Description
Utterance ID Utterance ID (unique within corpus).
Speaker ID Identifier of the speaker if available.
Reference The manual transcript provided as

part of a speech corpus. Two variants
of the reference are stored: original
transcript and processed transcript
(according to the pre-processing
steps described in Section 3.3)

Hypothesis The machine transcript generated by
an ASR system and post-processed
according to the steps described in
Section 3.3. The hypothesis section
also contains the original machine
transcript generated by the ASR sys-
tem.

Audio Detailed information about the audio
recording of the utterance: audio file
name, audio duration, sampling rate,
bit depth, number of channels, encod-
ing and number of samples.

Recording Type of the recording device and
acoustic environment (where avail-
able).

Dialect The ISO 639-1 language code with
country code describing the speaker’s
dialect.

Accent The accent of the speaker (native or
non-native)

Gender The gender of the speaker. The value
is normalised across all corpora and
has the value ’male’ or ’female’.

Overlappings Whether the utterance is overlapping
with any other utterance.

Speaker noise Whether the utterance contains only
speaker noise such as laughter.

Additional properties Additional utterance properties, such
as mother tongue of a non-native
speaker, region, education or age.
(Available for a limited number of ut-
terances).

Speaking rate The number of words uttered per
minute.

Table 3: Utterance data object.

3.4. Constraints on CEASR Distribution
Due to legal constraints, not all of the corpus references and
system hypotheses can be made publicly available. The in-
formation below reflects the current status at the time of
writing; however, since this is subject to change, a detailed
overview of which utterances and transcripts are publicly
available as part of the latest CEASR version will be docu-
mented on the CEASR website.

Corpora constraints References from corpora with Cre-
ative Commons or GNU General Public licenses (AMI,
CommonVoice, LibriSpeech, ST, Tedlium and VoxForge,
Tuda-De) can be shared without restrictions. References
from the remaining corpora are not published as part of
CEASR 1.0. Details on how to integrate utterances from
paid corpora are provided on the CEASR website.

System constraints Some providers place restrictions on
distributing the hypotheses generated by their systems.
Transcripts by the open-source systems (Mozilla, Sphinx4
and Kaldi) can be distributed. Furthermore, three commer-
cial systems have given permission for transcript distribu-
tion and are included in CEASR 1.0. The names of these
commercial systems, however, cannot be disclosed.

4. Sample Application: Using CEASR for
ASR System Comparison

CEASR lends itself to a detailed evaluation and compari-
son of ASR systems. In the following, we first briefly dis-
cuss what it means to run a fair evaluation (Section 4.1),
explain what corpora form the basis of our evaluation (Sec-
tion 4.2) and finally we evaluate the quality of ASR systems
for English and German (Section 4.3). We analyse the per-
formance with respect to the characteristics of corpora (e.g.
speaking style - see Sections 4.4 and 4.6, or accent - see
Section 4.7), and commercial versus open-source systems
(4.5).

4.1. Challenges for a Fair Evaluation
Before we discuss the evaluation results, we would like to
point out some of the caveats of running a fair compari-
son between the hypotheses of different systems on the one
hand and the corpus references on the other hand. In the fol-
lowing we will describe the issues encountered. Although
we have completed this analysis to the best of our knowl-
edge, it remains possible that there are hitherto undiscov-
ered biases in the data.

Treatment of filled pauses Not all systems output filled
pauses such as ”uh-huh” or ”mhm”, which are very frequent
in conversational speech, as part of their hypotheses. In-
vestigating utterances from the English spontaneous speech
corpora AMI and RT, we found that while Kaldi produces
filled pauses, System 2 and 3, Mozilla and Sphinx tend to
omit them. For two commercial systems, no clear tendency
was detected5. Since filled pauses such as ”mhm” are not
removed from the references, systems that do not produce
output for them will have higher WER scores for utterances
that include filled pauses.

Different spelling conventions The hypotheses of two
German corpora, Verbmobil II v.21 and Strange Corpus 10,
use German spelling prior to the 2006 spelling reform (e.g.
’daß’ instead of ’dass’), which results in somewhat mislead-
ing WERs. We aim to normalise such diachronic spelling
variants in a future version of CEASR. For now, we ask
the reader to bear in mind that the absolute WERs on these
corpora cannot be taken at face value, but the difference be-
tween individual systems should be represented correctly.

5The WERs of the two systems do not change much if we
keep filled pauses in the transcripts instead of removing them.
The difference between the conditions with/without filled pauses
for these two systems was in the range of 1-2% absolute WER,
whereas for the other systems it was at least 10%. We have not
investigated this further but believe that it is due to inconsistent
treatment of filled pauses by these two systems.
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Spelling variants There are also differences with respect
to how systems spell common words. In German, for exam-
ple, Systems 1 and 3 transcribe ok as ”ok”, while all other
systems generate ”okay”, which is also the most likely form
in the corpus references. Such spelling differences have not
been normalised for the evaluation.

Training data bias We also ask the reader to bear in mind
that for some commercial models, we have no knowledge
of the training corpora that were used (see Section 3.2 for
details). This causes a potential bias in our results since it
is possible that they were trained on some of the evaluation
data used in CEASR.

4.2. Dataset for System Comparison
We used the same set of utterances for the calculation of
results in Sections 4.3, 4.4, 4.5 and 4.6: we selected the
best-performing configuration of each system. We also ex-
cluded two English corpora: Tedlium Unsegmented to keep
utterance lengths consistently short in the English subset,
and Switchboard due to possible bias, see Section 3.1.
In the English corpora, we additionally removed utterances
with overlapping speech, which removed 78.8% from both
RT corpora variants and 84.4% from both AMI datasets.
We could not perform overlapping detection on the German
corpora due to missing time stamps.
For each of the utterances, we compared the generated hy-
pothesis of each system to the reference, and calculated the
WER using sclite6. The final metric for each corpus-system
pair consists of the averageWER across all utterances in the
corpus transcribed by the system.

4.3. General Comparison of ASR Systems
Bearing in mind the limitations described in Section 4.1,
we will now use CEASR to do a detailed comparison of the
WER performance of different systems.
Figure 1 presents an overview of the results obtained for
English. Each cell in the heatmap represents a corpus-
system pair, sorted according to average WER (top-down
for systems and left to right for corpora). For each system
the best performing configuration was selected.
We can see that the top three systems (S2, Microsoft Azure
and S1) are performing consistently well. The last commer-
cial system, S3, has substantially higher WERs, especially
on spontaneous speech corpora.
Figure 2 shows the same evaluation for German. The top
two systems are the same as for English, however with a
different ranking: Microsoft Azure in the first place and S2
in the second. Similarly to English, S3 significantly falls
behind.
Table 4 shows the aggregated results by speaking style and
system type for English. We can see that spontaneous
speech has higher WERs than read-aloud speech, and that
commercial systems are on average more performant than
open-source systems. The distinction between speaking
styles can also be seen for German, where the averageWER
on spontaneous speech is 25.9%, while it is 14.8% for read-
aloud speech. We will elaborate these dimensions in more
detail below: Section 4.4 discusses the differences in WER

6https://github.com/usnistgov/SCTK

due to speaking style and Section 4.5 looks at commercial
versus open-source systems for English.

Read-aloud
and Semi-
spontaneous
Speech

Spontaneous
Speech

Commercial Systems 11.6% 35.5%
Open-source Systems 26.6% 64.7%

Table 4: Average WER results on English corpora grouped
by speaking style and system type.

4.4. Spontaneous Speech has Higher WERs
Figures 1 and 2 show that spontaneous dialogue speech
recognition is substantially more challenging for all
systems than recognising non-spontaneous or semi-
spontaneous speech: the lowest WER obtained on spon-
taneous English speech are six times larger than the lowest
WER on read-aloud speech (RT Headset - 24.9% vs ST -
4.4%) .
For German, the best spontaneous transcription has a WER
almost three times larger than the best read-aloud (Hempel
- 14.83% vs VoxForge - 6.03%). In general, the discrep-
ancy between speaking styles is not as large as for English:
the WERs on the spontaneous monologue corpus Hempel
are only between 2.4% and 7.4% absolute higher than the
WER on the read-aloud corpus CommonVoice, depending
on the system. Verbmobil II is the most challenging corpus
on average, but this can be partly explained by its use of
outdated German spelling - please refer to Section 4.1 for
details.
These results are consistent with the literature: sponta-
neous speech differs from read-aloud speech in ways which
makes it more difficult to recognise, both acoustically and
linguistically (Nakamura et al., 2008). Dialogue speech is
challenging due to non-canonical pronunciations, acoustic
and prosodic variability, and high levels of disfluency, e.g.
repetitions, false starts and repaired utterances ((Goldwater
et al., 2010), (Hassan et al., 2014)). Spontaneous speech
is additionally characterised by accelerated speaking rates
and higher proportions of out-of-vocabulary words (Naka-
mura et al., 2008).

4.5. English: Commercial Systems Outperform
Open-Source Systems

In Figure 1 we can see that the best commercial system
obtains 4.43% WER on read-aloud speech (S2 on ST) and
24.9% on spontaneous speech (S2 on RT Headset), which
contrasts with the best results obtained by an open-source
system: 8.37% on read-aloud (Kaldi on LibriSpeech Clean)
and 52.73% on spontaneous speech (Mozilla on RT Head-
set).
Figure 3 shows the WERs of the best and worst (in terms of
global average WER) English commercial and open-source
systems, as well as the average across all commercial and
open-source systems, respectively. On average, the WERs
of commercial systems are lower than those of open-source
systems by a factor 2, and the best commercial system per-
formance is unreachable for any open-source system, with
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the exception of the LibriSpeech corpora, where Kaldi out-
performs S3, and VoxForge, where their performance is the
same (remember, however, that the best Kaldi model, Kaldi
LibriSpeech, was trained on LibriSpeech).
It is evident from these data that commercial cloud
providers currently have an advantage over pre-trained
open source solutions. We hypothesise that the big tech-
nology companies, which provide the commercial systems,
have much larger proprietary data sets at their disposal, re-
sulting in better performance across different speech cor-
pora. It would be interesting to investigate whether using
the open-source systems to train more customised models
could offset this training data disadvantage.
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Figure 1: General overview of WER results for best per-
forming system configurations for English.
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Figure 2: General overview of WER results for best per-
forming system configurations for German.

4.6. English: WERs of the Same System Differ
Drastically Across Corpora

The difference within the same system on various corpora
is larger than within the same corpus between systems, as
visible in Figure 1. The largest relative difference can be
observed for S2, which has a WER of 4.43% on ST and a
WER of 40.23% on AMI Headset Mix (a factor 10). When
comparing the performance of all systems within these two
corpora, it can be observed that the difference is up to a fac-
tor 4.2. WER on ST spans between 4.43% (S2) and 17.86%
(Sphinx) and on AMI Headset Mix it ranges from 39.85%
(S1) to 79.08% (Sphinx).
Figure 4 presents the WERs on the English corpora for the
best and the worst performing system per corpus. It can

Figure 3: Best and average commercial and open-source
systems for English per corpus.

be observed that the read-aloud corpus with the lowest er-
ror rate is in both cases the same: ST. The worst score has
been achieved on AMI Headset Mix for both the worst per-
forming system and the best performing system. The dif-
ference is substantial and can be explained by the properties
of the corpora. ST exhibits significantly different properties
than AMI Headset Mix, which are much less challenging
in terms of ASR: it contains only native speech recorded
in a silent indoor environment, it does not contain any ut-
terances with filled pauses and neither with speaker noise,
while AMI consists of recordings of non-native speakers in
a meeting room with multiple participants, the utterances
contain speaker noise and filled pauses. Table 5 compares
the key properties of both corpora.

Figure 4: Best and worst scores on English corpora.

4.7. English: ASR Quality Substantially
Deteriorates on Non-Native Speech

This experiment investigates the impact of native and non-
native speaker accents on ASR system performance for En-
glish. We selected the subset of English CEASR utterances
without overlapping speech for which accent information
was provided. We only considered corpora that contained
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ST AMI Headset
Mix

Avg WER on all
systems

10.7% 55.38%

Number of utter-
ances

2422 4495

Average utterance
duration

4.46 3.95

Number of speak-
ers

5 190

Number of non-
native speakers

0 65

Dialect(s) en-US en-AU, en-IE, en-
GB, en-CA, en-IN

Vocabulary size
(no stemming)

3391 3546

Average speaking
rate

109 words/min 141 words/min

Acoustic environ-
ment

silent indoor envi-
ronment

meeting room

Recording device unknown headset
Utterances with
filled pauses

0 2160

Table 5: Characteristics of corpora with the lowest and the
highest average WER.

both native and non-native utterances in order to minimise
corpus effects. This set consists of a total of 1629 ut-
terances (1058 by non-native and 571 by native speakers)
retrieved from AMI (503 utterances) and RT (1126 utter-
ances). There are 94 distinct speakers in the native subset
and 61 in the non-native one.
Figure 5 shows the results: the coloured bars represent
the mean of the set, and the dots the results of individ-
ual systems (from left to right: Systems 1 to 7). We can
see that non-native speech leads to higher WERs than na-
tive speech, both on average and for each of the systems
individually. The average WER for non-native speech is
7.92% absolute higher than for native speech, with deltas
for individual systems ranging from 5% (Sphinx) to 13%
(Mozilla).
Some of the main challenges for ASR on non-native speech
are disfluencies, accented pronunciation, pronunciation er-
rors due to unfamiliarity with a word, errors in syntax, and
syntax that is unusual but not incorrect.
Other difficulties include overemphasis of word bound-
aries. The irregularity of these deviations makes the speech
recognition task even more challenging (Tomokiyo, 2000).
Furthermore, ASR systems are usually trained on native
speech, which leads to a discrepancy between the WER of
native versus non-native speech recognition.

5. Conclusion
”We have presented CEASR, a new corpus for evaluating
ASR with 55’216 utterances from 15 audio corpora, which
amount to 69.2 hours of audio, transcribed by seven sys-
tems in different configurations. As a showcase, we have
used CEASR to evaluate the quality of state of the art sys-
tems for ASR. This comparative analysis showed that the

Figure 5: WERs for English native versus non-native
speech. Dots represent individual results by Systems 1-7
(left to right).

differences in the transcription quality between the systems,
but also across the corpora, can be substantial. We observed
differences up to a factor of ten between the results within
the same ASR system but on different corpora. We have
seen that, among the seven systems under investigation,
the commercial systems obtained significantly better results
than the open-source systems. Based on the results analy-
sis, we could also identify some major challenges that mod-
ern ASR systems are facing, especially when applied for
meeting or interview transcriptions: spontaneous speech
containing disfluencies, speaker and non-speaker noise as
well as non-native speech cause a significant increase in
WER.
CEASR allowed to easily perform the evaluation men-
tioned above, after performing alignment and WER cal-
culation. We then developed scripts for generating statis-
tics and charts, taking advantage of the uniform format for
all sub-corpora and systems. CEASR thus provides re-
searchers with a data set ready to be applied in many ASR-
related research projects with minimal effort. Transcrip-
tions generated by other systems and further corpora will
be added in future versions of CEASR. We also intend to
extend it to more languages. The corpus version discussed
in this paper will be referenced as CEASR 1.0 in our fu-
ture publications. Apart from extending the content of the
corpus, we also intend to apply it for further research, such
as evaluating the semantic relevance of the WER metric, as
well as using the CEASR transcripts to explore ensemble
methods for improving ASR accuracy.
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