
Annotating Web Tables through Knowledge Bases:
A Context-Based Approach

Yasamin Eslahi
Zurich University of Applied Sciences

Winterthur, Switzerland
yasamin.eslahi@zhaw.ch

Akansha Bhardwaj
University of Fribourg
Fribourg, Switzerland

akansha.bhardwaj@unifr.ch

Paolo Rosso
University of Fribourg
Fribourg, Switzerland
paolo.rosso@unifr.ch

Kurt Stockinger
Zurich University of Applied Sciences

Winterthur, Switzerland
kurt.stockinger@zhaw.ch

Philippe Cudré-Mauroux
University of Fribourg
Fribourg, Switzerland

philippe.cudre-mauroux@unifr.ch

Abstract—The Web has a collection of over 150 million
tables, which as a whole represents an invaluable source of
semi-structured knowledge. Such tables are commonly referred
to as Web tables, and are considerably easier to leverage in
automated processes than completely unstructured, free-format
text. Understanding the semantics of Web tables is important
since they are used in various applications like knowledge
base augmentation, information retrieval or natural language
interfaces for databases. The task of understanding the semantics
of a given Web table is known as Web table annotation. In
recent years, it has been tackled through methods where the table
is enriched using existing knowledge bases containing valuable
information on the domain at hand, its entities and their mutual
relationships.

In this paper, we present two novel and unsupervised Web
table annotation methods, which leverage the context of the tables
to better capture their semantics. Our first method is lookup-
based and exploits text similarity to find reference entities in the
knowledge base. The second method uses distributional vector
representations – a.k.a. embeddings – of the Web tables to elicit
their context and disambiguate their semantics. Experiments
show that our proposed approach outperforms the state of the
art in Web table annotation by up to 18%. Another contribution
of this work is a manually corrected version of one of the popular
gold standard datasets, Limaye, with annotations from DBpedia.
Our dataset and code are publicly available1.

Index Terms—Web Table Annotation, Knowledge Base, Em-
beddings

I. INTRODUCTION

Web tables are a valuable source of semi-structured data.
As the Web contains an estimated 154 million HTML tables,
understanding the semantics of such data has become an active
area of research [2]. The task of understanding the semantics
of Web tables is typically accomplished leveraging knowledge
bases (KBs). KBs contain rich information about entities,
their semantic classes, and their mutual relationships in a
given domain. Each entity of the Web table gets a unique

1https://www.github.com/eXascaleInfolab/sds2020 web table annotation

reference entity in a KB. Examples of encyclopedic KBs
include DBpedia 2, Wikidata 3, or Yago 4.

Figure 1a contains a description of countries, as they are
often found in a Web table. The aim of Web table annotation
is to annotate entries in the Web table to their referent entities
in the knowledge base. Annotations can be at the level of a
cell value—referred to as instance-level mappings—or at the
level of the table—referred to as schema-level mappings. Such
annotations can then be leveraged to understand the underlying
semantics of the Web tables and to foster interoperability
and automated processes across syntactically heterogeneous
but semantically related tables, e.g., for Web tables search or
knowledge base augmentation. To elaborate on our example
in Figure 1a, a number of entities are present in the table, like
countries (France, Germany, India etc.) in column ‘Country’.
Our aim is to map those table values representing entities onto
their counterpart in a knowledge base (Wikidata, in our case).

Web table annotation presents several key challenges:

1) The presence of a header row giving a short description
(e.g., “No., Country, Capital”) of the various values
is not always guaranteed. Typically, each row in the
table describes a real-world entity (e.g., in Figure 1a
the seventh row describes the United Kingdom), while
each column contains the value of the corresponding
property, e.g., (“Population”, “66,435,600”), (“Capital”,
“London”). The knowledge base often contains infor-
mation related to these entities and values. For example,
United Kingdom is described by node Q145, which is
of type country in Wikidata. Hence, it is essential to
understand the overall theme and context of a given Web
table for correctly matching its entities and values onto
the KB.

2) Another important challenge is the disambiguation of
polysemous phrases. For example, in Figure 1b, the

2http://www.dbpedia.org/
3https://www.wikidata.org/
4https://www.mpi-inf.mpg.de/yago-naga/yago/



No. Country Capital Population Government

1 France Paris 67,088,000 Unitary semi-presidential republic

2 Germany Berlin 83,149,300 Federal democratic parliamentary republic

3 India New Delhi 1,358,036,300

4 Iran Tehran 83,161,915

5 Italy Rome 60,252,824 Unitary parliamentary republic

6 Switzerland Bern 8,586,550 Federal semi-direct democracy

7 United Kingdom London 66,435,600 Unitary parliamentary constitutional monarchy

Label Column

Reference Columns

Federal republic

Islamic republic

(a) Table of Countries.

United Kingdom

Q7887906

CandidateCandidate

Music Album

Property:P31

Q145

Q482994

Property:P31

Q6256

Country

Entity Type ID
in Wikidata

Entity ID

Entity Type

Table Entry

(b) Disambiguation of a cell.

Fig. 1: (a) An example of a Web table containing information about countries, their capital, population and type of government.
The goal of a Web table annotation task is to annotate each entity of the Web table with its reference entity in a knowledge
base such as Wikidata. (b) A common challenge in correctly annotating Web tables is capturing polysemous phrases. This
example shows that United Kingdom has two possible matches in the KB. It could be a country or an album.

entity United Kingdom could be considered as a country
or as an album. Another challenge along similar lines
is that an entity can also have different names. For
instance, the bird Green sandpiper, is also known as
Tringa ochropus.

3) The third challenge is that an entity’s name may change
over time [5]. If the entity’s name in the Web table is
different from its equivalent page title in the knowledge
base, then it becomes more difficult to annotate it.

As it is clear from the above challenges, the context of a
Web table plays an important role in correctly characterizing
it. In this work, we present two novel Web table annotation
methods that leverage context. Our first method is lookup-
based and relies on information matching between labels
appearing in Web tables and information stored in KB, while
our second method exploits the semantic understanding of
the table through embeddings. Specifically, we focus on the
problem of Web table annotation [3], [4] (also known as
interpretation in the literature) [12], [15], the task of mapping
a phrase in a Web table to its reference entity in a KB. The
purpose of this task is to understand a Web table semantically
and to integrate it into a KB such as to enable downstream
applications like Web table search, KB augmentation or natural
language interfaces to databases. It is important to mention
that we focus on instance-level matching only in this work.
We leave the utilization of schema-level matching techniques
for future work.

In summary, our contributions are as follows:

1) We propose two novel global disambiguation methods
for Web table annotation. Our proposed Looping ap-
proach that aims to understand the table semantically
outperforms the state of the art by 14% on two gold
standard datasets.

2) We present a manually corrected version of the Limaye
dataset for the Web table annotation task and make our
code and data publicly available.

Our paper is structured as follows. Section II describes
existing approaches for Web table annotation. In Section III,
we introduce our approaches. Section IV-A and IV-B describe

our dataset and experimental results, respectively. Finally, we
conclude and present avenues for future work in Section V.

II. RELATED WORK

Web tables often contain a subject column, also called
label column, containing labels describing the subject of
the table. The other columns, also called reference columns,
typically represent binary relationships [6]. Supervised Web
table techniques require columns and/or rows to be annotated.
To annotate a Web table, rows, columns, or individual cells
can be mapped onto a KB, for example using a framework to
link entities lists onto a KB [9], or by mapping table columns
to one or more concepts in the KB [10]. Though supervised
methods [4], [9], [11] have shown promising results on Web
annotation tasks, they require training datasets of annotated
tables.

[5], [12] describe two unsupervised solutions that proceed
without annotating the training dataset. Specifically, [12] in-
troduces a method to label columns containing named entity
mentions with semantic concepts that best describe the data
in the respective column. [5] proposes a heuristic method
considering that the leftmost column with the maximum
number of distinct and non-numeric values contains the most
important attribute of an entity. The solution is based on two
techniques: Lookup-Baseline and Embedding-Baseline. The
Lookup-Baseline technique is used to match the information
from entities appearing in the Web tables to the information of
those entities in a KB using a lookup service on the target KB,
while the Embedding-Baseline technique is used to capture
the structure of the neighborhood of each node in the KB.
Our proposed method is motivated by their work, which is
the state of the art in unsupervised Web table annotation. In
the following subsections, we describe in detail the Lookup-
Baseline and Embedding-Baseline approaches.

A. Lookup-Baseline Method

The original Lookup-Baseline method [5] is divided into
two phases. In the first phase, it extracts the value of each
row of the Label Column. This value is the Web table entry
that needs to be annotated. Next, the method searches for the



entity’s candidates in the surface form. The surface form is a
collection of key-value pairs, where the key is a label and the
values are Wikidata identifiers. For example, for the label New
York City, the surface form outputs the Wikidata identifiers
Q7013143, Q60, Q3875477. If, for a Web table entry there
exists only one candidate in the surface form, then the Web
table entry is annotated with the surface form value. If the
Web table entry has more than one candidate, the Lookup-
Baseline method filters the candidates based on their entity
type. If the candidate entity type belongs to top-3 frequent
entity types, it is considered acceptable. Additionally, for each
acceptable candidate, it extracts the most frequent tokens from
their description. This is referred to as strict search. If the
strict search does not generate any output or if there are no
candidates, the method performs a loose search. This is done
by selecting one of the extracted binary relations between the
label and reference columns.

B. Embedding-Baseline Method

The problem with local disambiguation techniques is that
they do not keep track of the context. For example, in a
sentence such as ‘Sydney cannot be interesting for the kids’,
the embedding method does not know whether Sydney is a
city in Australia (Q3130), a community in Canada (Q932261),
or an American comedy series (Q3979019), since it is not
aware of the context around the sentence. In the field of text
disambiguation, this issue is mitigated by learning embeddings
from the KB. The previous state of the art [5] is inspired
by DoSeR [13], where the embeddings are learned using
Word2vec [14], a group of related models that are used to pro-
duce word embeddings for text. Though Word2vec is mostly
used on text data, DoSeR proposes an approach to apply
Word2vec on KBs showing good results in terms of scalability
and performance. These learnt embeddings are further used to
create a K-partite graph as described in [5], where the weight
of the edges is the cosine similarity of the entity embeddings.
The importance of the nodes is determined using the weighted
PageRank [13] ranking algorithm. Candidate nodes with a high
PageRank are an indicator of the correct entity as they are
closer to the global context of the table.

The Lookup-Baseline method presented above uses several
KB-dependent heuristics. Note that the Embedding-Baseline
method that uses global context does not perform at par with
Lookup-Baseline. In this work, we propose two novel methods
for the Web table annotation task, namely Context-Lookup (as
alternative to Lookup-Baseline), and Looping (as alternative
to Embedding-Baseline). Our Context-Lookup method uses the
context extracted from the whole Web table, while our Looping
method is an iterative approach that builds a graph used to
disambiguate entities with multiple candidates. We describe
the details of our proposed approaches in the following section.

III. METHODOLOGY

In this section, we describe two methods for solving the Web
table annotation task. Subsequently, we propose solutions that
use their combination.

Algorithm 1: Context-Lookup
Input: Table T
Output: Annotated Table T ′

1 T ′ ←− T ;
2 allTypes ←− φ
3 candidateRelations ←− φ
4 for each row i of T do
5 label ←− T.i.labelColumn
6 candidates ←− sf search(label)
7 if candidates.size > 0 then
8 allTypes.addAll(candidates.getTypes())
9 descr ←− candidates.getDescriptionTokens()

10 if candidates.size = 1 then
11 annotate(T ′.i , candidates)
12 for each column j of referenceColumns do
13 v ←− T.i.j
14 lab ref rel ←− getRelation(T’.i, v)
15 candidateRelations.add(lab ref rel, j)
16 acceptableTypes ←− allTypes.get3MajorTypes()
17 freqTok ←− descr.getMostFrequent()
18 rel ←− candidateRelations.getRel(referenceColumns);
19 for each row i of T do
20 if isAnnotated(T’.i) then continue
21 label ←− T.i.labelColumn
22 cand ←−search strict(label, acceptableTypes, freqTok)
23 if cand.size > 0 then
24 annotate(T ′.i, cand.getFirst())
25 continue
26 for j in relations do
27 r ←− relations.j
28 results ←−search loose(label, r, T.i.j)
29 if results.size > 0
30 annotate(T ′.i , results.getFirst())

A. Context Lookup

The Lookup-Baseline method presented by [5] misses a
significant portion of the available information. Specifically,
their method generates a list of candidates from the surface
form but they only consider the entity types of the first element
of the list for the annotation. Instead, we propose a systematic
majority-based method to benefit from all the candidate entity
types from the list, and not just the first element. Intuitively
by doing this, we consider the entire context of the table
and filter the correct annotations using a majority function.
We present our method in Algorithm 1. Elaborating further,
after creating the list of candidates, we select the entity types
from all the candidates of the whole table. Finally, by a
majority function, we choose the top-n most frequent entity
types among them. This means that we take other potential
candidates into account. Specifically, we define the acceptable
type as the three most frequent entity types among all collected
entity types. For each entry of a Web table that has only one
candidate generated from the surface form, we annotate the
entry using that candidate. In case an entry of a Web table
has more candidates, we perform a strict search or a loose
search similar to [5], but using the acceptable type generated
by collecting all the entity types from the whole Web table.



B. Looping Method

Our second technique is based on the global disambiguation
technique presented in DoSeR [13], where the similarity
between entities is computed as the cosine similarity between
their vector representations. These vectors, called embeddings,
capture the semantic correlation between entities in the KB.
This implies that if the entities are close to each other
with respect to their cosine similarity distance, they are also
semantically related. However, the embedding-based global
disambiguation technique presented in previous work [5] suf-
fers from a major drawback. The proposed weighted graph
grows exponentially with the number of candidates, which
affects the results adversely. To counter this drawback, we
propose an iterative method of Web table annotation based on
embeddings. Our novel iterative approach gives more weight
to the entries with unique candidates that results in much better
performance. We explain this further.

Party 05-02-08
Socialist party 60
Social liberal party 92
Christian democrats 17
Danish people’s party 133

(a) Parties of Denmark.

Name of party Seats
the moderate party 4
Christian democrats 1
the green party 1
Sweden democrats - -

(b) Parties of Sweden.

TABLE I: A Web table of the political parties of (a) Denmark
(b) Sweden. A challenging example from T2D dataset, marked
in blue, where labels (Christian democrats) and entity types
(political party Q7278) are the same but the corresponding
reference entities in the KB are different (the Wikidata iden-
tifiers of Christian democrats of Denmark is Q1789199 and
of Christian democrats of Sweden is Q213654). Green labels
explicitly show the context of the tables.

First, we train a Word2vec model [14] for all the candidate
entities and store their vector representations. Next, for each
table, we build an initial graph with all unambiguous candi-
dates from the Web table. These are those entities which have a
unique candidate. Through our experiments, we find that build-
ing a correct initial graph is crucial to the disambiguation of
entities with multiple candidates. This can be explained using
examples in Table Ia and Ib. Table Ia contains information
about political parties in Denmark while Table Ib contains
information about political parties in Sweden.

There are several political parties which are polysemous
(e.g., Christian democrats) and they belong to the same entity
type (e.g., political party). Our experiments show that in
similar cases, building an initial graph with few but correctly
annotated entities extracts the right context out of the table
from the beginning and helps in the proper annotation of the
remaining entities.

Furthermore, at each iteration of the Looping method,
we take the initial graph and one ambiguous entity. For k
candidates of the ambiguous entity, we build a k-partite graph
where the nodes of the graph are the annotated nodes, and all
possible candidates of the ambiguous node. For each pair of
nodes, we compute the weight of the edge by Equation 1.

weight(v1, v2) =
cos(emb(v1), emb(v2))∑
k cos(emb(v1), emb(k))

(1)

An example of such a scenario is presented in Figure 2.
In this graph, all the nodes are already annotated except
United Kingdom. For the United Kingdom entity, we have
two candidates, a country (UK Country) and a music album
(UK Album). We run the PageRank ranking algorithm on
this undirected graph to generate the PageRank score for
each candidate node. The candidate with the highest score
is the most probably correct annotation. This is based on the
intuition that a higher score for a node from the PageRank
ranking algorithm denotes a stronger relationship of this node
with other nodes in the graph, which is interpreted as a high
likelihood for this node to be closer to the context of the graph.
This likely correct annotation is added to the initial graph and
the above process is repeated for each remaining ambiguous
node.

Iran Tehran

UK Album UK Country

BernSwitzerland

London

0.
11

7
0.

08
9

0.180
0.185

0.191
0.142

0.
22

3
0.

29
6 0.304

0.172

0.157

0.151

0.1710.143

0.
15

3

0.1
5 0.245

0.253

0.
24

7

0.179

Fig. 2: An example of a looping graph where UK has two pos-
sible candidates, type:album (shown in red) and type:country
(shown in green). In this case, a 2-partite graph is generated
connecting the candidates with the disambiguated entities
(shown in blue). The weight of the edges is the cosine
similarity between the vector representation of the nodes. A
weighted ranking algorithm, e.g. PageRank, helps identify the
correct candidate (type:country).

In Figure 2, the node with type country has a higher score
compared to the node with type music album signifying a
stronger relationship of type:country with the context of the
table. Hence, we consider the country (Q145) as annotation
of United Kingdom. For the next iteration, United Kingdom
(Q145) is already annotated and therefore, it exists in the
base graph. Subsequently, we add the candidates of other
ambiguous entities to the looping graph. We continue and
annotate one entity in each loop to cover all the entities of
the table.

To avoid scalability issues on large graphs, we take only
two Web table columns at a time. We make some further
refinements in our proposed Looping method by leveraging
type checking. If we get the same ranking output for multiple
candidates, the candidate with the most similar type to the
looping graph type is selected. We also study the impact



of other ranking methods on our Looping algorithm. These
experiments and results are detailed in Section IV-C

So far, we presented two distinct methods that can be
independently plugged into existing Web table annotation
frameworks. Next, we present experimental results based on
our methods and their combinations.

IV. EXPERIMENTS & RESULTS

A. Datasets

We use two publicly available5gold standard datasets, T2D6

and Limaye [4] to empirically validate our Web table annota-
tion approach.

The T2D gold standard dataset contains HTML tables for
evaluating Web table annotation methods. For our task, we use
the entity-level gold standard that contains 26,124 rows from
a subset of 233 tables. These rows were originally annotated
with DBpedia entities.

The Limaye dataset proposed by [5] contains 5,278 anno-
tated rows from a subset of 296 tables mapped to the October
2015 version of DBpedia. We manually corrected some of
the labeled column entities as they were wrong. For example,
the table entry Roller Skates was annotated with the DBpedia
URI resource/NULL and we replaced it with the DBpedia
URI page/Roller Skates. After fixing the DBpedia URIs, we
replaced them with Wikidata URIs as Wikidata KB is more
up-to-date than DBpedia. Our corrected version of the Limaye
dataset along with the corresponding Wikidata annotations,
containing 8,400 annotated rows from a subset of 296 tables
mapped, is publicly available. We also provide the previous
mappings from DBpedia and Wikipedia as reference.

B. Experimental Setup

We present the results of various Web table annotation
methods and report the precision, recall, and F-score (reported
as Pr, Re, and F1 in the result tables) of the annotation
algorithms. We also compare our results to the previous
baseline presented by [5].

We implement the Lookup-Baseline algorithm [5] using
Wikidata and compare it against our Context-Lookup approach
presented in Section III-A. Table II shows that Lookup-
Baseline has better results than our Context-Lookup on T2D,
while our approach outperforms it on Limaye.

T2D dataset has a significant number of entries with unique
candidates in the surface form. These entries are essential for
achieving better performance as in the next phase, we choose
acceptable types based on these values. On the other hand,
in the Limaye dataset, we have more difficulty in finding
any unique candidates, because in several examples, the cell
value in the Web table is different from the entity name in
the KB. As a result, the candidate is not accessible using
the key in the surface form index. However, our approach
achieves better results on Limaye, meaning that our majority
function supports the algorithm to annotate those cases where

5http://www.cs.toronto.edu/~oktie/webtables/
6http://webdatacommons.org/webtables/goldstandard.html

we generate multiple candidates from the surface form. This
shows that our approach is more robust to ambiguity.

TABLE II: Results of lookup-based Web table annotation
approaches over the T2D and Limaye gold standard datasets.

Method T2D Limaye
Pr Re F1 Pr Re F1

Lookup-Baseline 0.8784 0.7814 0.827 0.788 0.834 0.81
Context-Lookup 0.897 0.72 0.799 0.82 0.82 0.82

TABLE III: Results of semantic embedding approaches over
T2D and Limaye gold standards

Method T2D Limaye
Pr Re F1 Pr Re F1

Embedding-Baseline 0.62 0.70 0.66 0.76 0.82 0.79
Looping 0.86 0.82 0.84 0.82 0.87 0.85

In Table III, we compare the results of our Looping method
with the baseline (i.e., Embedding-Baseline) using PageRank
as the ranking algorithm. For the T2D dataset, the Looping
method has a significantly better precision of 24% than the
Embedding-Baseline method and a 18% better F-measure. The
results of the Looping method on the Limaye gold standard
are 6% better than the Embedding-Baseline method in terms
of precision and F-measure.

C. Looping Optimization

Our Looping approach presented in the previous section
performs better on Web annotation than the state-of-the-art
Embeddings-Baseline method. When running Looping, we
further consider several optimization strategies that we briefly
describe below.

a) Initial Levenshtein: For constructing the initial graph
in looping, we use two distinct approaches. In the first
approach we create the initial graph using the Levenshtein
distance between the table entry and the surface form key.
In the second approach we create the initial graph without
Levenshtein. Table IV presents the performance difference
when the Levenshtein distance was used for building the initial
graph compared to when it was not. We notice a significant
12% difference in the F1-score.

TABLE IV: Results of using Looping with vs. without Lev-
enshtein in the initial graph

Method Pr Re F1
Looping- Initial Levenshtein 0.67 0.86 0.70
Looping- Without initial Levenshtein 0.84 0.80 0.82

b) Ranking Algorithms: In Table III we presented the
results for both the Embedding-Baseline method and our
proposed Looping method using PageRank. Now we study the
impact of different ranking methods in terms of runtime, since
graph ranking methods are often computationally expensive.
Table V presents the results of our method Looping with



PageRank, EigenVector, and Katz ranking algorithms. Over
the Limaye dataset, changing the ranking algorithm does not
significantly affect the runtime. Over the T2D dataset, the
fastest algorithm is EigenVector while over Limaye, PageRank
is faster. Katz has the longest runtime over both gold standards.
On the other hand, there was a significant difference in runtime
of Katz in comparison to the two other methods over the T2D
gold standard.

TABLE V: Run-time comparison of Looping approaches with
different ranking algorithms on the T2D and Limaye gold
standard datasets

Method T2D Limaye
PageRank Looping 12.1h 7.28h
EigenVector Looping 11.2h 7.41h
Katz Looping 117h 7.79

c) Hybrid Optimizations: As mentioned above, our two
methods are independent of each other and can be used in
combination as well. We adopt an optimization approach to
increase our performance in the following way. In the first
phase, we choose one of the semantic embedding methods,
and then we enrich the results by leveraging the lookup-based
methods during the second phase. For each phase, we choose
the methods with the best-reported results. Table VI shows
that there is a remarkable improvement in F1-scores using
this approach. The F1-score resulting from using the Katz and
EigenVector ranking algorithms are better than our best results
achieved so far.

Table VI shows that using Looping in the first phase and
augmenting it with Lookup-Baseline in the second phase yields
the best performance. This implies that Lookup-Baseline finds
correct annotations for the entities where Looping could not
provide reasonable results. The most striking point is that our
Looping method (using Eigenvector ranking) combined with
Lookup-Baseline yields the best results we could achieve from
all of the presented methods, and this on both datasets.

TABLE VI: Results of combining approaches over T2D and
Limaye gold standards

T2D
Method Pr Re F1
Embedding-Baseline (PageRank) + Lookup 0.67 0.78 0.72
Looping (PageRank) + Context-Lookup 0.84 0.81 0.826
Looping (Eigenvector) + Lookup 0.854 0.837 0.846
Looping (Katz) + Lookup 0.85 0.84 0.845

Limaye
Method Pr Re F1
Embedding-Baseline (PageRank) + Lookup 0.77 0.86 0.82
Looping (PageRank) + Context-Lookup 0.78 0.85 0.813
Looping (EigenVector) + Lookup 0.823 0.87 0.847
Looping (Katz) + Lookup 0.822 0.872 0.847

V. CONCLUSION & FUTURE WORKS

In this work, we presented two new techniques that perform
Web table annotation, namely Context-Lookup and Looping.

More specifically, the Context-Lookup method uses the types
and relations in the Web table to select the best candidate for
annotation. The Looping method creates weighted graphs in
order to find the best candidate mapping between an entity in
the Web table and the corresponding entity in the KB. This
weighted graph uses the similarity between entities to find
the most related nodes in the context of the Web table. We
observe that our proposed approach exceeds the state of the
art in Web table annotation methods by up to 18%. For future
work, we plan to improve our surface form to generate initial
candidates for disambiguating matches between the Web table
and the KB. Additionally, we also plan to extend our proposed
method to schema-level matching.

ACKNOWLEDGMENT

This work was supported by the Swiss National Science
Foundation under grant number 407540 167320. We would
also like to thank Michael Luggen and Yann Vonlanthen for
their valuable insights.

REFERENCES

[1] K. Affolter, K. Stockinger, A. Bernstein, ”A comparative survey of
recent natural language interfaces for databases” , VLDB J. 28(5): 793-
819 (2019)

[2] M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang,
“WebTables: Exploring the Power of Tableson the Web,” Proc. VLDB
Endow., vol. 1, pp. 538–549, Aug. 2008.

[3] O. Hassanzadeh, M.J. Ward, M. Rodriguez-Muro, and K. Srinivas,
“Understanding a large corpus of web tables through matching with
knowledge bases: an empirical study,” OM, 2015.

[4] G. Limaye, S. Sarawagi, and S. Chakrabarti, “Annotating and Searching
Web Tables Using Entities, Types and Relationships,” PVLDB, vol. 3,
pp. 1338-1347, 2010.

[5] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, and V.
Christophides, “Matching web tables with knowledge base entities: From
entity lookups to entity embeddings”, in The Semantic Web – ISWC
2017. Springer International Publishing, 2017, pp. 260–277.

[6] P. Venetis, A. Y. Halevy, J. Madhavan, M. Pasca, W. Shen, F. Wu, G.
Miao, and C. Wu, “Recovering semantics of tables on the web,” PVLDB,
vol. 4, no. 9, pp. 528–538, 2011.

[7] S. Balakrishnan, A. Y. Halevy, B. Harb, H. Lee, J. Madhavan, A.
Rostamizadeh, W. Shen, K. Wilder, F. Wu, and C. Yu, “Applying
webtables in practice,” CIDR, 2015.

[8] D. Ritze, O. Lehmberg, and C. Bizer, “Matching HTML tables to
DBpedia,” in Proc. 5th Int. Conf. Web Intell., Mining Semantics, pp.
1–6, 2015.

[9] W. Shen, J. Wang, P. Luo, and M. Wang, “LIEGE: Link entities in web
lists with knowledge base,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, pp. 1424–1432, 2012.

[10] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng, “iCrowd: An adaptive
crowdsourcing framework,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, pp. 1015–1030, 2015.

[11] C. S. Bhagavatula, T. Noraset, and D. Downey, “Tabel: Entity linking in
web tables,” in The Semantic Web-ISWC 2015. Springer, pp. 425–441,
2015.

[12] Z. Zhang, “Towards efficient and effective semantic table interpretation,”
The Semantic Web–ISWC2014, pp. 487–502. Springer, 2014.

[13] S. Zwicklbauer, C. Seifert, and M. Granitzer, “Doser - a knowledge-
base agnosticframework for entity disambiguation using semantic em-
beddings,” In The Semantic Web. Latest Advances and New Domains,
ESWC ’16. Springer, 2016.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” In ICLR Workshop Papers,
2013.

[15] V. Mulwad, T. Finin, Z. Syed, and A. Joshi, “Using linked data to
interpret tables,” In Workshop on Consuming Linked Data, 2010.


