

Voting Framework for Distributed Real-Time
Ethernet based Dependable and Safe Systems

Hans Dermot Doran.

Zurich University of Applied Sciences
Institute of Embedded Systems

CH-8401-Winterthur, Switzerland
donn@zhaw.ch

Abstract— In many industrial sectors such as factory
automation and process control sensor redundancy is required to
ensure reliable and highly-available operation. Measured values
from N-redundant sensors are typically subjected to some voting
scheme to determine a value which is used in further processing.
In this paper we present a voting framework which allows the
sensors and the voting scheme to be configured at system-
configuration time. The voting scheme is designed as a Real Time
Ethernet profile. We describe the structure of the voting system
and the design and verification of the framework. We argue the
applicability of this sub-system based on a successful prototype
implementation.

Keywords—Dependability; Reliability; Real Time Ethernet;
Voting; Triple Modular Redundancy

I. INTRODUCTION

Safety and dependability in distributed industrial systems
is costly to implement and certify. In many industries, system
engineers have begun to move from specifying application
specific components to interfacing modular pre-certified
devices with appropriate communication protocols in an effort
to reduce component and deployment costs. These costs
remain significant and we discern pressure from industry to
reduce these costs further. One path is to develop techniques
to allow the use of non-certified Commercial Off the Shelf
components (COTS.)

 In a body of work1 we investigate, specifically for the rail
and process industries, the distribution of safe and high
availability operation across an array of COTS components.
This body of work has been split into phases, the derivation of
process variables from un-dependable distributed COTS
sensors and safe and highly available operation of COTS
process controllers. This paper considers the first issue.

“Distributed COTS sensors,” viewed as a domain, is
composed of an application specific and a generic part, the
types of sensors used are specific to the application whereas
the handling is generic. We therefore felt that implementing a
voting framework for such inputs would help modularise and
standardise the voting process and so reduce the cost of
implementation and deployment. The principle requirement
was that the specific sensor handling be configurable at

1 We acknowledge the the sponsorship of this project by the Swiss
Commission for Technology and Innovation (CTI), number 13974.1 PFES-ES
with gratitude.

system-integration time and the ultimate aim is suitability for
use in distributed safe systems. The conception and prototype
implementation are implemented with Real Time Ethernet
(RTE) protocols in mind, specifically ones that support
application profiles of one hue or another, otherwise we remain
protocol agnostic to maximise portability.

Our contributions include expanding the conception, if not
the mathematical framework, of voting to include
heterogeneous sensors, large arrays of sensors, support of
multiple redundancy schemes and weighted voting.

This paper describes the conception, architecture and
prototype of this generic and portable voting framework for
application in COTS components and is structured
accordingly. This section ends with a discussion of related
work. Section II describes the use case, voting model, and
how we arrived at the idea of integrating the functionality in a
communication profile. Section III describes the
implementation details and the final section, Section IV, draws
conclusions and describes further work.

A. Related Work

The fundamental ideas behind redundancy were originally
proposed by von Neumann [1], and given mathematical form
by Lyons et.al [2]. Their approach to faulty devices was
stringent and it is notable that, in its original conception,
voting consisted solely of error masking. Much work has gone
into re-assessing this stringency by, for instance, considering
intermittent faults [3] and strategies for hot and cold spares
[4]. [5] provides a good summary.

Voting has received much attention [f.i. 6, 7] so much so
that it was considered necessary to formulate a taxonomy [8,
9]. There are few papers dealing with distributed voting
systems in the domain (real time embedded) targeted by our
work and for our application domain (automation, process but
also relevant for automotive). [10] considers distributed
systems on a macro level, that is data transferred via files. [11]
considers distributed embedded systems with proprietary
communication protocols. [12] considers security aspects, an
area currently a work-in-progress in all (commercially
available) Real Time Ethernet protocols.

There has been much work done in the area of the use of
COTS in safety related applications. Most [such as 13] try to
provide some sort of isolation of COTS components in case of
failure. So far, despite the considerable body of work in this

area, we are unaware of COTS-based architectures in use in
industry today.

Apart from an early work on the issues behind safe
communication on Real Time Ethernet [14] and some work
with EtherCAT [15] little has been published on the issues of
safe and dependable communication over real time Ethernet
networks and the application of Real Time Ethernet safety
protocols.

II. CONCEPTION

A. Voting

Component failure can be permissible and masked if the
reliability of the system is not compromised and redundancy or
diversity schemes are typically used to ensure this. Application
of a redundancy scheme implies some form of voting, majority
or otherwise. The idea of voting has now come to mean more
than simple majority voting and now includes both output
value calculation and output of diagnostic information. A
common redundancy schemes is triple modular redundancy
(TMR,) a 2 out of 3 voting (2oo3) scheme. There are
applications where higher order voting schemes may be
considered appropriate. Generally a 2oo3 or 3oo5 voting
scheme is taken to imply that each device has equal voting
rights but in higher order systems this need not be the case. In
some critical systems where sensors are presumed to fail
often, sensors near the measurand could be given weighting
above those situated further away so any work must facilitate
implementation of such a scheme. Another silent assumption
is that voting is applied on homogeneous sensors but the use
of diversity in sensors may hugely increase confidence in
some application spaces.

B. Model

We model the voting process as consisting of four stages
as shown in Figure 1, inspired by Parhami’s discussion of
voting [8].

Figure 1: Voting Process Model

[1…n] heterogeneous sensors, all measuring the same
measurand, deliver data to the first stage of the voting process
where the sensors behavior is examined and a measure of
acceptability determined. A well behaved remote device
responds to requests promptly and transmits its data according
to temporal expectations defined by the system designer. A
badly behaved device can display non-desirable behaviour
such as erratic transmission of frames, refusal to
configuration/re-configuration demands or simply babbles
uncontrollably. This behavior may be permanent or
intermittent. This stage must be robust to normal system
behavior such as a remote sensor being powered up before the

controller, with the controller, or after the controller. Issue
handling includes the detection and tracking of such faults
which ultimately implies escalation to some higher (possibly
human) management instance.

Once a device has been recognised as an acceptable data
source the actual data can be examined and tested for
plausibility. Plausibility testing may take several forms. It
could be as simple as testing the data against some limits or it
could take the part of grouping the data received into plausible
or non-plausible categories. This test is one whose definition
is in the remit of the system designer. Analogous to the first
stage, if a sensors’ data is considered implausible then fault
handling needs to be initiated and completed.

The data voting is some algorithm that determines an
output value from input data. Here also an information path to
system management must be implemented to ensure that
problems discovered during the voting process are reported.

Finally the value generated by the output vote may need
plausibility checking.

C. System Configuration

As we assume the number and type of sensors as well as
the voting algorithms are determined at system integration
time, we briefly examine a typical system configuration
sequence as illustrated in Figure 2.

The application engineer will write the application and
generate a run-time version together with application-
orientated naming of I/O. This generated run-time version is
transferred to the run-time system (controller). The I/O naming
is passed to an engineering tool so that the system integrator
can map the application I/O to the physically distributed I/O
devices. The output generated by the engineering tool is based
on (typically XML) files which describe the characteristics of
the controller and the remote devices. Once the physical layout
has been described the engineering tool generates a controller
configuration file which is read by the controller at boot-time
and used by the controller to configure the rest of the system, at
run-time.

Figure 2: Sequence Diagram Application Programming

and System Integration
A key philosophical question is whether the application

programmer knows and controls the voting process or whether

it is part of the system integrators domain. In other words does
the application programmer code the voting or is he/she simply
presented with a validated input value or appropriate error
code.

In our experience there are two distinct routes to an
application. One alternative is programmed in a language such
as C/C++, occasionally in ADA, and run on an operating
system with some real-time characteristics. An external voting
framework library must then be linked into the application and
possibly ported to the operating system. The second alternative
is to program the application in an IEC 61131 environment.
Typical IEC 61131 environments also come with engineering
tools and fitted libraries of pre-defined function-blocks, from
simple logic to PID controllers, which can also be supplied in
the form of a safety-certified or non-certified function-block.
These pre-defined blocks can be triggered by similar function-
blocks originating from the application programmer and the
interfaces to these function-blocks are defined and generally
abstracted for the programmer.

We surmise an essential requirement is the ability to
instantiate a clean and reliable interface between the voting
framework and the application. As we target (RTE) distributed
systems the application must interface with the communication
stack. For this reason we infer that the application-
communication profile interface is a suitable interface and a
voting framework can be seamlessly embedded into the
communication profile. The interface would be in the domain
of the communication protocol with the application as a client
thereof. To better illustrate this idea we shall briefly explain
communication technology in the next section.

D. Communication Techniques

In distributed automation technologies communication
stacks are generally structured along the lines of the well-
known OSI recommendation. The OSI recommendation
stipulates layered architecture but also implies that
communication conforms to the Dual-Ported RAM (DPR)
model. One node writes raw-data into one side of a (local)
DPR, the stack collects this data, formats it and transmits it.
The stack of the remote device receives this transmission,
extracts the raw data and presents it to a local DPR for reading
by the application of the remote device.

The software interface to this conceptual DPR is the
application layer which, abstracted to an object diagram, is
shown in Figure 3. In the mid-section there are
device/controller profiles and manufacturer specific profiles.
Device/controller profiles describe the device or the controller -
the bare minimum information a device must expose to be
able to partake in structured communication. It will include
essential device parameters (f.i. baud rate), software and
hardware versions etc. The device will generally facilitate the
idea of a manufacturer profile, a profile that is only visible to
the manufacturer and used to make visible enhanced
capabilities of the device available only to the manufacturer

Additionally the device will generally support an
application profile, a profile that is specific to an application
domain, for instance motion control, train-doors or lift control.
All these profiles support some primitive object technology –

the instantiation and read/write of grouping of associated
parameters.

If the controller wants to modify an application-specific
setting on the device it writes to the object on the controller
version of the device application profile, the communication
protocol transfers this value to the device’s application profile.
The device application may be notified of this modification by
a suitable call-back or by polling and should react in an
appropriate fashion to the new data.

Real time data transfers occur at specific positions in
specific frames scheduled into the network bandwidth. There is
generally a mapping configuration that describes the position
of the application-layer objects in the real-time (Ethernet)
frame.

We propose embedding the voting framework within the
communication stack as a standardised profile. This proposal is
supported by several important advantages. The
communication stack already supports tried and tested
communication and memory mapped interfaces to the
application. Secondly the safe variants of the communication
protocols/stacks also support the same systematic so our
proposal is portable from non-safe to safe environments.
Thirdly the manipulation of profiles is supported by extant
engineering tools so there is no need for the development and
maintenance of third party engineering workflows and
associated tools.

Figure 3: Object Diagram Voting Profile Manager

III. IMPLEMENTATION DESIGN

A. Profile Design

We refer to the fundamental design in Figure 3. At system-
boot, the manufacturer profile instantiates [1..p]
voteProfiles, each voteProfile representing a set of
devices whose delivered dataValue will be mapped into a
list of dataValues voted on and the result of voting written
into a single outputValue in the scope of the voting profile.

The profile has a number of dataCharacteristics,
implemented as objects, for instance the maximum number of
contributing devices, the type (bit-size) of data the devices
contribute, etc. The profile also contains objects referencing the
set of methods used for voting on the data. All profile objects
can be manipulated by standard read/write/modify methods
supplied by the communication stack.

Some sensors may fail completely during operation and not

be replaced so inputs to the profile methods are lists of data
structures and allow for management of operationally unknown
(but maximum bounded) numbers of redundant sensors. At a
system-specific temporal offset from the start of the application
cycle the votingManager method is called which manages
the entire voting process by calling the voting methods:
inputData, inputVote, outputVote and
outputData each corresponding to one of the four stages in
Figure 1. In essence a method from one voting stage receives
one list of data structures from the previous and divides it into
two lists of “good” and “bad” sensors/data, one of which may
be empty. The “bad” sensor/data lists are forwarded to error
management. If a sensor behaves badly after a period on the
“bad” list it may be consigned to an “unusable” list and
maintenance personnel must take further action, it may equally,
over time and good behaviour, “rehabilitate” itself and
contribute to the system.

B. Prototype

For a test application three laser distance measuring
sensors from di-Sorio (LHT 9-45 M 10 P3IU-B4) were each
connected to a DNP9200 DILNetPC module from SSV
mounted on a board developed at our institute. The DILNetPC
is an Atmel AT91RM9200 32-bit ARM9 MCU with 180 MHz
Clock Speed running Linux 2.26.8. This sensor is polled
(UDP) by the application at the application cycle time, 20 ms.
The application runs on a WAGO-I/O-IPC-C6 industrial PC
(IPC) @ 600MHz using Linux as an operating system (2.6.29
incl. RT-Preempt) and the Completely Fair Scheduler CFS.
The implementation language is C and the objects were
implemented where appropriate as functions or as structures.
The voting framework was implemented 1:1 to the design as
explained above. It was tested exhaustively using CUnit
testing, achieved by passing pre-defined data structures into the
framework and testing against the expected control flow.

The framework was then instantiated with appropriate
algorithms. For the prototype it was decided to use a common
median voting technique bounded by a 2oo3 methodology. A
demonstrator is extant.

I. CONCLUSIONS AND FURTHER WORK

In this paper we have described the conception and
architecture of a voting framework as well as a prototype
implementation for distributed systems in terms of a general
proof-of-concept. We see the results achieved as a prototype
pattern for the implementation of voting in distributed
systems.

Our prototype application featured a cycle time of 20 ms
and the real-time response of the voting system has not yet
been fully determined. Our prototype also used a version of
the soft-PLC, CoDeSys, running on the controllers, this
version did not feature a RTE protocol interface and voted
data was read by a C-function called from inside the soft-PLC
environment. The limitations of these platforms interfaces to
RTE protocols have yet to be plumbed.

Whilst the general mechanics are considered useful for
implementation on a safe communication protocol these are
difficult from an engineering point of view so we anticipate
substantial work before the voting framework can be deployed
in a functionally safe industry environment.

REFERENCES
[1] von Neumann, J., “Probabilistic Logics and the Synthesis of Reliable

Organisms from Unreliable Components”. Automata Studies, Princ.
Uni. Press. 1956.

[2] Lyons, R.E., Vanderkulk, W., “The Use of Triple-Modular Redundancy
to Improve Computer Reliability”, IBM Journal, April 1962.

[3] Koren, I.; Su, S.Y.H., "Reliability Analysis of N-Modular Redundancy
Systems with Intermittent and Permanent Faults," Computers, IEEE
Transactions on , vol.C-28, no.7, pp.514,520, July 1979.

[4] De Sousa, Paulo T.; Mathur, Francis P., "Sift-Out Modular
Redundancy," Computers, IEEE Transactions on , vol.C-27, no.7,
pp.624,627, July 1978

[5] Bouricius, W.G.; Carter, W.C.; Jessep, D.C.; Schneider, P.R.; Wadia,
A.B., "RELIABILITY MODELING FOR FAULT TOLERANT
COMPUTERS," Fault-Tolerant Computing, 1995, Highlights from
Twenty-Five Years., Twenty-Fifth International Symposium on , vol.,
no., pp.145,, 27-30 Jun 1995

[6] Parhami, B., "Voting algorithms," Reliability, IEEE Transactions on ,
vol.43, no.4, pp.617,629, Dec 1994.

[7] Latif-Shabgahi, G. and Hirst, A. J. (2005). “A fuzzy voting scheme for
hardware and software fault tolerant systems”. Fuzzy Sets and Systems,
150(3) pp. 579–598.

[8] Parhami, B., "A taxonomy of voting schemes for data fusion and
dependable computation," Reliability Engineering and System Safety,
vol.52, pp.139,151, 1996

[9] Latif-Shabgahi, G.; Bass, J.M.; Bennett, S., "A taxonomy for software
voting algorithms used in safety-critical systems," Reliability, IEEE
Transactions on , vol.53, no.3, pp.319,328, Sept. 2004

[10] Hariri, S.; Choudhary, A.; Sarikaya, B., "Architectural support for
designing fault-tolerant open distributed systems," Computer , vol.25,
no.6, pp.50,62, June 1992

[11] Ravindran, K.; Kwiat, K.A.; Sabbir, A., "Adapting distributed voting
algorithms for secure real-time embedded systems," Distributed
Computing Systems Workshops, 2004. Proceedings. 24th International
Conference on , vol., no., pp.347,353, 23-24 March 2004

[12] Hardekopf, B.; Kwiaty, K.; Upadhyaya, S., "Secure and fault-tolerant
voting in distributed systems," Aerospace Conference, 2001, IEEE
Proceedings. , vol.3, no., pp.3/1117,3/1126 vol.3, 2001

[13] Xi Wang; Tao Tang; Lianchuan Ma, "A fail-safe infrastructure designed
for COTS component used in safety critical system," Signal Processing
(ICSP), 2012 IEEE 11th International Conference on , vol.3, no.,
pp.2208,2211, 21-25 Oct. 2012

[14] Elia, A.; Ferrarini, L.; Veber, C., "Analysis of Ethernet-based safe
automation networks according to IEC 61508," Emerging Technologies
and Factory Automation, 2006. ETFA '06. IEEE Conference on , vol.,
no., pp.333,340, 20-22 Sept. 2006

[15] Liu, Yanqiang; Song, Yongli, "EtherCAT-based functional safety-
integrated communication," Automatic Control and Artificial
Intelligence (ACAI 2012), International Conference on , vol., no.,
pp.1005,1008, 3-5 March 2012

