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Abstract: Strawberry is economically important and widely grown, but susceptible to a large variety 

of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial 

pathogen threatening strawberry productions by causing angular leaf spots. Using whole 

transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at 

two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host 

response between the stages of early visible and of well-developed symptoms. Among 28,588 

known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a 

total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. 

The identified higher expressed genes in the plants were pathogen-associated molecular pattern 

receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early 

genes were related to chloroplast metabolism as well as photosynthesis related coding genes. Most 

X. fragariae genes involved in host interaction, recognition, and pathogenesis were lower expressed 

at late-phase infection. This study gives a first insight into the interaction of X. fragariae with its host. 

The strawberry plant changed gene expression in order to consistently adapt its metabolism with 

the progression of infection. 
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1. Introduction 

Plants cannot move to escape environmental challenges such as various biotic and abiotic factors 

throughout their life cycle. Therefore, they have developed sophisticated perception systems and 

polyvalent biochemical defense response mechanisms to cope with these threats [1]. Strawberry 

(Fragaria × ananassa) is one of the most appreciated cultivated fruits in the world owing to the pleasant 

flavor and nutritional content of the fruits [2,3], which makes it an economically important crop in 

the world. A better understanding of strawberry physiological responses at a molecular level can 

provide valuable information to improve future breeding strategies for new strawberry varieties and 

to engineer strawberry plants for durable and broad-spectrum disease resistance [4]. Fragaria × 

ananassa is a hybrid octoploid species (2n = 8x = 56) resulting from a spontaneous cross of two wild 

octoploid species, Fragaria chiloensis and Fragaria virginiana [5]. The genome size of F. × ananassa was 
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estimated to be in the order of 708–720 Mb [6,7]. However, no complete genome sequence of F. × 

ananassa was made publicly available so far [8]. The dissection of the available genomes belonging to 

the Fragaria species led to the construction of a virtual reference genome by integrating the sequences 

of four homoeologous subgenomes of F. × ananassa wild relatives (Fragaria iinumae, Fragaria nipponica, 

Fragaria nubicola, and Fragaria orientalis), from which heterozygous regions were eliminated [9]. 

Recently, a study focusing on the gene expression of strawberry fruit ripening of F. × ananassa and 

assembling transcriptome from RNA-seq data resulted in a high sequence identity of 91.3% with the 

woodland strawberry Fragaria vesca [8]. Indeed, to date, most of the strawberry genetic research was 

focused on F. vesca because of its relatively simple diploid genome compared with F. × ananassa [10]. 

F. vesca has a small genome size (approximately 240 Mb; 2n = 2x = 14) [11] and its full genome 

sequence was publicly released [12], thus making it relevant as a reference for further genomic 

analyses. 

F. × ananassa originates from a plant species susceptible to a large variety of phytopathogenic 

organisms [3,13–15]. One of these, Xanthomonas fragariae, is a Gram-negative bacterium causing 

angular leaf spots disease [16]. Under favorable conditions, the pathogen can cause significant 

damage to both plant stock and strawberry production [17]. Therefore, X. fragariae was listed in 1986 

as an A2 quarantine pest on planting stocks within Europe by the European and Mediterranean Plant 

Protection Organization (EPPO) [18]. X. fragariae causes angular water-soaked spots appearing 

initially only on the abaxial leaf surface [19]. The size of the lesions increases progressively, which 

may lead to visible coalescent spots on the upper surface of the leaf [20]. Subsequently, the lesions 

spread all over the foliage and form larger necrotic spots [21]. Finally, the plants can suffer from 

vascular collapse [22]. However, incidence of the disease was reported to be variable between 

strawberry cultivars, suggesting differential sensitivity to X. fragariae [21]. The bacterial disease was 

first reported in 1960 in Minnesota, USA [16]. In 2018, a study reported that two distinct groups of 

strains were already separated at that time [23]. Complete reference genomes from both groups of 

strains are available [24,25], thus providing an ideal base for gene expression analyses. Both groups 

were reported as being pathogenic on strawberry and harbored similar virulence-related protein 

repertoires including a type III secretion system (T3SS) and its effectors (T3E), a type IV secretion 

system (T4SS), and a type VI secretion system (T6SS) [26]. 

Advances in plant–pathogen interactions are of great interest in order to understand response 

pathways of both plant and pathogen, and reconstruct multiscale mechanistic models incorporating 

plant, pathogen, and climate properties in a context of agricultural challenges for the future [27]. A 

metabolomics approach allows the simultaneous analysis of primary and secondary plant 

metabolites, both quantitatively and qualitatively, in organisms [28,29], and thus reflects changes in 

the level of metabolites related to biotic or abiotic stress [30]. This method was applied for naturally 

infected strawberries (F. × ananassa) with X. fragariae and revealed a reduction of some plant-defense 

pathways for long-term bacterial disease stress [31]. However, this technique did not allow 

performing a simultaneous monitoring of the bacterial activity. 

DNA microarrays have been largely used to study the expression levels of transcripts in many 

plants including strawberry [32–34]. This technique could unveil a subset of genes in Arabidopsis 

thaliana responsible for both resistance and susceptibility to diseases, while the phenotype relies on 

the timing and magnitude of expression of those genes [35]. However, DNA microarrays have a 

number of limitations, providing indirect measures of relative concentrations with possible 

saturation or too high detection limits, and the array can only detect sequences that it was designed 

to detect [36]. With the advent of next-generation sequencing, high-throughput mRNA sequencing 

(RNA-seq) has become the major method for transcriptomic analysis, which can quantify genome-

wide expression in a single assay with higher resolution and better dynamic range of detection [37]. 

This technique has been successfully applied to investigate differential gene expression in several 

pathosystems, like Xanthomonas arboricola pv. pruni in peach leaves [38], Xanthomonas axonopodis pv. 

glycines within soybean leaves [39], Xanthomonas oryzae pv. oryzae in rice varieties [40], or Erwinia 

amylovora in apple flowers [41] and apple shoots [42]. 
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To better understand the behavior of both X. fragariae and F. × ananassa during its interaction, 

the transcriptome of both organisms was assessed using RNA-seq after artificial plant inoculation. 

This allows a first view on the interaction between the host plant and the pathogen. 

2. Materials and Methods 

2.1. Bacterial Strain and Bacterial Preparation 

The type strain X. fragariae PD 885T, which contains a chromosome and two plasmids (GenBank 

accession numbers: LT853882—LT853884) [24], was stored in 50% glycerol at −80 °C and revived on 

plates containing Wilbrinks-N medium [43], 5 to 7 days before performing liquid cultures. The 

inoculum was prepared by growing the bacteria in liquid Wilbrinks-N medium [43] for 48 h while 

shaking at 220 rpm. Bacteria were collected by centrifugation and washed twice with Ringer solution 

(Sigma Aldrich, Buchs, Switzerland). Washed bacteria were resuspended in Ringer solution and the 

concentration was adjusted to 0.1 OD600 units (Libra S22; Biochrom, Cambridge, UK). 

2.2. Plant Inoculation and Leaf Collection 

Six strawberry plants (F. × ananassa variety Elsanta) were inoculated by spraying X. fragariae on 

the foliar part of the plants following the protocol described by Kastelein et al. [44]. The plants were 

placed in a plastic bag two days before and after inoculation in order to keep high relative humidity 

(RH) to allow opening of stomata and, therefore, to favor infection. Plants were kept for a total of 30 

days post inoculation (dpi) in a climate chamber (WeissTechnik, Leicestershire, United Kingdom). 

Controlled conditions were set for the whole experiment with 16 h of daylight with 22 °C and a 70% 

RH and an 8 h nighttime with 17 °C and 80% RH. Symptoms were recorded starting from 12 dpi. 

Leaves were collected at 12 and 29 dpi. Three leaves per time point were collected in a sterile 50 mL 

tube and immediately frozen in liquid nitrogen. Storage was done at −80 °C until RNA extraction. 

2.3. RNA Extraction from Plant Material 

Total RNA (i.e., both bacterial and plant RNA) was extracted from all collected leaves. Owing to 

the richness in polysaccharides and phenolic compounds of strawberry plant tissues, the extraction 

was performed with a modified method of Christou et al. [45], as outlined below. Collected leaves 

were cut into three sections, used as triplicates of 100 mg initial material and extracted in parallel. 

The extraction buffer (EB) was supplemented with freshly added 2% β-mercaptoethanol (Applichem 

GmbH, Germany) in order to preserve samples from RNase activity; the powdered leaves were 

transferred in ice-cold EB and let on ice for 15 min with shaking every 3 min, in order to allow the 

extraction buffer to access all plant material and avoid sedimentation of material, instead of directly 

adding phenol/chloroform/isoamyl alcohol (25:24:1 v/v; AppliChem GmbH, Germany); RNA samples 

were washed twice with 70% (v/v) ethanol in order to remove traces of phenols and other potentially 

interfering components; and nucleic acid pellet was air-dried at room temperature for 2 min and 

subsequently dissolved in 30 µL RNase free water on ice for 15 min. 

2.4. RNA Quantification, Qualification, and DNase Treatment 

All three replicate RNA samples isolated from three plant leaves in each of the two collection 

days were tested for nucleic acid quantity and purity by measuring spectrophotometrically the 

absorbance ratios A260/A230 and A260/A280 using a Q5000 micro volume spectrophotometer (Quawell 

Technology, San Diego, USA; Table S1). 

Total RNA of replicates collected at 12 dpi and 29 dpi were treated with DNase I (Macherey-

Nagel GmbH & Co., Germany) according to manufacturer’s protocol, followed by an ethanol-based 

RNA precipitation before resuspending the RNA in 30 µL RNase free water. Two PCR controls using 

primer sets previously designed to amplify housekeeping genes, namely gyrB in X. fragariae [46] and 

actin in woodland strawberry [47], were performed to confirm the absence of contaminating DNA. 

The PCR mixture consisted of 10 µL polymerase 2× KAPA2G Robust HotStart ReadyMix PCR Kit 
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(KAPABiosystem, Wilmington, MA, USA), 10 µM forward primer, 10 µM reverse primer, 5 µL 

ultrapure water, and 3 µL template DNA. Amplification was performed using a Bio-Rad PCR 

machine, with a thermal cycle programmed for 3 min at 95 °C as initial denaturation, followed by 15 

cycles of 15 s at 95 °C for denaturation, 15 s at 60 °C as annealing, 15 s at 72 °C for extension, and 1 

min at 72 °C for final extension. DNase I treatment was repeated in the case of a positive amplification. 

The RNA integrity of extracted nucleic acids was verified by running samples after DNase treatment 

through a fragment analyzer (Advanced Analytical, Akeny, USA) with a high sensitivity RNA 

analysis kit (Advanced Analytical). Only one replicate per leaf was selected for RNA sequencing 

(Table S1). 

2.5. RNA Processing and Sequencing 

The selected RNA samples were depleted of rRNA with both bacterial and plant Ribo-Zero 

rRNA Removal Kits (Illumina, San Diego, USA). For each replicate, cDNA libraries were prepared 

by the Functional Genomics Centre Zurich (University of Zurich, Switzerland) using a TruSeq 

Stranded mRNA Library Prep kit (Illumina, San Diego, USA). All libraries were then pooled and 

sequenced with 125 bp single direction reads using two lanes of an Illumina HiSeq 4000 machine. All 

raw sequencing reads and processed data supplementary files were deposited in NCBI Gene 

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) with accession number GSE150636. 

2.6. Bioinformatics 

Reads were trimmed with Trimmomatic v. 0.36 [48] in order to clip sequencing adapters and to 

remove low quality reads. Reads were subsequently mapped with Bowtie 2 v. 2.3.2 [49] separately 

on either the X. fragariae PD 885T genome (GenBank assembly accession GCA_900183975.1) [24] or 

the F. vesca genome v.4.0 [12]. SAMtools v. 0.1.19 [50] was subsequently used to sort the mapped 

reads on their respective bacterial or plant reference genome. The sorted files of a total of six 

replicates, resulting from three independent leaves per collection day, were processed with the 

Cufflinks RNA-seq workflow v. 2.2.0 [51] in order to obtain gene and transcript expression 

information per replicate and per treatment, for the bacterium and the plant separately. Gene 

expression levels were normalized using fragments per kilobase of exon per million mapped reads 

(FPKM) report values. The outputs were analyzed and visualized on the package cummeRbund v. 

2.20.0 [52] in R v. 3.4.3 [53]. The replicates were controlled for reproducibility using a principal 

component analysis (PCA), and in the case of an outlier replicate, the Cufflinks workflow was 

repeated after removing the outlier replicate. Genes were considered as significantly differentially 

expressed, when their fold change (Log2) between 12 dpi and 29 dpi was ≥1.5 or ≤1.5, respectively, 

and their adjusted p value< 0.05. For each differentially expressed bacterial gene, the gene annotation 

from the reference genome PD 885T was assigned, and gene ontology (GO) categorization was 

subsequently added with Blast2Go [54]. Additionally, virulence-related genes in X. fragariae, such as 

T3SS, T3E, T4SS, and T6SS, retrieved from the annotated genome PD 885T [26], were specifically 

screened for expression levels for both collection days and compared with housekeeping genes. 

For each differentially expressed plant gene, gene functions for F. vesca were obtained using ad 

hoc Perl scripts to combine GO, InterProScan (IPR), KEGG orthologues, and pathways, as well as 

BLAST information obtained from the Genome Database for Rosaceae (GRD, URL 

www.rosaceae.org). 

3. Results and Discussion 

3.1. Sequenced RNA Reads Selection 

Sequencing of the different RNA samples yielded between 39 million and 149 million reads per 

sample (Table 1). Subsequent filtering removed between 2.6% and 11.0% of low-quality reads. 
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Table 1. Raw reads produced from RNA sequencing per replicate, retained reads resulted from RNA 

trimming. Reads were mapped on both Xanthomonas fragariae PD 885T (GenBank assembly accession 

GCA_900183975.1) and Fragaria vesca (v. 4.0) genomes. Mapping results provided the number and 

percentage of reads uniquely mapped to the genome and number and percentage of reads mapped 

more than one time to the respective genome. Finally, the overall aligned amount and percentage of 

reads mapped on each genome were reported in the table. Dpi: days post inoculation. 

Replicate Raw Reads 

Trimming and Filtering Bacterial Mapping Plant Mapping 

Remaining 

Reads 

Removed 

Reads 

(%) 

Overall 

Aligned 

Overall 

Aligned 

(%) 

Overall 

Aligned 

Overall 

Aligned 

(%) 

12 dpi leaf 1 1 65,512,500 56,513,044 13.74 4,806,523 8.51 39,162,615 69.30 

12 dpi leaf 2 64,973,090 61,741,330 4.97 1,708,033 2.77 54,919,192 88.95 

12 dpi leaf 3 44,154,658 41,413,993 6.21 1,235,070 2.98 37,562,210 90.70 

29 dpi leaf 1 39,031,270 38,021,945 2.59 2,776,597 7.30 32,632,204 85.82 

29 dpi leaf 2 79,106,667 70,440,561 10.95 3,101,000 4.40 58,772,409 83.44 

29 dpi leaf 3 1 149,738,897 143,962,456 3.86 3,711,553 2.58 109,970,724 76.39 

1 These two replicates were removed from the analysis. 

Mapping of the remaining reads on the X. fragariae genome yielded between 1.23 and 4.81 

million mapped reads, which represented 2.58% to 8.51% of the filtered reads. The read mapping on 

the F. vesca genome yielded between 32.63 and 109.97 million mapped reads, representing between 

83.44% and 90.7% of the filtered reads (Table 1). On the basis of PCA analysis, one sample per 

collection day was defined as being an outlier (Figure 1a and b), with two replicates remaining per 

collection day for both bacterial and plant analysis. 

 

Figure 1. The principle component analysis (PCA) performed with the CummeRbund workflow on 

differentially expressed genes for (a) Xanthomonas fragariae and (b) Fragaria × ananassa. Three leaf 

replicates at 12 days post inoculation (dpi) (D12_0, D12_1, D12_2) and three leaf replicate at 29 dpi 

(D29_0, D29_1, D29_2) were analyzed with principle component for both bacteria and plant and the 

arrows represent the most-varying direction of the data. 
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3.2. Gene Expression in X. Fragariae 

A total of five bacterial genes were more expressed at the later sampling point (Figure 2a; Table 

S2). 

 

Figure 2. Volcano plots representing all expressed transcripts. For every transcript, the fold change of 

12 days post inoculation (dpi) and 29 dpi was plotted against the p-value for both (a) Xanthomonas 

fragariae and (b) Fragaria × ananassa. Statistically significant differentially expressed genes, with a Log2 

fold change ≥1.5 or ≤1.5, are depicted as a red dot, and insignificant as black dots. For each organism, 

the numbers aside the arrows pointing up represent the number of higher expressed genes and the 

numbers aside arrows pointing down represent the number of lower expressed genes. 

Among them, a single calcium-binding gene, also annotated as putative RTX related-toxin, was 

found (Table 2). Hemolytic and cytolytic RTX-toxins are reported to be pathogenicity factors of the 

toxin-producing bacteria and are very often important key factors in pathogenesis of the bacteria [55]. 

This suggests that X. fragariae may still have an active factor of pathogenesis at a late stage of the 

symptom expansion. 

Table 2. Summary table of selected differentially expressed Xanthomonas fragariae genes while 

interacting in planta with Fragaria × ananassa. A complete list of differentially expressed genes is 

provided in Table S2. LPS, lipopolysaccharide. 

Locus 

Tag 
Locus: Position 

Expres- 

sion 

Fold 

Change 

(Log2) 

Protein Description 

Ribosome 

PD885_R

S14555 

NZ_LT853882.1: 

3129676–3130403 
down −1.82 30S ribosomal protein S5 

PD885_R

S09535 

NZ_LT853882.1: 

2044105–2045791 
down −2.01 30S ribosomal protein S1 

PD885_R

S14575 

NZ_LT853882.1: 

3132158–3132464 
down −3.53 30S ribosomal protein S14 

PD885_R

S14625 

NZ_LT853882.1: 

3136013–3136841 
down −2.05 50S ribosomal protein L2 
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PD885_R

S01580 

NZ_LT853882.1: 

348309–348738 
down −2.15 50S ribosomal protein L13 

PD885_R

S14700 

NZ_LT853882.1: 

3154771–3155200 
down −2.28 50S ribosomal protein L11 

PD885_R

S14580 

NZ_LT853882.1: 

3132482–3133025 
down −2.52 50S ribosomal protein L5 

PD885_R

S04680 

NZ_LT853882.1: 

1026045–1026366 
down −2.70 50S ribosomal protein L21 

PD885_R

S14680 

NZ_LT853882.1: 

3152571–3152937 
down −3.07 50S ribosomal protein L7/L12 

T3SS 

PD885_R

S06675 

NZ_LT853882.1: 

1447891–1449712 
down −2.73 

EscC/YscC/HrcC type III secretion 

system outer membrane ring 

PD885_R

S06645 

NZ_LT853882.1: 

1442977–1443742 
down −2.65 

EscJ/YscJ/HrcJ type III secretion inner 

membrane ring 

PD885_R

S06630 

NZ_LT853882.1: 

1440799–1441873 
down −2.24 

EscU/YscU/HrcU type III secretion 

system export apparatus switch  

PD885_R

S06635 

NZ_LT853882.1: 

1442090–1442546 
down −2.81 

HrpB1 family type III secretion system 

apparatus 

PD885_R

S06580 

NZ_LT853882.1: 

1433397–1433868 
down −3.99 type III secretion protein HpaB 

PD885_R

S06680 

NZ_LT853882.1: 

1449789–1450173 
down −4.98 type III secretion protein Hpa1 

PD885_R

S06640 

NZ_LT853882.1: 

1442583–1442976 
down −2.54 type III secretion protein HrpB2 

T3E 

PD885_R

S01740 

NZ_LT853882.1: 

376677–378864 
down −2.39 type III effector XopN 

PD885_R

S02910 

NZ_LT853882.1: 

653223–653931 
down −2.97 type III effector XopR 

PD885_R

S17340 

NZ_LT853882.1: 

3731049–3732024 
down −1.89 type III effector XopV 

T4SS 

PD885_R

S16190 

NZ_LT853882.1: 

3471918–3473817 
down −1.90 

type IV pilus secretin PilQ family 

protein–fimbrial assembly 

T6SS 

PD885_R

S10450 

NZ_LT853882.1: 

2231241–2232738 
down −1.65 

type VI secretion system contractile 

sheath large subunit EvpB  

PD885_R

S10445 

NZ_LT853882.1: 

2230609–2231107 
down −3.63 

type VI secretion system tube protein 

Hcp 

PD885_R

S04345 

NZ_LT853882.1: 

944106–946857 
down −1.72 

type VI secretion system tip protein 

VgrG 

Chaperonin 

PD885_R

S02005 

NZ_LT853882.1: 

442628–444269 
down −1.50 molecule chaperonin GroEL 

Regulation 

PD885_R

S00915 

NZ_LT853882.1: 

215236–216646 
down −1.60 

type I glutamate–ammonia ligase–

glutamine synthetase GlnA 

LPS 

PD885_R

S15075 

NZ_LT853882.1: 

3219172–3222999 
down −1.81 

LPS–assembly protein LptD–organic 

solvent tolerance protein 

Biofilm, membrane 
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PD885_R

S13005 

NZ_LT853882.1: 

2801740–2802466 
down −1.75 

OmpA family protein–cell envelope 

biogenesis protein  

PD885_R

S03590 

NZ_LT853882.1: 

788222–788894 
down −1.98 

OmpW family protein–membrane 

protein 

TonB 

PD885_R

S16700 

NZ_LT853882.1: 

3587957–3590420 
down −1.83 

TonB-dependent receptor (TCDB: 

1.B.14.1.28) 

PD885_R

S16470 

NZ_LT853882.1: 

3524801–3527693 
down −2.02 

TonB-dependent receptor (TCDB: 

1.B.14.6.11) 

General stress 

PD885_R

S10575 

NZ_LT853882.1: 

2269375–2269633 
down −1.92 stress-induced protein 

PD885_R

S12550 

NZ_LT853882.1: 

2705902–2706391 
down −1.95 general stress protein 

Recognition 

PD885_R

S17775 

NZ_LT853882.1: 

3832365–3832962 
down −3.25 Ax21 family protein 

Motility 

PD885_R

S10885 

NZ_LT853882.1: 

2338459–2339659 
down −3.34 flagellin 

Toxin 

PD885_R

S16725 

NZ_LT853882.1: 

3595055–3603270 
up 1.93 

calcium-binding protein, Ca2+ binding 

protein, RTX toxin-related 

Among the resulting 139 higher expressed genes at early infection stage, the functions of some 

genes were related to different virulence-related systems as well as proteins involved in host 

interactions, recognition, and pathogenesis. Three structural elements of the T3SS were identified. 

HrcC and HrcJ are constitutive membrane elements of the T3SS, forming the outer and inner rings of 

the T3SS, respectively [56]. HrcU interacts with T3SS substrate specificity switch (T3S4) proteins 

including HrpB and was proposed to control the secretion of different T3S substrate classes by 

independent mechanisms [57]. One regulatory gene of the T3SS, hrpB (hypersensitive response and 

pathogenicity), was more expressed at 12 dpi and is reported to regulate transcriptional control of 

the T3SS [58]. This transcription factor is an expression activator of the T3SS encoding genes and T3E 

genes [59]. Two additional T3SS regulation factors, hpa1 and hpaB (hypersensitive response and 

pathogenicity associated), reported to influence virulence with the host [58,60], were found to be 

more expressed at 12 dpi. While comparing with the change of expression of these genes between 

bacteria growing on microbiological medium and in planta, expression of all of them was 

significantly higher in strawberry plants 15 days after inoculation, which confirms that the T3SS is 

important in the early stage of infection [61]. Finally, three T3E genes, namely, xopN, xopR, and xopV, 

were more expressed at the early infection stage, suggesting their translocation into the host cell, thus 

contributing to virulence by suppressing innate immune response in strawberry [62]. Furthermore, a 

gene belonging to the T4SS pilus, pilQ, for which its gene product was reported to play a crucial role 

in pathogenicity, twitching motility, and biofilm formation in Xanthomonas species [63–65], was more 

expressed at the early symptom stage, similarly to on microbiological medium than in planta [61]. 

Three elements from the T6SS were higher expressed at 12 dpi as well. The needle protein Hcp forms 

the tubular structure that is secreted out of the cell [66], whereas the VgrG protein was reported as 

an indispensable component for the specific delivery of effectors and acting as a puncturing device 

[67]. The membrane element EvpB, homologous to TssB [68,69], forms a sheath that wraps around 

the Hcp tube and dynamically propels the Hcp-VgrG puncturing device and T6SS effector across the 

bacterial membrane [70,71]. In general, T6SS have mainly been shown to contribute to pathogenicity 

and competition between bacteria [72]. The presented results suggest that both T3SS and T6SS are 

more active at 12 dpi and may secrete effectors for both systems. The differentially expressed genes 
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from T3SS, T4SS pilus, and T6SS may thus be good candidate targets for mutational analysis in X. 

fragariae in order to test their role in virulence as they could constitute key virulence factors, and thus 

reveal weakness of the bacterium if silenced. 

The genes for other factors such as chaperonin GroEL, known as a common antigen and effecting 

the innate and acquired immune systems [73], glutamate synthetase glnA, which was shown to 

contribute to the virulence in Streptococcus suis [74], bacterial recognition, and interaction-related 

genes, such as a leucine-rich protein, putatively involved in bacterial surface recognition [75], and 

avirulence factors in host tissue [76], were more expressed at an early infection stage. Subsequently, 

a total of eight genes related to ribosomal functions in 30S and 50S were found, which, together with 

the previous set of genes, would suggest a faster growth rate at the early infection stage [77]. The GO 

annotation for biological process congruently showed that biosynthetic process, translation, 

metabolic process, and generation of precursor metabolites were more expressed at 12 dpi (Figure 3). 

Further higher-expressed genes at an early stage of infection were coding for the membrane 

proteins OmpA and OmpW, which may favor bacterial pathogenesis by anchoring the host cell 

[78,79]. They may be involved in biofilm formation [80], similarly to proteins responsible for 

lipopolysaccharide (LPS) also highly expressed at 12 dpi, and assemble at the cell surface [81,82]. 

Biofilms facilitate adhesion of the colonization to both biotic and abiotic surfaces, thus allowing the 

bacteria to resist physical stresses imposed by fluid movement that could separate the cells from a 

nutrient source and increasing bacterial fitness in the plant [83]. On the basis of the transporter 

classification database (TCDB) [84], both bacterial TonB-dependent receptors (TBDRs), which were 

more expressed at an early infection stage, were found to be involved in iron (Fe3+) binding and 

transport. There is evidence that phytopathogenic bacteria can use iron uptake systems to multiply 

in the host and to promote infection [85]. A study could already report that iron acquisition was 

crucial for X. fragariae bacterial growth because an iron deprivation could inhibit X. fragariae growth 

and symptoms on strawberry plant [86]. 

Overall, the higher expressed bacterial genes at 12 dpi would suggest that the bacteria were more 

actively growing in the plant leaf compared with 29 dpi. At this time point, expression of the 

pathogenicity factors was higher. At the later time point, growth of the bacterium was reduced. The 

growth limitation and bacterial metabolism change could be explained by an effective bacterial 

recognition by the plant and a deprivation of nutrients in the leaf by the reduction of the 

photosynthesis process in the leaf (see below), thus limiting the access of nutrients for the bacteria. 

However, the collection time at 12 dpi also coincides with the preparatory stage of the bacteria before 

the exudation phase, which usually starts at 14 dpi [44]. 

Additionally, the lower expression of virulence-related genes at a later infection stage could 

reflect that X. fragariae appears rather to be a biotrophic pathogen [87]. The reduced cell wall 

degrading enzyme (CWDE) repertoire, as reported from the draft genome of X. fragariae in 

comparison with other Xanthomonas spp., typically found in biotrophic pathogens [87,88], would only 

support this hypothesis. However, the T3SS in addition to defense suppression may also have 

induced cell death (see below), thus indicating a hemibiotrophic life style [89]. In fact, 

phytopathogenic bacteria should be seen as a continuum of hemibiotrophs owing to the different life 

style phases occurring during plant–bacterial interactions [89]. 
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Figure 3. Gene ontology (GO) categories less expressed at 29 days post inoculation (dpi) in 

Xanthomonas fragariae. Two classes of GO terms, namely biological process and molecular functions 

in inoculated strawberry plants between 12 and 29 dpi, are shown as a percentage of present genes. 

3.3. Gene Expression in Strawberry 

The analysis of RNA-seq data indicated that a total of 141 genes were more expressed at the later 

sampling point (29 dpi), while 220 genes were more expressed at the early infection stage (Figure 2b; 

Table S3). Some pathways were shown to be partly more expressed at an early stage, while some 

elements of the same pathways were more expressed at a late stage of infection (Table 3). 
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Table 3. Summary table of selected differentially expressed Fragaria × ananassa genes challenged with 

Xanthomonas fragariae. A complete list of differentially expressed genes is provided in Table S3. 

Locus 

Tag 
Locus: Position 

Expres- 

Sion 

Fold 

Change 

(Log2) 

Gene Description 

Glutathione metabolism 

FvH4_4g

13000 
Fvb4: 16653443–16654859 up 2.45 

crocetin glucosyltransferase, 

chloroplastic-like 

FvH4_5g

05100 
Fvb5: 2978458–2983365 up 2.04 

probable alpha,alpha-

trehalose-phosphate 

synthase 

FvH4_4g

09780 
Fvb4: 11758877–11762248 up 1.81 

probable alpha,alpha-

trehalose-phosphate 

synthase [UDP-forming] 

FvH4_2g

40150 
Fvb2: 28671382–28672822 up 1.60 

anthocyanidin 3-O-

glucosyltransferase 5-like 

FvH4_7g

22820 
Fvb7: 17936656–17943623 up 1.60 

crocetin glucosyltransferase, 

chloroplastic-like 

FvH4_3g

29980 
Fvb3: 23159280–23164945 down −1.78 

glucomannan 4-beta-

mannosyltransferase 2 

FvH4_6g

53560 
Fvb6: 39232986–39237091 down −2.23 

ribonucleoside-diphosphate 

reductase small chain 

FvH4_7g

31450 
Fvb7: 22725705–22729890 down −2.42 

starch synthase 1, 

chloroplastic/amyloplastic 

FvH4_1g

12090 
Fvb1: 6609415–6610712 down −4.00 

glyoxalase/fosfomycin 

resistance/dioxygenase 

domain 

Cytochrome 

FvH4_4g

29810 
Fvb4: 29777129–29779171 up 2.55 cytochrome p450 78A5 

FvH4_2g

40560 
Fvb2: 28894033–28900936 up 1.55 

cytochrome p450, family 82, 

subfamily C, polypeptide 4 

FvH4_2g

07410 
Fvb2: 6119730–6121188 up 1.55 allene oxide synthase-like 

FvH4_5g

27150 
Fvb5: 18417464–18422984 down −1.87 

ferric reduction oxidase 7, 

chloroplastic 

FvH4_5g

02700 
Fvb5: 1623401–1625033 down −1.98 cytochrome p450 86A7 

FvH4_5g

14010 
Fvb5: 7931662–7935314 down −2.05 flavonoid 3'-monooxygenase 

Auxin (AAI) 

FvH4_2g

04750 
Fvb2: 3685624–3688124 up 2.09 

probable indole-3-acetic 

acid-amido synthetase 

GH3.1 

FvH4_7g

17340 
Fvb7: 14759798–14760392 down −1.81 

auxin-induced protein X15-

like 

FvH4_6g

44990 
Fvb6: 34565510–34570206 down −2.01 

probable indole-3-acetic 

acid-amido synthetase 

GH3.5 

FvH4_6g

00660 
Fvb6: 378744–381847 down −2.32 

putative auxin efflux carrier 

component 8 
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FvH4_6g

34740 
Fvb6: 27411186–27411858 down −2.65 

auxin-binding protein 

ABP19a 

Ethylene (ET) 

FvH4_5g

19800 
Fvb5: 11637731–11638778 up 1.51 

ethylene-responsive 

transcription factor 5 

FvH4_5g

38040 
Fvb5: 28094328–28096045 up 2.76 

aminocyclopropane-1-

carboxylate oxidase homolog 

FvH4_6g

08370 
Fvb6: 4946527–4949032 down −1.71 

S-adenosylmethionine 

synthase 1-like 

FvH4_4g

21340 
Fvb4: 24380885–24383481 down −2.15 

S-adenosylmethionine 

synthase 2 

Leucin-rich repeat (LRR) 

FvH4_5g

24920 
Fvb5: 16382894–16383420 up 2.20 

putative F-box/lrr-repeat 

protein 23 

FvH4_3g

45520 
Fvb3: 37735078–37737977 up 2.16 

leucine-rich repeat receptor 

protein kinase EXS-like 

FvH4_7g

14060 
Fvb7: 12491034–12492810 up 1.87 

probable leucine-rich repeat 

receptor-like protein kinase 

At1g35710 

FvH4_5g

23420 
Fvb5: 14763405–14766264 up 2.39 

disease resistance protein 

RPM1-like (LRR 

superfamily) 

FvH4_7g

24240 
Fvb7: 18726677–18731259 down −1.69 

probable lrr receptor-like 

serine/threonine-protein 

kinase At3g47570 

FvH4_2g

05530 
Fvb2: 4568048–4570195 down −1.97 

leucine-rich repeat (lrr) 

family protein 

WRKY domain containing protein 

FvH4_5g

04360 
Fvb5: 2573220–2577327 up 2.75 

probable wrky transcription 

factor 53 

FvH4_4g

06830 
Fvb4: 6132454–6133929 up 1.98 

probable wrky transcription 

factor 11 

FvH4_6g

10510 
Fvb6: 6310957–6313581 up 1.87 

probable wrky transcription 

factor 33 

FvH4_2g

41060 
Fvb2: 29128088–29130611 up 1.62 

probable wrky transcription 

factor 40 isoform X2 

NAC domain containing protein 

FvH4_4g

31070 
Fvb4: 30387328–30388714 up 3.29 

NAC transcription factor 29-

like 

FvH4_2g

16180 
Fvb2: 14147225–14149397 up 1.83 NAC transcription factor 29 

FvH4_3g

20690 
Fvb3: 13746269–13748147 up 1.80 

NAC domain-containing 

protein 72-like 

Pathogenesis-related 

FvH4_4g

30150 
Fvb4: 29928212–29930748 up 5.07 beta-1,3-glucanase 

FvH4_6g

45580 
Fvb6: 34959190–34962068 up 1.94 

probable endo-1,3(4)-beta-

glucanase 

FvH4_4g

10610 
Fvb4: 14349186–14350693 up 4.74 chitinase 4-like 

FvH4_1g

10600 
Fvb1: 5814344–5815342 up 2.47 endochitinase-like protein 
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FvH4_4g

11930 
Fvb4: 15646302–15649061 down −1.80 chitinase-like protein 1 

FvH4_6g

16950 
Fvb6: 10815316–10816828 up 5.51 thaumatin-like 

FvH4_5g

01820 
Fvb5: 1151603–1152293 up 4.12 thaumatin, protein P21-like 

FvH4_6g

24670 
Fvb6: 18708864–18710041 up 2.76 thaumatin-like protein 1b 

FvH4_3g

28370 
Fvb3: 21335348–21337404 up 4.57 

glucan endo-1,3-beta-

glucosidase-like 

FvH4_5g

06210 
Fvb5: 3658609–3660218 up 3.76 

glucan endo-1,3-beta-

glucosidase, basic isoform-

like 

FvH4_6g

24680 
Fvb6: 18714133–18715667 up 2.28 

glucan endo-1,3-beta-

glucosidase, basic isoform-

like 

FvH4_2g

02860 
Fvb2: 2250275–2250770 up 2.81 

pathogenesis-related protein 

1A-like (cysteine-rich) 

FvH4_3g

02840 
Fvb3: 1482707–1497385 up 2.15 

cysteine-rich receptor-like 

protein kinase 10 

FvH4_6g

09980 
Fvb6: 5928404–5929569 down −1.55 

non-specific lipid-transfer 

protein 1-like isoform X1 

FvH4_6g

09970 
Fvb6: 5915102–5916203 down −2.24 lipid transfer protein 4 

FvH4_2g

28920 
Fvb2: 22545044–22545446 down −2.84 

14 kDa proline-rich protein 

DC2.15-like, lipip transfer 

Photosynthesis/Chloroplastic/Carbon fixation/Glyconeogenesis/Citric acid cycle shung 

FvH4_3g

21020 
Fvb3: 14037513–14039386 down −3.13 

chlorophyll a-b binding 

protein 13, chloroplastic 

FvH4_6g

40970 
Fvb6: 32372483–32373647 down −2.59 

chlorophyll a-b binding 

protein 151, chloroplastic 

FvH4_6g

41050 
Fvb6: 32391614–32398766 down −2.00 

chlorophyll a-b binding 

protein 151, chloroplastic-

like, partial 

FvH4_7g

19750 
Fvb7: 16227980–16230030 down −1.91 

chlorophyll a-b binding 

protein 6, chloroplastic 

FvH4_6g

40150 
Fvb6: 31710858–31712682 down −2.02 

chlorophyll a-b binding 

protein 8, chloroplastic 

FvH4_5g

30940 
Fvb5: 21867161–21868613 down −2.40 

chlorophyll a-b binding 

protein CP24 10A, 

chloroplastic 

FvH4_7g

24350 
Fvb7: 18809164–18811045 down −2.52 

chlorophyll a-b binding 

protein CP29.3, chloroplastic 

isoform X1 

FvH4_6g

38390 
Fvb6: 30344332–30345143 down −2.75 

chlorophyll a-b binding 

protein of LHCII type 1 

FvH4_6g

32440 
Fvb6: 25477938–25478742 down −1.91 

chlorophyll a-b binding 

protein of LHCII type 1-like 

FvH4_3g

06120 
Fvb3: 3521880–3529614 down −2.34 

chlorophyll a-b binding 

protein of LHCII type 1-like 

FvH4_6g

38450 
Fvb6: 30386770–30387574 down −2.46 

chlorophyll a-b binding 

protein of LHCII type 1-like 
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FvH4_3g

37660 
Fvb3: 32272449–32273253 down −2.51 

chlorophyll a-b binding 

protein of LHCII type 1-like 

FvH4_1g

09040 
Fvb1: 4778659–4780612 down −1.55 

chlorophyll a-b binding 

protein, chloroplastic 

FvH4_4g

23750 
Fvb4: 26130750–26132548 down −1.68 

chlorophyll a-b binding 

protein, chloroplastic 

FvH4_6g

44370 
Fvb6: 34191144–34193039 down −1.56 

cytochrome b6-f complex 

iron-sulfur subunit, 

chloroplastic 

FvH4_2g

13890 
Fvb2: 12167935–12172009 down −1.68 

fructose-1,6-bisphosphatase, 

cytosolic 

FvH4_2g

10390 
Fvb2: 9250051–9252469 down −1.74 

fructose-bisphosphate 

aldolase 1, chloroplastic 

FvH4_4g

25450 
Fvb4: 27213930–27219353 down −1.71 

glutamate-glyoxylate 

aminotransferase 2 

FvH4_6g

54460 
Fvb6: 39756571–39759126 down −1.52 

glyceraldehyde-3-phosphate 

dehydrogenase A, 

chloroplastic 

FvH4_5g

25760 
Fvb5: 17250900–17253991 down −1.65 

glyceraldehyde-3-phosphate 

dehydrogenase B, 

chloroplastic 

FvH4_2g

02490 
Fvb2: 1986822–1989446 down −1.97 

malate dehydrogenase, 

glyoxysomal isoform X2 

FvH4_6g

38900 
Fvb6: 30775176–30776861 down −1.85 

oxygen-evolving enhancer 

protein 2, chloroplastic 

FvH4_3g

02920 
Fvb3: 1561440–1563015 down −1.73 

oxygen-evolving enhancer 

protein 3–2, chloroplastic 

FvH4_5g

33740 
Fvb5: 24430492–24436620 down −1.92 

phosphoenolpyruvate 

carboxykinase [ATP] 

FvH4_1g

21630 
Fvb1: 13591226–13595458 down −1.69 

photosynthetic NDH subunit 

of lumenal location 4, 

chloroplastic 

FvH4_4g

15260 
Fvb4: 18876811–18877429 down −1.71 

photosystem I reaction 

center subunit II, 

chloroplastic-like 

FvH4_3g

11800 
Fvb3: 6971526–6972286 down −1.73 

photosystem I reaction 

center subunit III, 

chloroplastic 

FvH4_3g

09680 
Fvb3: 5629058–5631096 down −2.00 

photosystem I reaction 

center subunit psaK, 

chloroplastic 

FvH4_3g

41620 
Fvb3: 34939645–34940283 down −2.06 

photosystem I reaction 

center subunit V, 

chloroplastic 

FvH4_6g

31740 
Fvb6: 24848099–24849503 down −1.54 

photosystem I reaction 

center subunit VI, 

chloroplastic-like 

FvH4_6g

00530 
Fvb6: 323097–325385 down −1.68 

photosystem I reaction 

center subunit XI, 

chloroplastic 

FvH4_2g

26970 
Fvb2: 21549577–21552377 down −2.05 

photosystem II 22 kDa 

protein, chloroplastic 



Microorganisms 2020, 8, 1253 15 of 23 

 

FvH4_2g

31210 
Fvb2: 23984136–23987486 down −2.17 photosystem II PsbX 

FvH4_2g

20470 
Fvb2: 17180656–17182221 down −1.57 

photosystem II reaction 

center Psb28 protein 

FvH4_1g

08270 
Fvb1: 4379754–4380126 down −2.13 photosystem II protein 

FvH4_2g

14790 
Fvb2: 13006655–13015170 down −1.55 

probable 

glucuronosyltransferase 

FvH4_1g

24360 
Fvb1: 16228411–16233750 down −1.77 probable polygalacturonase 

FvH4_4g

16670 
Fvb4: 20537377–20543743 down −1.58 

pyruvate, phosphate 

dikinase 2 

FvH4_3g

15380 
Fvb3: 9556723–9560275 down −1.76 

sedoheptulose-1,7-

bisphosphatase, 

chloroplastic-like 

Among these pathways are genes with functions generally related to an unspecific response to 

biotic and abiotic stimuli, including glutathione metabolism [90] and cytochromes (mainly P450) [91]. 

Glutathione may affect the levels of reactive oxygen species (ROS) in the cell, and thus participate in 

the hypersensitive reaction (HR) launched by resistant plants following pathogen attack [92–94]. This 

could explain why the used cultivar was not considered as highly susceptible to X. fragariae [21]. 

Cytochrome P450 genes, which are involved in plant development, antioxidant, and detoxification of 

pollutants, are also involved in plant defense by protecting from various biotic and abiotic stresses 

[91,95]. Leucine-rich repeat (LRR) regions proteins were described as a part of the mechanism leading 

to recognition of pathogen and activation of signal pathways related to plant defense and disease 

resistance [96,97]; they are associated with the innate immune response, which is initiated through 

the sensing of pathogen-associated molecular patterns (PAMPs) [98]. Additionally, genes coding for 

proteins functioning as phytohormones such as auxin (AAI) and ethylene (ET), which are known to 

be key mediators of plant responses to both biotic and abiotic stresses [99–102], may be involved in 

senescence processes depending on concentrations [103]. Overall, this suggests that the listed 

pathways of recognitions and defense may have a differential and a long-action spectrum along the 

symptom expansion. 

Among the down-regulated genes at a later infection stage (Table 3), a total of 54 genes were 

found to be located in the chloroplast: 9 of them were related to both photosystems I and II, 14 of 

them to chlorophyll A/B binding, 4 of them to plastid-lipid-associated proteins, and 6 were related to 

gluconeogenesis or citric acid cycle shunt and other functions. The chloroplast was reported to play 

a major role in plant immunity by hosting biosynthesis of several key defense-related molecules, such 

as hormones and secondary messenger [104–106]. A down-regulation of the light harvesting 

complexes and protein related to chlorophyll A/B was already reported in the reaction of peach plants 

to the pathogen X. arboricola pv. pruni [38], of kumquat as reaction to Xanthomonas citri subsp. citri 

[107] and of Arabidopsis thaliana to Pseudomonas syringae [108]. It was concluded that the down-

regulation of the genes involved in photosynthesis was a cost for the plant fitness, where energy 

resources were redirected to defense response. This could induce a hypersensitive response following 

the infection [107]. A recent study showed that T3E from P. syringae could target the chloroplasts 

from A. thaliana and disrupt the photosystem II, leading to an inhibition of the photosynthesis, thus 

decreasing the PAMPs-induced reactive oxygen species (ROS) production [105]. Alternatively, in the 

case of bacterial infections, several reports have shown a suppression of photosynthetic functions in 

infected plants, possibly reflecting an active plant response to shut down carbon availability and limit 

pathogen growth, in order to favor the establishment of defense over other physiological processes 

[104,109] or to protect the photosynthetic apparatus against oxidative damage [110]. 

Among the more expressed genes at a late infection stage, four were involved in specific plant 

defenses regulation, such as WRKY transcription factors [111,112], which are described as part of the 
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mechanism leading to recognition of pathogen and activation of signal pathways related to plant 

defense and disease resistance [96,97]. NAC domain containing proteins were also more expressed 

at a late stage of infection and the plant-specific NAC domain containing protein family controls 

processes such as development, defense, and abiotic stress responses [113]. A total of 16 genes coding 

for other pathogenesis-related factors were mostly more expressed at a late stage. Among them, two 

coding genes for beta-1,3-glucanase, three chitinases, three thaumatin-like proteins, and four genes 

coding for a glucan endo-1,3-glucosidase protein were found. Genes coding for beta-1,3-glucanase 

and chitinase were found to be involved in the reaction to symptomatic bacterial spots on tomato 

[114], while genes coding for thaumatin-like proteins and glucan endo-1,3-glucosidase proteins could 

play a role in plant defense against bacterial diseases [115,116]. 

Overall, complementary to the presented results, the GO annotation revealed that the biological 

processes from genes more expressed at 12 dpi were related to both photosystems I and II, metabolic 

processes, and transmembrane transports, as well as to defense response and response to biotic 

stimulus (Figure 4). This may reflect that defense mechanisms of the strawberry plant were already 

activated by the pathogen at 12 dpi, but that the process already declined at 29 dpi. The results at an 

early infection point suggest a change in plant defense strategy metabolism by changing mostly its 

chloroplast metabolism, and thus removing access to nutrients, favoring bacterial growth and 

possibly inducing cell death. Additionally, basal plant defense may already be activated at an early 

stage, but bacterial recognition may only be effective at a later infection stage. 

 

Figure 4. Gene ontology (GO) categories differentially expressed between 12 and 29 days post 

inoculation (dpi) in Fragaria × ananassa. The most represented categories from all three classes of GO 
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annotations (i.e., biological process, cellular component, molecular function) are represented as a 

percentage of genes per categories. 

4. Conclusions 

The analysis of the interaction of X. fragariae and F. × ananassa using RNA-seq technology 

enhances our understanding of the genetics underlying the interaction mechanisms in this 

pathosystem. This study gives a global view of the gene expression of both the pathogen and host of 

the bacterial disease development caused by X. fragariae on strawberries. Moreover, the present study 

could explore the gene expression of F. × ananassa with a more complete picture than a previous study 

on metabolomics of strawberry plants infected with X. fragariae that could only focus on 28 

compounds in strawberry leaves [31]. Although in this study, the used strawberry cultivar was not 

considered as highly susceptible to X. fragariae [21], we were able to show differences between the 

plant defense strategy and bacterial colonization at two selected time points. 

Supplementary Materials: The following are available online at www.mdpi.com/2076-2607/8/8/1253/s1, 

Supplemental File 1 containing: Figure S1: Symptomatic strawberry leaves; Table S1: RNA quantity and quality 
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