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The analysis of big data is changing industries, businesses and research as large amounts of data are available nowadays.
In the area of microstructures, acquisition of (3-D tomographic image) data is difficult and time-consuming. It is shown
that large amounts of data representing the geometry of virtual, but realistic 3-D microstructures can be generated using
stochastic microstructure modeling. Combining the model output with physical simulations and data mining techniques,
microstructure-property relationships can be quantitatively characterized. Exemplarily, we aim to predict effective conduc-
tivities given the microstructure characteristics volume fraction, mean geodesic tortuosity, and constrictivity. Therefore, we
analyze 8119 microstructures generated by two different stochastic 3-D microstructure models. This is—to the best of our
knowledge—by far the largest set of microstructures that has ever been analyzed. Fitting artificial neural networks, ran-
dom forests and classical equations, the prediction of effective conductivities based on geometric microstructure character-
istics is possible. VC 2017 American Institute of Chemical Engineers AIChE J, 00: 000–000, 2017
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Introduction

Data is the new oil. The analysis of big data is changing

industries, businesses, and research. Big data is also used to

advance materials research1 aiming an accelerated systematic

design of functional materials2 like (organic) solar cells, fuel

cells and batteries. This includes the identification of new

chemical compositions with desired properties as well as the

optimization of microstructures or nanostructures, that is, the

spatial arrangement of materials components, which have a

large influence on the functional properties of these materials.3

To optimize microstructures in functional materials, the rela-

tionship between microstructure characteristics and functional

properties has to be understood quantitatively, which is often

not the case or just for some special types of simple structures.3

Here, it is important to note that many functional properties

cannot be predicted only by the volume fraction of the micro-

structure.4,5 Thus, further microstructure characteristics have to

be considered for a better understanding of the relationship

between microstructure characteristics and functionality.
The progress of 3-D imaging during the last decades enables

the computation of well-defined microstructure characteristics

from real data, which can be compared to effective properties
that are either measured experimentally or simulated with
numerical models.6–9 Although this approach allows a direct
investigation of the relationship between microstructure and
effective properties, it is limited due to the high costs of 3-D
imaging.

Thus, virtual materials testing (VMT), that is, the combina-
tion of stochastic microstructure models (SMM) with numeri-
cal simulations of physical processes, was used to investigate
the quantitative relationship between microstructure character-
istics and effective conductivity in porous materials.10,11 The
use of SMM allows us to generate virtual microstructures in
short time, where certain microstructure characteristics can be
varied systematically. The virtual microstructures are used as
an input for finite element modeling (FEM) where the corre-
sponding effective conductivities are simulated. The genera-
tion of virtual microstructures leads to big data and thus, the
microstructure-property relationships can be considered as a
statistical learning problem.

It was shown that effective conductivity reff of porous
microstructures can be approximately predicted by three
microstructure characteristics,11 which are volume fraction e
of the solid phase, its mean geodesic tortuosity sgeod and a cer-
tain constriction factor b, using the equation

reff5r0

e1:15 b0:37

s4:39
geod

; (1)

where r0 denotes the intrinsic conductivity of the bulk
material without microstructure limitation. This empirical
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relationship has been established on the basis of 43 virtual
microstructures, where the corresponding effective conductivi-
ties have been computed with the software GeoDict.12 In this
article, we consider 8119 virtual microstructures and use neu-
ral networks and random forests to predict the effective con-
ductivity given the structural properties. Although, it is more
difficult to interpret these new prediction formulas in compari-
son with Eq. 1, they increase accuracy of the prediction. The
effective conductivity can now be predicted with a prediction
error of less than 9% instead of 13.6%, which is the prediction
error when applying Eq. 1 to the 8119 virtual microstructures.
This shows that combining stochastic microstructure model-
ing, physical computations and data mining is a powerful and
helpful approach to establish quantitative microstructure-
property relationships. This concept, outlined in Figure 1, is
not restricted to conductive transport processes, but can—in
principle—be applied to establish all kinds of microstructure-
property relationships.

The concept, however, has the disadvantage that the effec-

tive conductivities of the virtual microstructures cannot be

compared with experimental measurements. For a proper vali-

dation, one needs to prepare real samples, measure the effec-

tive conductivities experimentally, do 3-D imaging of the

samples and then compare experimentally measured with pre-

dicted conductivities. Such a comparison is expensive in costs

and time and can only be performed for a small number of

samples. This was done to validate the VMT approach,10

where a reasonably good agreement between predicted and

measured conductivities was found. Validation of simulating

effective conductivity by GeoDict can be found in the

literature.13

Moreover, it has to be emphasized that we do not want to

replace experimental 3-D imaging by the in-silico approach of

VMT. It can be understood as an additional tool which makes

3-D imaging more powerful in tailoring new microstructures

with specific properties. To create virtual, but realistic micro-

structures, a certain SMM is fitted to experimental microstruc-

tures such that the model creates statistically equivalent

microstructures. Then, model parameters of the SMM can be

correlated to production parameters of the microstructures, to

suggest production parameters that lead to a certain type of

microstructure.14 In many materials, for example, in fuel cells,

various different transport processes take place simultaneously

which makes microstructure optimization difficult: each type

of transport process may prefer a different microstructure.

Thus, for a successful microstructure optimization, quantita-

tive microstructure-property relationships must be established

not only for conductive transport but also for other kinds of

transport processes, for example, for effective permeability or

mechanical stress-strain curves.
This article is organized as follows. At first, we present the

SMM used for the generation of virtual microstructures, their

geometric characteristics (volume fraction, constrictivity,

mean geodesic tortuosity), the considered transport processes
as well as the predictive models from statistical learning. The
results are presented and discussed, where the proposed
microstructure-property relationships are validated by experi-
mental image data, too.

Data and Methods

Stochastic microstructure modeling

With increasing availability of highly resolved image data
stochastic microstructure modeling becomes a frequently used
tool in materials science.3 During the last years a number of
stochastic microstructure and nanostructure models has been
created for specific types of microstructures in organic solar
cells, Li-ion batteries, and fuel cells.15

In general, an SMM uses tools from stochastic geometry16

to generate virtual, random microstructures whose properties
can be adjusted by the model parameters. To develop an
SMM, a purposive combination of random variables is used
to model spatial data, like point configurations, spatial net-
works, or random sets. The generation of a virtual micro-
structure typically requires little computational effort and
therefore many different microstructures can be simulated in
short time.

A simple example for an SMM is the Boolean model with
spherical grains,17 where possibly overlapping spheres are dis-
tributed completely at random in space (2-D or 3-D) with a
predefined distribution of radii. The influence of model param-
eters on transport properties has been recently investigated for
Boolean models with more general grains.18

For our case study, we consider two SMM that generate dif-
ferent types of microstructures: the stochastic spatial graph
model10 (SSGM) and a simplified version of the multiscale
sphere model (MSM).14,19 By means of the SSGM microstruc-
tures within a wide range of different values for volume frac-
tion, mean geodesic tortuosity, and constrictivity can be
generated. We additionally incorporate the MSM into our
investigation as it was fitted to image data of real microstruc-
tures. Moreover, considering two models instead of one
reduces the errors introduced by the model type.

Stochastic spatial graph model

The stochastic spatial graph model (SSGM) is based on a
random spatial graph that is randomly dilated,10 see Figure 2.
The model has a large flexibility to generate microstructures
with different volume fractions, mean geodesic tortuosities,
and constrictivities. All microstructures realized by the SSGM
are completely connected by definition. Using the SSGM,
3900 microstructures with different structural characteristics
have been generated for this study.

Multiscale sphere model

The second SMM is the multiscale sphere model14,19

(MSM). It follows a completely different approach in

Figure 1. Combination of VMT with statistical learning to analyze relationships between microstructure character-
istics and functional properties using big data.
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comparison to the SSGM described in the previous section. It

is based on a random, anisotropic arrangement of spheres.

The midpoints of the spheres follow a Markov-chain of 2-D
point processes. The model has two components: a macro-

scale component and a microscale component that adds

structural complexity. In this article, we only use the macro-
scale component of the MSM. Examples of realizations are

displayed in Figure 3. In total, we consider 2131 microstruc-

tures where the sphere system is the transport phase and 2088
microstructures where transport takes place in the comple-

ment of the sphere system. As only the connected (noniso-

lated) part of the considered material phase contributes to
transport, a postprocessing is applied where all material is

removed that is not connected with both, inlet and outlet

plane.

Geometric characteristics

VMT has shown that three microstructure characteristics of

the conducting phase carry significant information with

respect to reff .
10,11 These microstructure characteristics are

volume fraction e, mean geodesic tortuosity sgeod and constric-

tivity b. A detailed discussion about the importance of these

three characteristics for conduction processes is given in a

previous publication,20 where, additionally, the concept of

constrictivity is transferred from simplified geometries21 to

complex microstructures.

Figure 2. Virtual microstructures generated by the SSGM.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 3. Virtual microstructures generated by a simplified version of the MSM.

Top row: microstructures generated by a sphere system. Bottom row: microstructures generated as complementary phase of a

sphere system. [Color figure can be viewed at wileyonlinelibrary.com]
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Note that the considered micostructure characteristics

e; sgeod, and b can be defined by means of expectations with

respect to the underlying stochastic model16 or they can be

estimated from a given microstructure. In this article, we use

the latter way, because given a certain microstructure we are

interested in the influence of e; sgeod, and b on reff .
The volume fraction e is estimated by the ratio of the vol-

ume of the transporting phase divided by the total volume of

the 3-D image. The influence of winded transport paths of the

conducting phase is described by the mean geodesic tortuosity

sgeod; which is defined as the ratio of the expected shortest

path lengths from inlet- to outlet-plane over the material thick-

ness. Thereby, the shortest path lengths (in terms of geodesic

distance)22 in transport direction from inlet- to outlet-planes

are computed within the voxel space that represents the trans-

porting phase (see the left-hand side of Figure 4). To deter-

mine sgeod, we consider an average of geodesic tortuosities

computed for all voxels of the transporting phase in the inlet-

plane. Obviously, it holds that sgeod � 1 and higher values of

sgeod indicate more winded pathways.
Besides the windedness of transport paths through the mate-

rial, narrow constrictions of the conducting phase, quantified

by the so-called constrictivity b, have a strong influence on

reff : Constrictivity is defined as

b5
rmin

rmax

� �2

; (2)

where, heuristically speaking, rmin indicates the radius of the

characteristic bottleneck and rmax indicates the radius of the

characteristic bulge, see the right-hand side of Figure 4. More

precisely, rmax is the 50% quantile of the continuous pore size

distribution (c-PSD) and rmin is the 50% quantile of the MIP

pore size distribution, which is based on a geometrical simula-

tion of mercury intrusion porosimetry23 (MIP). Constrictivity

takes values between 0 and 1, where values close to 0 indicate

strong bottleneck effects while values close to 1 indicate that

there are no bottlenecks at all.

For details regarding these structural characteristics and
their estimation from 3-D image data, the reader is referred to
previous work.11 The 8119 microstructures generated by the
aid of SSGM and MSM cover a wide range of values for the
characteristics e; sgeod, and b, see the Section ‘Characteristics
of simulated virtual 3D microstructures’.

Conductive transport

We consider conductive transport processes within compos-
ite materials, where only one phase is conducting.10,11 The
electric charge transport is described by Ohm’s law

J52r
dU

dx
(3)

and

dU

dt
5r

d2U

dx2
; (4)

where J is the current density, r is the conductivity, U is the
electric potential, and t is time. Assuming constant boundary
conditions, such systems converge to an equilibrium which is
described by the Laplace equation

d2U

dx2
1

d2U

dy2
1

d2U

dz2
50; (5)

where x, y, and z denote the coordinates in the 3-D Euclidean
space.

As transport only takes place in one phase, the geometry of
the microstructure reduces the intrinsic conductivity r0 of the
material to the effective conductivity reff , that is

reff5r0M (6)

for some 0 � M � 1: The influence of the microstructure on
the effective conductivity is described by the factor M. Our
goal is to validate the prediction of the M-factor based on the
geometric characteristics e; sgeod, and b, which has already
been derived.11 Moreover, we improve the prediction formula

Figure 4. Concept of geodesic tortuosity sgeod (left) and concept of constrictivity b5 rmin =rmaxð Þ2 (right) (Reprinted
from Figures 3 and 4 in Ref. 11 with permission from [Wiley]).

[Color figure can be viewed at wileyonlinelibrary.com]

4 DOI 10.1002/aic Published on behalf of the AIChE 2017 Vol. 00, No. 00 AIChE Journal

http://wileyonlinelibrary.com


using methods from statistical learning, that is, by neural net-

works and random forests. For each of the 8119 synthetic

microstructures, the effective conductivity and the associated

M-factor are determined by numerical simulation using the

software GeoDict.12

Statistical learning

Neural networks and random forests are two methods from

statistical learning that can be used for nonlinear regression.24

Both methods are used to predict the M-factor of virtual 3-D

microstructures by the corresponding values of e; sgeod, and b.

We give a short description of neural networks and random

forests. In both cases, an output variable Y 2 R is predicted by

an input vector X 2 Rp consisting of p features, where p 2 N.

In our case, we have X5ðe; sgeod;bÞ and Y5log 2ðMÞ. As the

computed M-factors vary over several orders of magnitude, a

better fit is obtained by putting the M-factors on a log2-scale.
Neural networks are two-stage regression models. Here, we

use a single hidden layer network. For prediction of Y, the vector

X is mapped to the hidden layer, which is a vector

Z 2 RL;L 2 N, where for each l 2 f1; . . . ;Lg we have Zl5r
a0;l1

Pp
i51 ai;lXi

� �
for a parameter matrix a5ðai;jÞ 2 Rðp11Þ3L

and some function r : R! R. Here, we choose r as the sig-

moid function, that is, rðtÞ5ð11e2tÞ21
for each t 2 R: The pre-

dictor Ŷ of Y is finally constructed by a linear combination of

the entries of Z, to be more precise Ŷ5min fmax fŶ�; 0g; 1g
with

Ŷ
�
5h01

XL

i51

hiZi (7)

for some parameter vector h 2 RL11: To fit the parameters a
and h, we minimize the mean squared error (MSE) between

Ŷ
�

and Y by the Matlab implementation25 of the Levenberg-

Marquardt backpropagation algorithm,26 where the initial val-

ues are determined by the Nguyen-Widrow algorithm.27 Dur-

ing the fitting procedure, data is divided completely at random

into training data (70%), validation data (15%), and test data

(15%). Training data is directly used to fit a and h, whereas

validation data is used to define a stopping criterium for the

Levenberg-Marquardt algorithm.24 The dimension L of the

hidden layer is chosen such that the mean absolute percentage

error (MAPE) of test data is minimized. For this purpose, we

average over 200 random subdivisions, where data is divided

into training data, validation data, and test data. Altogether,

the described division of data avoids overfitting by the neural

network.

Random forests28 are further regression models from statis-
tical learning, which are based on so-called regression trees.
The predictor Ŷ of Y obtained by a single regression tree is a
linear combination of indicators, that is

Ŷ5
XM

m51

cm --1x2Rm
(8)

for an appropriate partition R5fR1; . . . ;RMg of Rp, where

--1x2R51 if x 2 R and --1x2R50 otherwise for each R � Rp.
Beginning with R5fRpg the partition R is refined iteratively.
In each iteration, all regions are split into two half-spaces such
that by an optimal choice of coefficients cm the MSE can be
minimized. The refinement is stopped when each region con-
tains a predefined minimum number of observations of X. For
our purpose this minimum number is set to five as recom-
mended in the literature.24 In random forests averaging over
randomized regression trees improves the prediction. Ran-
domization takes place in two different ways. To fit the indi-
vidual regression trees, different random subsets of the input
vector are chosen. Moreover, k< p features of X, denoted by
i1; . . . ; ik, are chosen at random for each splitting of a region.
Then, splitting is only possible along one of the axes i1; . . . ; ik.
Usually k5

ffiffiffi
p
p

is used. This procedure allows a variance reduc-
tion of the predictor Ŷ , caused by averaging of single regression
trees as well as by the described randomization. For prediction
of the M-factor, we choose k 5 2. Similar to neural networks we
divide data into training data (70%) and test data (30%)
completely at random. The number of trees used for averaging is
chosen such that the MSE of test data does not decrease signifi-
cantly for a larger number of trees. As in the case of neural net-
works, we consider 200 random subdivisions to determine the
number of trees. In order to fit and simulate random forests, we

use the random Forest-package29 of the statistical software R.30

Results and Discussion

Simulations, which are based on the stochastic models pre-
sented in the Section ‘Stochastic microstructure modeling’
provide 8119 virtual 3-D microstructures. For each of these
virtual 3-D microstructures, we compute the geometric micro-
structure characteristics e; sgeod, and b as well as the corre-
sponding M-factor.

Characteristics of simulated virtual 3-D microstructures

Figure 5 shows that the generated virtual 3-D microstruc-
tures cover a wide range of constellations for e; sgeod, and b.
For small values of e, many microstructures are generated, the
transport paths of which are more than 1.5 longer than the

Figure 5. Characteristics of the 8119 virtual 3-D microstructures generated by the SSGM (blue), the MSM (red) and
the complement of the MSM (black).

The plots show mean geodesic tortuosity sgeod (left), constrictivity b (center) and M-factor versus volume fraction e. [Color figure

can be viewed at wileyonlinelibrary.com]
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materials thickness, that is sgeod � 1:5: The unflexibility of the

models regarding sgeod for large values of e is not surprising,

as—excluding pathological counterexamples—the mean

length of transport paths through the material decreases

strongly with increasing volume fractions.
Most values of b are in the interval ½0; 0:8� and for virtual

microstructures with e 2 ½0:4; 0:7� the corresponding constric-

tivities take nearly all values between 0.05 and 0.7. While

higher values of constrictivity are observed in virtual

microstructures generated by the MSM (blue and red dots in

Figure 5), the correlation between e and b is less strong in the

SSGM (black dots in Figure 5). The SSGM was especially

developed for varying the considered microstructure charac-

teristics as independently as possible.10

The right-hand side of Figure 5 shows that the simulated

M-factors of the virtual 3-D microstructures cover the whole

range between 0 and 1. All M-factors are below the upper

bound M � e1:15 (green dashed line) resulting from the empiri-

cally derived prediction formula, see Eq. 1. Note that a rigor-

ous upper bound for M is given3 by M � e.

Prediction of M-factor by geometric microstructure

characteristics

On the basis of the simulated microstructures we validate

the prediction formula given in Eq. 1. Furthermore, we present

the predictions obtained by neural networks and random for-

ests, which are fitted to simulated data as it is described in the

Section ‘Statistical learning’. Figure 6 shows scatter plots of

computed and predicted M-factors, while the MAPE as well as

the coefficient of determination R2 are listed in Table 1.
For the prediction formula given in Eq. 1, the MAPE corre-

sponding to the 8119 virtual microstructures is 13.6%, while

the MAPE was 19.6% for the virtual microstructures, which

have been used to derive Eq. 1. The reason for this smaller

value of MAPE is that the microstructures analyzed in this

article are less extreme, that is, they have a larger average M-

factor. Altogether, the formula given in Eq. 1 offers a good

prediction of the M-factor, see Figure 6 (left), which is also

indicated by a high coefficient of determination R2. However,

the formula seems to systematically underestimate the M-fac-

tor for values above 0.7, that is, for materials with a high-

volume fraction. Note that fitting the exponents in Eq. 1 to all

8119 cannot solve this underestimation. Just a slight improve-

ment leading to a MAPE of 12.7% can be obtained and the

formula would change to

reff5r0

e1:22 b0:31

s4:7
geod

: (9)

Due to this small change, which occurs, when using all 8119

microstructures for fitting the exponents, there is no need to

replace Eq. 1 by Eq. 9 from our point of view.
Using neural networks and random forests the prediction of

the M-factor can be improved. Fitting a single hidden layer

neural network leads to a hidden layer of size L 5 20. The

MAPE for the test data is 8.94%, while R250:997. For predic-

tion by a random forest we average over 500 trees and obtain a

MAPE of 8.47%, which is slightly better than prediction by

neural networks. Also R250:999 shows a better prediction by

random forests. Note that random forests, in contrast to neural

networks, have a much smaller MAPE for training data than

test data, see Table 1. Matlab- and R-code is provided to use

the trained neural network and the trained random forest for

prediction of the M-factor, see the Section ‘Supplementary

information’.
Random forests and neural networks offer a much lower

prediction error than the formula given by Eq. 1, see Table 1.

Thus, for prediction purposes, random forests, or neural net-

works should be used from our point of view. Both methods

are equivalent in terms of their prediction accuracy. However,

random forests and neural networks are extremely difficult if

not impossible to interpret. Thus, it is difficult to explain why

a microstructure has a certain M-factor. The big advantage of

the prediction formula from Eq. 1 is that it allows us to explain

how e; sgeod, and b influence the M-factor. In short, we propose

to use neural networks and random forests for prediction and

Eq. 1 for explanation.
Using neural networks or random forests, the MAPE of

test data is smaller than 9%. This means that the considered

volume-averaged characteristics e; sgeod, and b carry significant

information about effective conductivity, but certainly not all

information. One possibility to further improve the prediction

accuracy would be to consider the active volume fraction

instead of the connected volume fraction. Imagine a microstruc-

ture that is completely connected yet has many dead-ends which

are not used for transport. Then considering active volume

Figure 6. Scatter plots of computed and predicted M-factors using the prediction formula from Eq. 1 (left), neural
networks (center) and random forests (right), where the identity function is added in each plot (red lines).

[Color figure can be viewed at wileyonlinelibrary.com]

Table 1. MAPE and Coefficient of Determination R2
of the

Different Prediction Models

Model
MAPE

(Training Data)
MAPE

(Test Data) R2

Prediction formula – 13.6% 0.984
Neural network 8.20% 8.94% 0.997
Random forest 3.99% 8.47% 0.999

Note that the prediction formula from Eq. 1 was not fitted to the data simu-
lated in this study. Thus, the complete data can be considered as test data in
this case.
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(connected volume minus “dead-end”-volume) instead of con-

nected volume should further increase prediction accuracy. The

precise mathematical definition and computation of active vol-

ume, however, is challenging and subject of current research.

We are not aware of any definition for active volume in the litera-

ture, which is based on the geometry of the underlying

microstructure.
Considering Figure 6, it seems that all three prediction models

work well for all microstructures without any exceptions. However,

for all three methods, the prediction error increases for decreasing

M-factors and extreme errors occur for very small M-factors (below

1022), see Figure 7. Note that the errors are less extreme when ran-

dom forests are used for prediction of the M-factor.
Interestingly, all extreme errors overestimate the M-factor,

that is, the corresponding microstructures have a smaller

M-factor than predicted. These extreme deviations are caused

by microstructures, which are close to their percolation thresh-

old, that is, eroding the microstructure a little bit would elimi-

nate connectivity. The microstructures have a low connectivity

and much of the volume is not used for transport (“dead-end”

volume). Measuring active volume instead of connected volume

could lead to a better prediction of the M-factor.

Validation with experimental microstructures

To validate our method, we compare M-factors predicted by

the three different methods with computed M-factors (using

GeoDict) for different 3-D image data obtained by FIB-SEM

tomography. For this purpose, the same datasets are considered,

which have also been used for validation11 of Eq. 1. In total we

have 10 images, where six of them representing anodes in solid

oxide fuel cells (SOFC) consisting of pores, nickel (Ni) and

yttrium-stabilized zirconia (YSZ)31 and four of them represent

porous membranes used as liquid junctions in pH-Sensors.32 In

the SOFC anodes electric conduction takes place in the Ni phase

and ionic conduction in the YSZ phase, while liquid electrolyte

diffusion (classical Fickian diffusion) occurs in the pores of the

membranes of pH-Sensors. More information about the experi-

mental data can be found in a previous publication.11

As the classical Fickian diffusion converges also to an equi-

librium described by the Laplace equation, given in Eq. 5,

effective diffusivity is simulated in the same way as effective

conductivity. Thus, the definition of the M-factor for diffusion

processes is analogous to the M-factor for conduction pro-

cesses in this application. In Figure 8, the M-factors computed

by numerical simulation on the image datasets are compared

to the predictions by Eq. 1, neural networks and random for-

ests. In general, the prediction fits the simulated M-factors

nicely, where the results obtained from statistical learning are

slightly worse than those obtained by the prediction formula.

The MAPE is 28.0% for the prediction formula, 33.8% for the

neural network and 30.3% for the random forest. However,

note that only 16 values of the M-factors are considered. Thus,

there is no need to withdraw the conclusion from the Section

‘Prediction of M-factor by geometric microstructure character-

istics’ based on more than 8000 virtual microstructures, which

is that methods from statistical learning improve the prediction

of the M-factor by e, sgeod, and b.
Figure 8 shows two outliers which can be explained as fol-

lows: The two data points represent electric conductivity in the

Ni phase of SOFC anodes that were exposed to harsh conditions,

which led to strong microstructure alteration (i.e., Ni-agglomera-

tion). It was shown that due to the strong alteration, the represen-

tative volume is much larger than the observation window that

can be obtained by FIB-tomography.11,31 Therefore, the analyses

based on these two 3-D datasets suffer from a high uncertainty.

For all other data points the predictions are reasonably well.

From the validation with experimental microstructures, we can

conclude that the stochastic models are realistic enough to use

them to derive predictors for effective conductivity.

Conclusion

In this article, we investigate microstructure-property rela-

tionships for conductive transport processes using 8119 virtual

microstructures generated by SMM. Effective conductivity is

Figure 7. Computed M-factors on a log10-scale versus relative prediction errors. Predictions are obtained by the
prediction formula from Eq. 1 (left), neural networks (center) and random forests (right).

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 8. Computed M-factors and the corresponding
predictions M̂ for experimental image data.
Predictions have been performed by Eq. 1
(blue circles), by neural networks (green
crosses) and random forests (black plus
signs).

[Color figure can be viewed at wileyonlinelibrary.com]
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predicted by the three microstructure characteristics volume

fraction e, mean geodesic tortuosity sgeod and constrictivity b.

The interpretable prediction formula, given in Eq. 1, yields a

prediction error of 13.6%, which can be considered as a fur-

ther validation of this prediction formula since only 43 virtual

microstructures have been used to derive it. Random forests

and neural networks which are difficult to interpret yield

smaller prediction errors of less than 9%, where in all cases

the prediction becomes unstable for microstructures at their

percolation threshold.
Validation with experimental microstructures shows that

the generated virtual microstructures are sufficiently realistic

to derive prediction models for effective conductivity. Overall,

this article points out that the combination of stochastic micro-

structure modeling with physical computations and data min-

ing techniques is a powerful tool to establish quantitative

microstructure-property relationships. These relationships

enable the identification of improved microstructures with

respect to effective conductivity.
Due to physical arguments, this article is based on the

assumption that e; sgeod, and b are the most relevant transport

characteristics. This assumption can be tested using the large

dataset of 8119 virtual microstructures. Computing many

microstructure characteristics and ranking them according to

their impact on effective conductivity, as it was done in a recent

study on transport through complex networks,33 one can find

out if e; sgeod, and b are the most important microstructure char-

acteristics. Moreover, one can even think of extracting the most

important microstructure characteristics from 3-D image data

using statistical learning for feature selection.
The method of VMT itself is not restricted to conduction

processes and can also be used to investigate relationships

between microstructure characteristics and other functional

properties, for example, effective permeability or mechanical

stress-strain curves.

Supplementary material

For supplementary information, see http://onlinelibrary.

wiley.com/doi/10.1002/aic.15757/full. The fitted neural net-

work (aic15757-sup-0004-suppinfo4.mat) as well as the fitted

random forest (aic15757-sup-0002-suppinfo2.RData) are pro-

vided as supplementary material. Additional code is provided,

which can be used to predict the M-factor for given volume

fraction, mean geodesic tortuosity and constrictivity by the

neural network (aic15757-sup-0003-suppinfo3.m) and the ran-

dom forest (aic15757-sup-0001-suppinfo1.R).
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