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Abstract
Software maintenance and evolution involves critical activities for the success of software
projects. To support such activities and keep code up-to-date and error-free, software
communities make use of issue trackers, i.e., tools for signaling, handling, and addressing
the issues occurring in software systems. However, in popular projects, tens or hundreds of
issue reports are daily submitted. In this context, identifying the type of each submitted
report (e.g., bug report, feature request, etc.) would facilitate the management and the
prioritization of the issues to address. To support issue handling activities, in this paper, we
propose Ticket Tagger, a GitHub app analyzing the issue title and description through
machine learning techniques to automatically recognize the types of reports submitted on
GitHub and assign labels to each issue accordingly. We empirically evaluated the tool’s
prediction performance on about 30,000 GitHub issues. Our results show that the Ticket
Tagger can identify the correct labels to assign to GitHub issues with reasonably high
effectiveness. Considering these results and the fact that the tool is designed to be easily
integrated in the GitHub issue management process, Ticket Tagger consists in a useful
solution for developers.

Keywords: Software maintenance and evolution, Issue reports management, Labeling
Unstructured Data

1. Introduction

Software maintenance involves tasks for mitigating potential defects in the
code, as well as for evolving it according to the users’ emerging needs [1]. Thus,
it is crucial for the success of software projects. Issue tracking systems are
tools to support these tasks by providing facilities to efficiently signal, manage,
and address tickets or potential problems arising in software systems. In this
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context, software developers are required to timely react to issues reported in
issue trackers and solve such issues by investing the lowest possible effort, to
keep the costs related to software maintenance low [2]. However, especially
in popular projects, tens or hundreds of issues are reported daily. This
complicates the issues management activities, resulting in heavier workloads
for developers [3, 4].

In projects hosted on GitHub, issue submitters report new issues by
simply providing a title and an optional description of the issue. As issues
of different types (e.g., asking questions, proposing features, signaling bugs)
and quality could be submitted, GitHub also offers a customizable labeling
system that can be used by developers to tag issue reports (e.g., by specifying
the issue category or the related development tasks). Such labeling has
positive effects on issues processing [5], making it easier for their management
and prioritization [6]. More specifically, labels assigned to issues help to
classify and filter the reports, allowing more efficient issue handling processes.
However, the manual labeling of issues may be labor-intensive, error-prone
and time-consuming for project managers [7] and, for this reason, labels are
barely used on GitHub [8, 3].

To help maintainers dealing with issue processing, we developed Ticket
Tagger [9], a tool able to automatically label issue reports. Differently from
previous approaches aimed at automatically identifying issue types [10, 11],
since GitHub (according to its lightweight structure) does not provide any
structured information about such issues, our tool exclusively relies on the
textual features contained in the titles and descriptions of the reports to
enable the automated labeling of them, immediately after they are submitted.
This is beneficial for developers interested to handle new issues [6].

In this paper we briefly illustrate Ticket Tagger, a GitHub app that can
easily work on any software repository hosted on GitHub and automatically
marks new issues submitted to target repositories with a relevant label.
Besides, we assess the classification performance achieved by using different
machine learning strategies and investigate the extent to which confounding
factors of different types can degrade classification results.

Paper structure. The paper is organized as follows: Section 2 describes
Ticket Tagger’s approach and briefly presents the tool’s main features, while
in Section 3 we assess the tool’s classification performance. Section 4 discusses
the threats that could affect the validity of our work and, finally, Section 5
concludes the paper outlining future research directions.
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2. Approach and Tool’s Overview

To classify an issue report, Ticket Tagger processes the report’s title and
body to represent the textual information (extracted from the issue) in a
vectorial space. By inspecting the resulting components, the tool can assign
a relevant label to the mentioned report.

The Machine Learning Model. Different Machine Learning (ML)
algorithms can be adopted to efficiently classify textual information [12, 13, 14].
However, complex ML strategies may require a long time for training and
consume a lot of memory. Since we wanted to deploy the model on low-end
server hardware1, we opted for fastText, a tool using linear models with
a rank constraint and fast loss approximation, able to achieve comparable
classification results to several deep learning-based approaches [12].

Issue Reports pre-processing and Vectorial Representation. For
allowing the fastText linear classifier to make issue type predictions, the title
and body of the reports are concatenated into a single textual paragraph.
The resulting text is then tokenized and the tokenized text represents the
source for obtaining the bag of words representation of the issue. This bag
of words representation, in which each word is represented by a vector of
character n-grams, is the input of the fastText based classifier.

Issues Classification. The fastText model classifies issues by minimizing
the following objective function over N possible labels:

− 1

N

N∑
n=1

yn log(f(BAxn))

where xn is a bag of features, A represents the weight dictionary of
the average text embeddings, B is the weight dictionary that converts the
embedding to pre-softmax values for each class, and f is the hierarchical
softmax function used to minimize computational complexity [9].

We set fastText by using the default values for most of the parameters2

and applied the following customization:

• word n-gram features are not captured, i.e., wordNgrams parameter;
• we only consider words that occur at least 14 times in the dataset ,i.e.,
minCount parameter.

1AWS EC2 t2.nano (1 vCPU, 512 MB RAM, 20 GB SSD)
2For further details, see https://fasttext.cc/docs/en/options.html
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Figure 1: Ticket Tagger issue labeling process.

Both settings have been applied according to the disk constraints of our
server hardware. Indeed, these decisions allowed us to obtain a trained
model requiring less than 5 MB of disk space whilst only imposing a <10%
performance penalty.

Ticket Tagger is currently able to classify issues according to three cat-
egories reflecting the intent [13, 15] of the writer: bug report, enhancement,
and question. These labels are included by default in every GitHub repository
and they are the three labels most used on GitHub [8]. Obviously, our model
is designed to be easily re-trained to adapt Ticket Tagger to specific projects’
needs, enabling the prediction of additional issue types.

Tool’s Overview. When a new issue report is submitted to a GitHub
repository on which Ticket Tagger is installed, the tool automatically assigns
a relevant label to the new report. In particular, Ticket Tagger is a Node.js-
based GitHub app, that automatically (i) gathers issue reports information
from a GitHub repository, and (ii) labels the newly reported issues, by
leveraging the pre-trained fastText model previously discussed. The app
is freely accessible and can be easily installed onto any existing GitHub
repositories. By navigating to the Ticket Tagger app webpage3, to install
Ticket Tagger on a target repository, the repository administrator has to
click on the “Install” button, specify the repository, and that’s it. From
this moment on, as depicted in Figure 1, when a user opens a new issue
ticket on the repository, GitHub calls the hook endpoint exposed by Ticket
Tagger and references the information related to the newly created issue. Such
information is used by the app to classify the ticket. In order to automatically
label the issue report, GitHub provides a temporary access token to Ticket

3https://github.com/apps/ticket-tagger
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Tagger, which is consumed by assigning the predicted label to the issue. The
automated issue labeling performed by Ticket Tagger allows the developers
to (i) timely react to urgent issues, (ii) postpone less impelling tasks (such as
enhancement requests), or (iii) assign the questions to specific users.

3. Performance Evaluation
In this section, we describe the datasets and baseline approach used to

assess the classification performance of the fastText model integrated into
Ticket Tagger (described in Section 2).

Datasets Construction. For assessing Ticket Tagger’s effectiveness in
classifying GitHub issues we collected two datasets. The first dataset, Dbalanced,
contains 30,000 issues4. This dataset was obtained by first collecting issues
from 12,112 heterogeneous projects, this by querying the GitHub Archive5

using Google BigQuery6. After this initial step, we randomly sampled issues
from the set of all GitHub issues closed during February 2018, thus selected
all issues having label matching the following strings: bug, enhancement or
question. With this random selection process, we selected, on average, 2.48
issues for each project (median = 1 and standard deviation = 15.78). One
third of the 30,000 issues had the bug label assigned; one third issues had
the enhancement label7 assigned; while the remaining 10,000 issues had the
question label assigned. To construct the second dataset, Dunbalanced, we ran
a query8 over the GitHub Archive using Google BigQuery. We queried for
issues containing any of the three labels, i.e., bug, enhancement and question,
between the 1st and 9th of March 2018 in the GitHub Archive, obtaining
approximately 34,000 issues9. The resulting distribution of issue types in
Dunbalanced is as follows: 16,355 (48%) tickets labeled as bug, 14,228 (41.8%)
tickets marked as enhancement, and 3,458 (10.2%) question issues. While
the first dataset, Dbalanced, contains an identical number of tickets from each
category, the second one, Dunbalanced, presents an unbalanced distribution of
labels and is more representative of reality.

4https://tinyurl.com/y23kgdro
5https://gharchive.org
6https://cloud.google.com/bigquery
7This label refers to improvements and new features.
8https://tickettagger.blob.core.windows.net/scripts/github-labels-top3-34k.sql
9https://tickettagger.blob.core.windows.net/datasets/github-labels-top3-34k.csv
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Evaluation Methodology. The goal of our experiments is twofold. On
the one hand we compare Ticker Tagger against a baseline approach, to observe
whether more simple ML-based approaches are able to achieve comparable
or better results than Ticker Tagger. On the other hand, we evaluate the
extent to which Ticket Tagger is able to automatically identify the correct
labels to assign to issue reports in a realistic scenario. More specifically,
we compare Ticket Tagger with the J48 machine learning (ML) algorithm
that was successfully used in previous work concerning the assessment of
ML strategies for textual classification problems [14, 15]. To perform such
a comparison, a 10-fold cross validation strategy [16] on Dbalanced is used for
evaluating the classification performance achieved by both Ticket Tagger and
the baseline J48 ML algorithm.

For training the J48 model, we leverage all the terms contained in both
titles and descriptions of issues in our dataset to build a document-term
matrix M , where each row represents an issue of our dataset, and each column
represents a term. Every entryMij of the aforementioned matrix represents the
weight or importance of the j-th term in the i-th issue, computed according to
the tf-idf weighting scheme [17] that has been successfully used in recent work
concerning the classification of GitHub issues [7] and vulnerabilities [18]. It is
worth noticing that, for ensuring a fair comparison between the two models,
in applying J48, we do not perform any model tuning and pre-processing of
the data, since also fastText is used in the same way. In the future, we are
interested in investigating the pre-processing steps and parameters tuning
required to achieve better results. Furthermore, the evaluation is performed
without the custom settings used for reducing fastText’s disk space (described
in Section 2).

With the aim of assessing the Ticket Tagger’s capability of recognizing
issue types in a realistic setting, i.e., unbalanced distribution of issue types,
we carry out a further experiment in which Ticket Tagger is trained on the
whole balanced dataset, Dbalanced, and the unbalanced dataset, Dunbalanced, is
used for evaluating the classification performance. This particular setting ,
i.e., balanced training set and unbalanced test set, is motivated by the need
to avoid that the resulting model is biased towards the majority class(es).
Well-known information retrieval metrics, namely precision, recall, and F-
measure [17], are adopted to evaluate the classification performance in our
experiments.

Results. Table 1 reports the classification performance achieved by both
Ticket Tagger and the baseline approach (J48) using 10-fold cross validation
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Table 1: Precision, Recall and F-measure of bug, enhancement and question labels for
Ticker Tagger and the baseline J48 model, obtained using a 10-fold cross validation over
Dbalanced. Differences with the baseline approach are highlighted in bold.

Approach Metrics Bug Enhancement Question

Precision 0.82 (+0.24) 0.89 (+0.29) 0.78 (+0.13)
Ticker Tagger Recall 0.84 (+0.25) 0.76 (+0.13) 0.87 (+0.26)

F-measure 0.83 (+0.24) 0.82 (+0.20) 0.83 (+0.20)
Precision 0.58 0.60 0.65

J48 Recall 0.59 0.63 0.61
F-measure 0.59 0.62 0.63

on Dbalanced. In particular, Table 1 shows how Ticker Tagger obtained F-
measure values above 0.80 for each considered label, confirming the practical
usefulness of the proposed approach for improving the issue management
practices on GitHub. In addition, we can observe how for Dbalanced, Ticket
Tagger always outperforms the baseline approach (J48) for all labels and in
all precision, recall, and F-measure metrics.

Table 2 shows the performance of Ticket Tagger in identifying bug, en-
hancement and question issues, when trained on Dbalanced and tested on
Dunbalanced. The results of this second experiment highlight that our tool auto-
matically identifies issues of the bug and enhancement types with reasonably
high effectiveness, i.e., F-measure of about 0.75, while lower classification
performance is obtained for the question category. On the one hand, these
findings confirm the practical usefulness of our tool, as it achieves reason-
ably high performance in automatically recognizing issues reporting bugs or
requesting features. These are the most important feedback for developers
interested in performing software maintenance and evolution activities [15].
On the other hand, we believe that further efforts and tunings are required
to improve the tool’s capability of recognizing issues of the question type.

Table 2: Precision, Recall and F-measure of bug, enhancement and question labels, when
Ticker Tagger is trained on Dbalanced and tested on Dunbalanced. The proportion of tickets
are 48%, 41.8% and 10.2%, respectively.

Metrics Bug Enhancement Question

Precision 0.79 0.73 0.44
Recall 0.72 0.74 0.53
F-measure 0.75 0.74 0.48

In recent work, Herbold et al. [19] considered Ticker Tagger in a quan-
titative comparison, showing that fastText outperforms the competition
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concerning the issue labeling problem, this without particular tuning. Her-
bold et al.’s approach achieves slightly higher precision results than our model
because it leverages the auto-tuning feature, a feature that we did not use in
Ticket Tagger. Thus, such small improvements in prediction performance are
due to structural information about the issues used.

Discussion of confounding factors. There are several factors that can
potentially influence Ticker Tagger’s performance, as discussed below.
(i) Impact of function words : For issues belonging to the bug and enhance-

ment classes both precision and recall are above 0.70, while Ticket
Tagger produces higher numbers of false positives and false negatives
for the question category, i.e., a lower precision and a lower recall are
achieved for this class. We believe that the strong use of function
words, e.g., “how” or “what” that typically introduce questions, in the
issue title or description could lead the classifier to erroneously assign
the question label to issues that actually belong to different classes
and, consequently, this degrades the precision achieved for the question
category. In addition, the lower recall obtained for this class could be
connected with the fact that developers (and users) ask questions about
a wide range of topics [20], making it hard to learn all the patterns that
could lead to the assignment of this label.

(ii) Impact of Language Consistency in Issue Tickets : we observe whether
the ticket’s language affects the performance of our model. Thus, we
generated two datasets, one containing 24,600 English tickets and one
baseline dataset of 24,600 tickets with random tickets sampled using the
same strategy described in Section Dataset Construction. To generate
the dataset comprising 24,600 English tickets, we used a javascript port
of guess language10, a tool using heuristics based on character sets and
trigrams for automatically detecting the language of the text. Results in
Table 3 suggest that language consistency in issue tickets has a positive
effect on the classification performance.

(iii) Presence of Code Snippets in Issue Tickets : we observe whether the
presence of code snippets in tickets affects the performance of our
model. Thus, we generated two datasets, one characterized by 6,000
tickets containing code snippets and one baseline dataset of 6,000
tickets sampled at random using the previously mentioned method. In

10https://github.com/wooorm/franc
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Table 3: Precision, Recall and F-measure of bug, enhancement and question labels for
Ticker Tagger are computed using a 10-fold cross validation. Only differences among the
various treatments (CONSISTENT LANGUAGE and CODE SNIPPET PRESENCE) are
reported for the sake of brevity.

Approach Metrics Bug Enhancement Question

CONSISTENT
LANGUAGE

Precision −2.5% +6.3% +2.0%
Recall +9.4% −1.8% +1.7%

F-measure +4.0% +2.4% +1.9%

CODE SNIPPET
PRESENCE

Precision +0.6% −2.0% −0.4%
Recall −3.1% +2.5% +0.5%

F-measure −0.3% +0.1% +0.0%

particular, the presence of code snippets is recognized by detecting
pieces of text enclosed in triple backticks, which is the special syntax
recommended by the GitHub Flavored Markdown language11 to highlight
code snippets. Results in Table 3 show that the presence of snippets
does not significantly impact classification performance.

4. Threats to Validity

Threats to construct validity. We compared Ticket Tagger with a
baseline approach (J48) on a dataset comprising equal numbers of bugs,
enhancements and questions. This could represent a threat to construct
validity as in real scenarios the distributions of the different types of issues
may be unbalanced. To counteract this issue, we also assessed Ticket Tagger
on a second unbalanced dataset where the proportion between the different
classes is close to reality.

Threats to internal validity. Our results could be misleading if a
significant percentage of collected issues would be subject to re-labeling. To
mitigate this concern and reduce the likelihood of re-labeling for the considered
samples, we collected GitHub issues having the closed status assigned.

Threats to external validity. The main threat to external validity
is related to the potential specificity of our datasets. The collected issues
could not be adequately representative of all the issues present on GitHub.
However, to increase the heterogeneity of data, we selected issues from projects
(i) having different natures, (ii) implemented through different programming
languages, and (iii) developed by different developers’ communities. To further

11https://docs.github.com/en/github/writing-on-github/basic-writing-and-formatting-syntax
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confirm the low specificity of our datasets and the quality of our results, in
recent work Ticker Tagger was considered in a quantitative comparison [19],
which demonstrated that fastText outperforms state-of-the-art approaches
addressing the issue labeling problem.

5. Conclusion

In this work, we presented Ticket Tagger, an app that we released on
the GitHub marketplace, that automatically assigns suitable labels to issues
opened on GitHub projects. The core of Ticket Tagger is represented by a
machine learning model that analyzes the title and the textual description of
issues in order to determine whether such an issue can be labeled as a bug
report, a feature request or a question.

With the aim of assessing the classification performance achieved by our
tool, we conducted four main evaluation experiments. The results of such
evaluation showed that Ticket Tagger allows to automatically assign labels
with reasonably high levels of precision and recall, outperforming results of a
baseline approach. Our findings have also shown that the use of a consistent
language can improve Ticket Tagger classification performance, while the
presence of code snippets does not affect the results significantly.

Future work will be aimed (i) at comparing Ticket Tagger’s accuracy and
functionality with other existing solutions, as well as (ii) at investigating its
usefulness through the analysis of direct feedback from end-users.
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Appendix

Current executable software version

Nr. Software metadata description
S1 Current software version 2.1.4
S2 Permanent link to executables of this

version
https://github.com/
rafaelkallis/ticket-tagger/
releases/tag/v2.1.4

S3 Legal Software License GNU General Public License (GPL)
S4 Computing platform / Operating

System
macOS, Linux

S5 Installation requirements & depen-
dencies

nodejs 12

S6 If available Link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://github.com/rafaelkallis/ticket-
tagger/blob/master/README.md

S6 Support email for questions rk@rafaelkallis.com

Table 4: Software metadata

12

https://github.com/rafaelkallis/ticket-tagger/releases/tag/v2.1.4
https://github.com/rafaelkallis/ticket-tagger/releases/tag/v2.1.4
https://github.com/rafaelkallis/ticket-tagger/releases/tag/v2.1.4
rk@rafaelkallis.com


Current code version

Nr. Code metadata description
C1 Current code version 2.1.4
C2 Permanent link to code/repository

used of this code version
https://github.com/
rafaelkallis/ticket-tagger

C3 Legal Code License GNU General Public License (GPL)
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
javascript, nodejs, heroku, fasttext

C6 Compilation requirements, operating
environments & dependencies

nodejs 12

C7 If available Link to developer docu-
mentation/manual

https://github.com/
rafaelkallis/ticket-tagger

C8 Support email for questions rk@rafaelkallis.com

Table 5: Code metadata
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