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Abstract: In this paper, we present an aircraft localization solution developed in the context of the
Aircraft Localization Competition and applied to the OpenSky Network real-world ADS-B data.
The developed solution is based on a combination of machine learning and multilateration using
data provided by time synchronized ground receivers. A gradient boosting regression technique is
used to obtain an estimate of the geometric altitude of the aircraft, as well as a first guess of the 2D
aircraft position. Then, a triplet-wise and an all-in-view multilateration technique are implemented
to obtain an accurate estimate of the aircraft latitude and longitude. A sensitivity analysis of the
accuracy as a function of the number of receivers is conducted and used to optimize the proposed
solution. The obtained predictions have an accuracy below 25 m for the 2D root mean squared error
and below 35 m for the geometric altitude.
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1. Introduction

In order to maintain safe air traffic operation, Air Traffic Control (ATC) needs to know where
all aircraft are located at any point in time. While traditionally aircraft localization is provided
by primary and secondary radar systems, more recent localization technologies such as Automatic
Dependent Surveillance-Broadcast (ADS-B) or Automatic Dependent Surveillance-Contract (ADS-C)
provide precise aircraft position (and a large number of other) information. ADS-B combines Global
Navigation Satellite System (GNSS)-based positioning and conventional navigation technologies
(inertial navigation and ground-based navaids) to continuously broadcast the best estimate of the
aircraft’s position. Since ADS-B relies heavily on GNSS-based position solutions, it is, however,
sensitive to jamming (i.e., radio frequency interference to inhibit reception of the very weak GNSS
signals) [1] or spoofing (i.e., counterfeit signals to deliberately alter the position estimate) [2]. In order
to reliably receive ADS-B signals within the desired coverage area, typically a system of ground stations
(receivers or sensors) is necessary. Based on the information gathered in the network, other methods to
locate aircraft can be applied. The most prominent example is multilateration. In multilateration, the
distance of several known reference stations (e.g., the ADS-B receiver locations) to the transmitting
aircraft is determined. Based on these measurements, the location of the aircraft can be estimated,
as described in more detail later in this paper. In this context, the OpenSky Network (OSN), a non-profit
organization focusing on the collection, distribution, and provision of open-access ADS-B data [3],
in collaboration with the Swiss Cyber-Defence Campus (CYD), has organized an online “aircraft
localization challenge”. The objective of this challenge was to develop the best localization solution
based on real-world data obtained through the OSN network. In the literature, a number of solutions
are presented: Scaramuzza et al. [4], for example, presented a pure multilateration-based approach
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to the localization problem, while Strohmeier et al. [5] developed a grid-based localization approach
using the k-nearest neighbor machine learning algorithm. In this paper, we present a localization
solution that combines machine learning and multilateration-based techniques. With this solution, the
authors obtained second place in the first round of the aircraft localization challenge.

2. The Aircraft Localization Competition

2.1. Competition Goal

The aircraft localization competition was introduced by OSN and CYD on their web platform
Alcrowd [6]. The purpose of the competition is to develop localization solutions for aircraft using
ADS-B data. For some of the aircraft, the position in the ADS-B message was intentionally
removed. Competition participants were subsequently asked to reconstruct the missing position
data. The competition was divided into two rounds: the first round took place between June and
July and the second round between September and October. During the first round, participants
were provided with data of ADS-B receivers, the position of which was known. Furthermore, the
internal receiver clocks were synchronized within the network. For the second round, participants
could not assume known receiver positions and synchronized internal clocks any longer. This made
the problem significantly more challenging as precise time synchronization was necessary to obtain
meaningful time-difference of arrival measurements for multilateration. In this paper, the authors
present a solution that was developed for the first round of the competition, i.e., the simplified problem
with synchronized receivers in known locations.

2.2. Datasets

Multiple datasets were provided for this competition. The training/competition dataset consists
of several rows of ADS-B messages, where each row in the dataset represents the reception of one
aircraft position report and contains the following information [6,7]:

* A unique aircraft identifier

®  The Unix timestamp indicated when the message was received by the OSN server

¢ Unique identifiers of all sensors that received the message

*  Nanosecond timestamps at which each sensor received the message

®  Signal strength measurements from each of the sensors

e The position of the aircraft (latitude, longitude, height); latitude and longitude is empty for the
training rows

¢ The barometric altitude of the aircraft

The second dataset available concerns the sensors (also known as receivers). Each row corresponds
to one receiver and includes the following information:

* A unique sensor identifier
e The position of the sensor (latitude, longitude, height)
®  The type of hardware and software

For the remainder of this paper, the rows in the provided dataset where the position information
is available will be referred to as the “training dataset”, while the rows for which this information is
missing will be referred to as the “competition dataset”.

2.3. Time Difference of Arrival

The concept of Time Difference of Arrival (TDoA) is a key component in multilateration. As shown
in Figure 1, the time it takes for a signal to travel the distance from an aircraft to a ground station
depends on the distance between the two. When two ground stations are positioned at different
distances from the aircraft, the signal will arrive at the ground stations at slightly different times.
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In the first round of this competition, the ground stations have a synchronized time stamp. Given the
synchronization of time, it is possible to easily determine the TDoA of the signal transmitted by
the aircraft.
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Figure 1. Basic sensors/airplane architecture. OSN, OpenSky Network.

2.3.1. Pairwise TDoA

For each message being received by at least two different receivers, the dataset can be reshaped
into a pairwise structure. In this new form, each row consists of a pair of sensors (s, s1) and a message
ID. This means that each message ID received by m receivers is now represented by n = 2'(%2)1 rows.
The observed TDoA can therefore be extracted for all pairs of sensors by comparing when a message
was received by sg and s1.

The TDoA depends on the geometry of the transmitter and receivers. Knowing the sensors and
the aircraft position, a theoretical TDoA can be computed. For a pair of receivers (i,j) and an aircraft a,
the theoretical TDoA is defined as:

dgi

. dai — ]
theoretical_TDoA = — 1

where d;; and d,; refer to the Euclidean distance between aircraft and ADS-B receivers i and j,
respectively, and c is the speed of light.

2.3.2. Observation/Theoretical Comparison

The authors assume that the error in TDoA, delta_error, depends on the pair of receivers as shown
in Equation (2).
observed_TDoA = theoretical_TDoA + delta_error )

Table 1. Example of pairwise errors observations among 3 receivers.

Pairs (s414,5550)  (sa14,5663) (5550, S663)

103 —120,785 —120,888

—131 —120,509 —120,409

Observed errors (ns) _879 120613 120958
Pairwise Median (ns) 67 —120,508 —120,577

Pairwise Interdecile Range (ns) 444 419 840
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A statistical description of the pairwise errors (as shown in Table 1) was conducted. Consequently,
Figure 2 shows the distribution of the median pairwise errors, while Figure 3 shows the distribution
of the pairwise errors’ interdecile range. Interestingly enough and despite the fact that the receivers
are supposed to be synchronized, it can be seen in Figure 2 that some pairs of sensors have median
errors of around 120,000 ns despite a narrow pairwise error interdecile range distribution. A further
analysis of the pairs having an error offset of £120,000 ns demonstrated that this corresponds to the
pairs including a sensor of type GRX1090 and a sensor of type Radarscape. In effect, it turns out that
the different times at which sensors of type Radarcape are receiving messages systematically lag by
about 120,000 ns. In the context of the competition, the authors therefore corrected the observed_TDoA

by removing the TDoA corresponding offset for pairs including a sensor of type GRX1090 and one of
type Radarscape.
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Figure 2. Pairwise median error distribution in ns.
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Figure 3. Pairwise error interdecile range distribution in ns.
3. The Localization Solution

In this section, the different localization solutions that were developed for this competition
are discussed. First, a machine learning approach is presented. In the second part, a triplet-wise
multilateration approach, then an all-in-view multilateration, and finally, a combined multilateration
approach are presented.
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3.1. Machine Learning-Based Localization

The localization problem can be seen as a regression problem. In a first attempt, a machine
learning-based localization method was developed for this competition. This method consists of
training several machine learning models (one for each dimension) to solve a regression problem on
the latitude, longitude, and geometric altitude, as shown in Equation (3). Because each ADS-B message
is received by at least two receivers, the pairwise approach was used again.

latpred = flat (Si/ Sjs t, pi, Pj, Altpare, TDOAcorrected)
lonpred = flon(si/ Sjs t, pis Pj, Altbam/ TDOAcorrected) (3)
Alt—geopred = falt(si/ Sjs t, pis Pj, Altparo, TDOAcorrected)

with:
s;: The first receiver ID
sj: The second receiver ID
t: The time at which the server receives the message
pi: The signal strength of the signal received by the first receiver
p;: The signal strength of the signal received by the first receiver
Altyspo: The barometric altitude of the airplane
TDoA prrected: The corrected TDoA between the first and second receiver

The different functions of Equation (3) were obtained by training a Gradient Boosting regression
Model [8] using the LightGBM (LGBM) [9] implementation. LGBM produces a regression model in the
form of regression trees by combining boosting and gradient descent techniques. Given the pairwise
format used, multiple predictions are available when a message is received by more than two receivers.
Indeed, one prediction per pair of sensors becomes available. To assure robustness against outliers,
the median values of the predictions corresponding to the same message are used as the estimate.

Upon reviewing the results, it turns out that the Root Mean Squared Difference (RMSD) between
geometric altitude and barometric altitude is around 137 m. Therefore, the geometric altitude could
have been approximated by directly using the barometric altitude. Nevertheless, the LGBM geometric
altitude prediction perform much better with an RMSD below 34 m, as can be observed in Figures 4-6,
showing the LGBM prediction of the latitude and the longitude with respect to the truth. A general
trend is predicted correctly; the predictions, however, differ from the truth by up to about 1° in latitude
and up to 4° in longitude. The root mean squared 2D position error obtained with this model is slightly
below 40,000 m.

B barometric altitude
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Figure 4. Error distributions for barometric altitude and predictions with respect to geometric altitude.
LGBM, LightGBM.
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Figure 5. Example of LGBM latitude prediction for a trajectory.
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Figure 6. Example of LGBM longitude prediction for a trajectory.

While the model performs rather well for the geometric altitude, the models for latitude and
longitude are less promising. The authors did not try to improve these models, but instead used the
obtained results just as an initial position estimate that will be used for the multilateration techniques
presented below.

3.2. Multilateration-Based Localization

Multilateration is a method to estimate the location of an object, based on measurements from a
network of reference stations that receive the signal from the aircraft. In the context of this work, of
course, the objects to be located are flying aircraft.

The TDoA between two stations then defines a hyperbola of possible locations of the aircraft.
Repeating the same process with another pair of ground stations then defines a second hyperbola.
The intersection of the two hyperbolas is the location of the aircraft. Mathematically, the difference of
the geometrical distances between the aircraft and the i’th and j’th ground station can be described as:

51']' = Ati]' cC = daz' — da]' (4)

with:

dai = \/(xi - xa)z + (yz - ]/11)2 + (Zi - Za)z ®)
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and:

dj =/ (x) = Xa)2 + () — ya)2 + (2 — 2a)2 (6)

where:

(xi,vi,2;) = P;: known position of the it" ADS-B receiver

(Xa,Ya,za) = Ps: unknown position of the aircraft

d,;: Euclidean distance between the aircraft and the i ADS-B receiver

d;j: difference of the Euclidean distance between the aircraft to the it" receiver and the aircraft to
the j* receiver

At;;: TDoA between the i'" and j" receiver

c: speed of light

For a single observation of an aircraft by m receivers, the multilateration problem can be written
as a system of n non-linear equations:

dai — duj = dti]' * C
: @)

dap — dag = dtpg x C

with:
m!

" 2im —2)!

The solution of the MLATsystem of equations in Equation (7) can be found by using non-linear
solvers. Typically, least squares methods can be used to approximate the solutions of such a system of
equations. For this work, a solution to find the geometric altitude of the aircraft was already presented
in Section 3.1. Therefore, at least two observation (i.e.,three receiving sensors) are needed to find
the two-dimensional position of the aircraft. When more than two observations are available, three
different strategies are implemented: firstly, a triplet-wise approach, secondly, an all-in-view solution,
and finally, a combined strategy.

®)

3.2.1. Triplet-Wise Multilateration

When n > 2 (i.e.,, m > 3), the system of equations in Equation (7) is over-determined for the
two-dimensional aircraft position solution. The first proposed strategy is to independently solve all
the systems of two equations for all the combinations of two observations available, which leads to
ﬁlz)' solutions. In practice, TDoAs (At;) and sensor locations (P;) are not perfectly known, and each
solution is different. To account for possible outlying parameters, the authors propose to take the
median of all the solutions as the final estimate.

3.2.2. All-in-View Multilateration

Another approach to deal with the over-determined case is not to solve each triplet of
MLATequations independently, but to solve all of them at once. This concept is widely used in
GNSS applications. The over-determined system is used to improve the quality of the position
estimate in a least-squares sense. More satellites (in the GNSS case) or more ground stations (in the
MLAT case) typically lead to a better geometric diversity in the solution and therefore improve the
solution [10]. This all-in-view concept corresponds to solving a system of n > 2 nonlinear equations
with two unknowns. The Levenberg-Marquardt [11] algorithm implemented in scipy was used to
solve this optimization problems.
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3.2.3. Combined Multilateration

The “all-in-view” concept has the advantage of being more accurate, but it can struggle with
converging in the presence of outliers in the equations’ parameters, while the triplet-wise method has
the advantage of being less sensitive to outliers. Indeed, taking the median (as opposed to the mean)
in the last step in Algorithm 1 has a positive impact on decreasing the outliers” effect on the prediction.
To get the best of both the methods, the authors implemented the following strategy:

The triplet-wise multilateration is applied,

the modified z-score [12] is computed for each triplet solution

only the triplet of sensors with a z-score below 3.5 is labeled as “valid sensors”

the all-in-view multilateration is solved for all the sensors that are in the list of valid sensors as
defined in Step 3.

LY

Algorithm 1: Triplet-wise multilateration algorithm.

results <— new_array;

for each triplet of receivers {i,j,k} do

Xagger Yy < solve(MLAT(P;, P;, Py, Atyj, Atip));
results.append((xaijk, yai],k))] ;

Xagr Yag < solve(MLAT(P;, Py, Py, Atyj, Aty));
results.append((xa,.jk, yaijk))] ;

Xager Yayye < solve(MLAT(P;, Pj, Py, Atjx, At));
results.append((xal.jk, yui].k))] ;

end

return median(results)

4. Results

4.1. Triplet-Wise versus Combined Multilateration

To assess the accuracy of each method, a comparative analysis between the triplet-wise and
the combined multilateration was performed on the competition dataset. Table 2 summarizes the
results of this comparative analysis for different metrics. While the coverage is slightly lower for
the combined multilateration, the 2D position error is always smaller for each of the three quartiles.
In the OSN competition, the solutions were evaluated by the Root Mean Squared Error (RMSE), with
the worst (largest) 10% of the errors ignored. The RMSE is also significantly lower for the combined
multilateration with 95.56 m versus 155 m for the triplet-wise method.

Table 2. Result comparison between triplet-wise and combined multilateration.

Metric Triplet-Wise Combined Multilateration
Coverage 64.76% 64.47%
2D Error 1st quartile 22.32m 20.18 m
2D Error median 39.19m 34.02m
2D Error 3rd quartile 83.89 m 67.53 m
Competition evaluation criteria 155 m 95.56 m

4.2. Accuracy as a Function of the Number of Receivers

The relationship between accuracy and the number of receivers of an ADS-B message was
investigated. Figure 7 shows the 2D position estimation error distribution as a function of the number
of receivers. It can be seen that, unsurprisingly, the errors tend to be smaller when the number of
receivers increases.
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To optimize the localization solution in the context of the competition, the authors decided to
exclusively use multilateration results when more than five receivers were available. Figure 8 shows
how the proposed solution performs for an example trajectory. It can be seen that selecting only
estimates that have five or more receivers available reduces coverage (only 22% of the positions to
estimate have five or more available receivers), but greatly improves accuracy. In order to reach the
minimum coverage of 50% that was imposed in the competition, the missing values (when less than
five receivers were available) were estimated using a polynomial interpolation between measurements,
which were separated by less than 25s. The solution proposed in this paper achieved a 2D RMSE of
25 m for a coverage slightly above 50%.
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Figure 7. 2D errors box plots for different numbers of receivers.
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Figure 8. Localization solution for a trajectory sample.

4.3. Computational considerations

The time to compute the localization solution depends on the number of receivers available.
As shown in Table 3, the time is mainly driven by the triplet-wise multilateration. In effect, the number
of systems of two equations to solve is ﬁlz)” while for the all-in-view, there is only one system
of n equations. It is important to mention that the Levenberg—-Marquardt algorithm is an iterative
process, and we observed that the accuracy of the first guess had an impact on the convergence time.

In scenarios where the accuracy of the all-in-view multilateration was high, for example to verify
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suspicious (i.e., potentially erroneous) aircraft data, an average time below 0.2 s on an Intel(R) Xeon(R)
Platinum 8164 CPU@2.00 GHz was needed to compute the aircraft position.

Table 3. Computation time for different localization solutions with respect to the number of receivers.

Localization Solution m=3 m=4 m=5 m=6

Triplet-wise 015s 061s 153s 397s
All-in-view 0.12s 0.17s 0.23s 0.16 s
Combined 0.27 s 0.78 s 1.76 s 413s

5. Conclusions

Different localization methods that led to the combined multilateration solution that obtained
the second place at the Aircraft Localization Competition are presented in this paper. The proposed
method manages to reach about 25 m for the RSME on the 2D position with a coverage of 50% on
the competition dataset. The combined multilateration suffers from expensive computational times,
especially when the number of receivers is high. Further work could be done on the integration of
Signal Strength (SS) information, by selecting only the n receivers with the highest SS in order to
reduce the computation time. The chosen n would then depend on the available computation power
and desired accuracy. SS could also be used to weight equations in the all-in-view multilateration to
improve accuracy.
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