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a b s t r a c t

Financial markets across all asset classes are known to exhibit trends, which have been
exploited by traders for decades. However, a closer look at the data reveals that those
trends tend to revert when they become too strong. Here, we empirically measure the
interplay between trends and reversion in detail, based on 30 years of daily futures
prices for equity indices, interest rates, currencies and commodities.

We find that trends tend to revert before they become statistically significant. Our
key observation is that tomorrow’s expected return follows a cubic polynomial of
today’s trend strength. The positive linear term of this polynomial represents trend
persistence, while its negative cubic term represents trend reversal. Their precise
coefficients determine the critical trend strength, beyond which trends tend to revert.

These coefficients are small but statistically highly significant, if decades of data
for many different markets are combined. We confirm this by bootstrapping and out-
of-sample testing. Moreover, we find that these coefficients are universal across asset
classes and have a universal scaling behavior, as the trend’s time horizon runs from a
few days to several years. We also measure the rate, at which trends have become less
persistent, as markets have become more efficient over the decades.

Our empirical results point towards a potential deep analogy between financial mar-
kets and critical phenomena. In this analogy, the trend strength plays the role of an order
parameter, whose dynamics is described by a Langevin equation. The cubic polynomial
is the derivative of a quartic potential, which plays the role of the energy. This supports
the conjecture that financial markets can be modeled as statistical–mechanical systems
near criticality, whose microscopic constituents are Buy/Sell orders.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

It is well-known that financial markets across all asset classes exhibit trends. These trends have been exploited very
uccessfully by the tactical trading industry over the past decades, including the former ‘‘turtle traders’’ [1] and today’s
TA industry.
A close look at the available data reveals that those trends tend to revert as soon as they become too strong. In this

aper, we demonstrate this based on 30 years of daily futures returns for equity indices, interest rates, currencies and
ommodities. We analyze trends with 10 different time horizons, ranging from 2 days to 4 years, and empirically measure
he critical strength, beyond which trends tend to revert. Here, the ‘‘strength’’ of a trend is defined in terms of its statistical
ignificance, namely as the t-statistics of the trend.
In a first step, we measure the daily average return of a market as a function of the values of the 10 trend strengths on

the previous day. In order to increase the statistical significance of the results, we aggregate across different markets and
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ime scales. Our key observation is that tomorrow’s average return can be quite accurately modeled by a polynomial of
oday’s trend strength. It consists of a positive linear term that is responsible for the persistence of trends, and a negative
ubic term that is responsible for the reversion of trends. Trends tend to revert beyond a critical trend strength, where
he two terms balance each other. The corresponding regression coefficients are small, but statistically highly significant.

In a second step, we refine this quantitative analysis. Using multiple nonlinear regression, we empirically measure how
he observed cubic function varies

• with the time scale of the trends: we find that trends of medium strength persist at scales of several days to several
years, while reversion dominates at shorter or longer time scales. We model this scale-dependence by polynomial
regression as well.

• with the asset class: we find that the available data do not allow us to fit different model parameters to different
asset classes. Within the limits of statistical significance, the model parameters are thus universal, i.e., independent
of the asset.

• over time: we find that the patterns have gradually changed over the decades. In particular, trends have become
less persistent, and there is little evidence that classical trend-following can perform as well in the future as it did
in the past.

ince financial market returns are only in a rough approximation independent, normally distributed random variables, we
annot trust the standard significance analyses for regression results. Instead, we use bootstrapping and cross validation
o confirm that our results are statistically highly significant out-of-sample, and robust. Throughout this paper, we try
ard not to introduce a single parameter more than is absolutely necessary to capture the essence of the empirically
bserved patterns. We find that we may fit at most 6 parameters to our 30-year data set, and identify what we believe
re the 4–6 most relevant parameters.
While trends have been exploited by the systematic trading industry for decades, they arrived relatively late in

cademia. Early observations on market trends appear, e.g., in [2,3]. Early literature on the interplay of trends and
eversion has focused on their cross-sectional counterparts (momentum and value) for single stocks [4]. With the advent of
lternative beta strategies [5,6], trend-following has become an active academic research area [7–12]. By now, there is an
xtensive literature on trend-following, including backtests of its performance more than a century into the past [13,14],
nd efforts to optimize trend-following strategies by machine learning methods [15]. For a recent review of trend- and
eversion strategies, see [16] and references therein.

Much of the financial literature in this field tries to improve trading strategies, be it by new trend signals, by new
lgorithms for mapping signals to position sizes, by identifying market environments in which a given strategy works best
r worst, or by reducing trading costs or risks. However, while the results reported in our article also have implications for
nvestors (e.g., they signal when to exit trends), our key motivation for publishing them goes much further: as discussed
n Section 5, the cubic polynomial, the scaling relations, and the universality that we observe all point towards a potential
eep analogy between financial markets and statistical–mechanical systems near second-order phase transitions. This in
urn supports the idea that markets can be modeled in terms of ‘‘social networks’’ of traders. Our results lay the empirical
asis for systematically analyzing the nature of these networks.
As a corollary, our observations also support a modified version of the efficient market hypothesis: they suggest

hat market inefficiencies do exist, but disappear before they become strongly statistically significant. In addition, our
easurements quantify how markets have become more efficient with respect to trends over the decades.

. Data and definitions

.1. Data

Our analysis is based on historical daily log-returns for the set of 24 futures contracts shown in Table 1. This set
s diversified across four asset classes (equity indices, interest rates, currencies, commodities), three regions (Americas,
urope, Asia) and three commodity sectors (energy, metals, agriculture). We use futures returns, instead of the underlying
arket returns, because futures returns are guaranteed to be marked-to-market daily. Moreover, they are readily available

or all asset classes and net of the risk-free rate, which also makes returns in different currencies and interest rate regimes
omparable with each other.
For all contracts, we consider 30 years of daily price data, covering the period from Jan 1, 1990, to Dec 31, 2019. The

irst two years 1990 and 1991 are merely used to compute the trend strengths at the beginning of 1992 (see below), so
he actual regression analysis covers only 28 years. Daily prices Pi(t) were taken from Bloomberg, where i labels the asset
nd futures are rolled 5 days prior to first notice. We define normalized daily log-returns Ri(t):

Ri(t) =
ri(t)
σi

, ri(t) = ln
Pi(t)

Pi(t − 1)
, σ 2

i = var(ri) , µi = mean(ri) , (1)

where the long-term daily risk premium µi and the long-term daily standard deviation σi of a market i are measured over
the whole 30-year period. For some futures markets, the log-returns r (t) had to be backtracked or proxied as follows:
i

2
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Table 1
Markets considered in this article.

America Europe Asia
Equities S&P 500 DAX 30 Nikkei 225

TSE 60 FTSE 100 Hang Seng

Interest rates US 10-year Germany 10-year Japan 10-year
Canada 10-year UK 10-year Australia 3-year

Currencies CAD/USD EUR/USD JPY/USD
GBP/USD AUD/USD

NZD/USD

Commodities Crude oil Gold Soybeans
Natural gas Copper Live cattle

Com.-Sectors: Energy Metals Agriculture

1. TSE 60 futures: their history begins on Sep 9, 1999. Before, the TSE 60 futures returns are proxied by the S&P 500
futures returns, which, in our analysis, thus have double weight during that period.

2. Hang Seng index futures: their history begins on Apr 2, 1992. Before, their returns are proxied by Nikkei 225 futures
returns. As the regression analysis begins only on Jan 1, 1992, this is a minor data correction.

3. DAX futures: their history begins on Nov 26, 1990. Before, FTSE 100 futures returns are used as a proxy. This data
correction is also minor: it merely slightly affects the initial trend strengths at the beginning of 1992, when the
analysis begins.

4. EUR futures: their history begins on May 21, 1998. Before, the Deutsche Mark is used as a substitute for the Euro. We
have reconstructed Deutsche Mark futures returns from the spot exchange rate and German/U.S. Libor differentials.

5. NZD futures: their history begins on May 9, 1997. Before, we have reconstructed the futures returns from the spot
exchange rate and the NZD/USD Libor differentials.

6. German 10-year ‘‘Bund’’ futures: their history begins on Nov 27, 1990. Before, we have reconstructed futures returns
from daily German 10-year and short-term interest rates, assuming a duration of 8. This data correction is also
minor: it merely slightly affects the initial trend strengths at the beginning of 2002, when the analysis begins.

7. Natural gas futures: their history begins on Apr 5, 1990. Before, 1.5-fold levered crude oil futures returns are used
as proxies for the natural gas futures returns, using the U.S. Libor rate as the cost of leverage. The 1.5-fold leverage
reflects the higher volatility of natural gas compared with crude oil. Again, this data correction is minor, as it merely
affects the initial trend strengths at the beginning of 1992, when the analysis starts.

2.2. Time scales

We will examine the interplay between trends and reversion at 10 different time scales:

Tk = 2k business days with k ∈ {1, 2, 3, . . . , 10}

This represents periods of approximately 2 days, 4 days, 8 days, 3 weeks, 6 weeks, 3 months, 6 months, 1 year, 2 years, and
4 years. Thus, there are 10 different trend strengths at each point in time. A given asset may well be, e.g., in a long-term
up-trend at the 1-year time scale, and at the same time in a short-term down-trend at the 3-week time scale.

2.3. Trend strengths

As reviewed in [17,18], there are many different definitions of the strength of a trend, most of which are highly
correlated. For the purpose of this study, we need a definition that

• has only a single free parameter, the horizon T (to avoid overfitting historical data)
• can be computed recursively (which will later help to relate it to critical phenomena)

Let us develop the most convenient such definition step by step. For a given time horizon T , we define the trend
strength φi,T (t) of a market i at the end of day t ∈ Z as a weighted average of past daily returns of that market (i.e., on
or before day t) - more precisely, of the normalized past daily log-returns (1) in excess of the long-term risk premium:

φi,T (t) =

∞∑
n=0

wT (n) · R̂i(t − n) with R̂i(t − n) = Ri(t − n) −
µi

σi
, (2)

where wT (n) is a weight function for the time scale T . Removing the long-term risk premia µi in (2) is necessary to
ensure that the long-term expectation value of the trend strengths φi,T is zero. If we did not remove the risk premia, very
long-term trends in equity- and bond markets, where such risk premia are generally assumed, would almost always be
positive and never revert. This mix-up of trends with risk premia would distort our results, as discussed in Appendix A.2.
3
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Fig. 1. Our trend strength is defined as a weighted sum of past log-returns. The gray area shows the weight function used in this paper, compared
with three standard alternatives. All four weight functions shown here have the same average lookback period.

Note that the long-term risk premia are estimated over the whole time period in (2). However, in order to remove any
iases, in the out-of-sample cross-validation of Section 4, we will estimate the risk premia only from the training samples,
xcluding the validation samples.
We also normalize the weight function wT (n) such that the trend strength φi,T has standard deviation 1. Assuming that

arket returns on different days are independent from each other (which is true to high accuracy), this implies:
∞∑
n=0

w2
T (n) = 1. (3)

ith this normalization, φi,T can be regarded as the statistical significance of the trend. E.g., φi,T = 2 represents a highly
significant up-trend, while φi,T = −0.5 represents a weakly significant down-trend. This normalization makes all trend
strengths comparable with each other, and will thus allow us to aggregate across different markets and time scales below.

The simplest weight function is a step function (Fig. 1, dotted line). In this case, the trend strength φi,T is just
roportional to the average log-return over the past T days. Unfortunately, this weight function leads to artificial jumps
f the trend strength φi,T on days when nothing happens, except that an outlier return leaves the rolling time window.
This can be avoided by an exponentially decaying weight function w̃T (n) (fig.1, dashed line). Moreover, the correspond-

ng trend strength ψ can now be computed recursively:

w̃T (n) = MT e−2n/T with normalization factor MT =

√
1 − e−4/T , (4)

ψi,T (t) =

∞∑
n=0

w̃T (n) · R̂i(t − n) = e−2/Tψi,T (t − 1) + MT · R̂i(t). (5)

It can be verified that w̃T satisfies (3). However, ψ is quite volatile and jumps when an outlier return enters the rolling
ime window.

One way to solve this problem is to use the common definition of φi,T in terms of a moving average crossover: one
ubtracts the average log-price of asset i over a longer time period L from the average log price of the same asset over
shorter time period S. As pointed out in [17], this corresponds to a wedge-like weight function (Fig. 1, solid line). It
akes the trend strength less volatile, as outlier returns affect it only gradually over the time period S. It also filters out
hort-term trends on time scales smaller than S, which helps to separate trends at different time scales from each other.
Unfortunately, the moving price average has two parameters L, S (instead of just one parameter T ) that must be fitted

o the data in any analysis, which tends to reduce the statistical significance of the results. In this article, we will therefore
se another similar weight function that involves only the single parameter T (Fig. 1, gray area; for comparability with

the other weight functions, the figure shows wT/2 instead of wT ):

wT (n) = NT · (n + 1) · exp(−
2n
T

) with NT =
(1 − e−4/T )2
√
1 − e−8/T

. (6)

With this normalization factor NT , one can verify that (3) is indeed satisfied. Moreover, this definition, together with (5),
allows for a recursive combined computation of the two variants ψ, φ of the trend strength (which will be important in
Section 5):

φi,T (t) =

∞∑
wT (n) · R̂i(t − n) = e−2/Tφi,T (t − 1) +

NT

M
· ψi,T (t) (7)
n=0 T

4
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mall extract of our Database.
Day Market Ri(t) Trend strengths on previous day for 10 time scales

2d 4d 8d 3w 6w 3m 6m 1y 2y 4y

1 S&P 500 −0.2 0.3 0.7 1.0 0.6 0.2 0.3 0.6 0.6 1.0 1.6
1 EUR/$ −0.1 0.2 0.2 0.0 −0.4 −0.6 −0.6 −0.8 −0.9 −0.7 −0.8
1 Gold −0.5 −0.3 −0.7 −0.7 0.1 1.1 1.5 1.1 0.4 0.1 −0.4

2 S&P 500 −0.3 −0.1 0.4 0.9 0.7 0.2 0.3 0.6 0.6 1.0 1.6
2 EUR/$ −1.0 −0.7 −0.2 −0.2 −0.4 −0.6 −0.6 −0.8 −0.9 −0.7 −0.8
2 Gold 0.8 0.3 −0.2 −0.6 0.1 1.1 1.5 1.1 0.4 0.1 −0.4

The ‘‘average lookback period’’ of this trend strength, i.e., the expectation value E[n + 1] of the number of days we look
ack (where ‘‘today’’, i.e. n = 0, counts as a 1-day lookback), is

E[n + 1] =

∞∑
n=0

(n + 1) · wT (n) ·
[ ∞∑
n=0

wT (n)
]−1

= T . (8)

We have verified that, for a given horizon T , all definitions of the trend strength in fact yield quite similar results in our
egression analysis of Section 4, as long as the weight function rises gradually, decays gradually, and the average lookback
eriod is the same. However, we use (6), (7) here, as it is the simplest mathematical function that satisfies these criteria,
nd has only the single free parameter T , and can be computed recursively. (6) was originally introduced by the author
n 2008 at Syndex Capital Management, and has been used to replicate Managed Futures indices as part of a UCITS fund
rom 2010–2014.

To limit the impact of outlier values of φi,T on our results, we will cut it off at ±2.5 in the actual regression analysis
f Section 4, i.e., we will use the capped and floored version

φ
cap
i,T = min (2.5,max (−2.5, φi,T )).

ccording to [11], the standard practice of the managed futures industry (which focuses on trends, and not reversion)
or this threshold is 2.0. We use the slightly higher value of 2.5, because this will allow us to study more precisely the
egime where trends revert, yet it will not give excessive weights to outliers. This is supported by Appendix A.1, which
ompares the results of our regression analysis of Section 4 for thresholds from 2.0 to 3.0. For thresholds > 2.5, we get
higher adjusted R-squared. However, the results are less robust, and the statistical significance of the regression betas
ecreases. For thresholds < 2.5, the reversion regime would be largely removed from the analysis, leading to a lower
djusted R-squared without improving the overall statistical significance of the results.

.4. Database

Table 2 displays a small extract of the resulting database for our analysis. Only two of the 7305 business days and
nly three of the 24 markets are shown. The third column shows the normalized daily log-returns (1), which have
tandard deviation 1. The 7305 business days cover only the 28-year period from Jan 1992–Dec 2019, because the first
wo years 1990–1992 were only used to compute the initial trend strengths at the beginning of 1992. The full table with
305 × 24 = 175′320 lines is published along with this paper.

. Qualitative observations

This section begins with an exploratory analysis of our data. The analysis in this section is only qualitative, but it
erves to motivate the specific quantitative, statistically rigorous regression analysis of the following section. We stress
gain that our aim is not to improve futures trading strategies, which would have to include risk limits, trading cost
inimization, and other features. Rather, we simply want to empirically measure and model the small autocorrelations
f market returns as accurately as possible as a basis for future work.

.1. Next-day return vs. trend strength

We use the data of Table 2 to measure the expected daily return of a futures market as a function of the trend strengths
n that market on the previous day. To this end, we first construct 7305 · 24 · 10 = 1′753′200 pairs of data. Each pair
consists of the normalized log-return Ri(t) in that market on day t , and one of the 10 trend strengths φi,T (t − 1) on the
previous day. So each return appears in 10 data pairs, each time paired with a different trend strength.

We then group those pairs into 15 bins of increasing trend strength from −∞ to −13/6, −13/6 to −11/6, . . . , −1/6 to
1/6, . . . , 11/6 to 13/6, 13/6 to ∞. The mean trend strength within each bin is shown on the x-axis of Fig. 2 (left). Within
ach bin, we average over the normalized return on the day after the trend has been measured. To obtain statistically
5
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Fig. 2. Left: The expectation value E(r) of the next day’s return of a futures market is a nonlinear function of the current trend strength φ. As
erified by the extensive statistical analysis of Section 4, it can be modeled by a cubic polynomial of φ, whose linear term bφ (with b > 0)
epresents trend-persistence, and whose cubic term cφ3 (with c < 0) represents trend-reversion. Right: As confirmed by bootstrapping in Section 4,
the regression coefficients b and c corresponding to the linear and cubic terms are statistically highly significant.

significant results, we aggregate over the 28 years of daily returns for each market, across all 24 markets, and across
different time scales. Fig. 2 (left) shows the results for the 4 monthly trend strengths (i.e., aggregated over T = 6 weeks,
3 months, 6 months, and 1 year).

We observe that the average next-day return is close to zero at zero trend strength, and grows linearly with the trend
strength for small strengths. As the trend strength increases further, the average next-day return peaks, then decreases
again until it becomes zero somewhere below trend strength 2. For even stronger trends, the average return decreases
dramatically. This behavior is mirrored on the left-hand side of the graph for down-trends. We have verified that this
pattern remains almost the same if another day of delay is added, i.e., if the next-day return in our data pairs is replaced
by the return 2 days later.

Thus, trends tend to revert when they become too strong. This makes sense intuitively: after strong trends, markets
tend to be overbought or oversold, so one expects a reversion to ‘‘value’’. Our analysis quantifies where exactly this
happens: below a critical trend strength of 2, before trends become strongly statistically significant. Note that this is not
in line with classical trend-following, which would follow the trend no matter how strong it becomes. The dashed line in
Fig. 2 (left) indicates the trading position that a classical trend-follower would take as a function of the trend strength.

3.2. Dependence on the time scale

In a next step, we analyze how the pattern observed in the previous sub-section depends on the time scale. To this
end, we refine the bins used above: we split each bin into 10 smaller bins, one for each of the 10 time scales. The resulting
15 × 10 refined bins are now too small and the results too noisy. To reduce the noise, we average the next-day returns
over blocks of 3 × 3 neighboring bins (resp. 3 × 2 or 2 × 3 bins at the borders, 2 × 2 bins at the corners of the matrix
of 15 × 10 bins), weighted by the number of returns in each bin. This yields the heat map of Fig. 3 (left). Fig. 2 (left) can
be thought of as a horizontal cross-section through this heat map along the dashed line.

We observe that the trend- and reversion pattern of Fig. 2 (left) is strongest on time scales from 1 month to 1 year. This
is in line with the fact that typical trend-followers operate on those time scales. As the time scale increases or decreases,
the pattern becomes weaker. The region in which markets tend to trend seems to disappear both for time scales of the
order of economic cycles (several years) and for intra-week time scales. The phenomenon of reversion, on the other hand,
appears to remain strong at all time scales.

3.3. Counting degrees of freedom

As emphasized in [19], one must be very conservative in introducing new factors and parameters in financial market
models. Before modeling the observed patterns in detail, let us therefore do a back-of-the-envelope calculation of how
many parameters we can hope to fit in our model without over-fitting our daily return data, and what fraction of the
variance of these returns we can hope to explain by trend factors.

Our 7305 · 24 = 175′320 daily log-returns are not independent, because the 24 markets are correlated with each
other. How many independent markets are there? The daily returns are normalized to have variance 1. For a portfolio
that invests 1/24 in each market, we find a variance of σ 2

∼ 1/8, just as if it contained nm = 8 independent assets.
A principal component analysis confirms that the first 8 (resp. 12) principal components explain 65% (resp. 80%) of the
6
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Fig. 3. Left: A heat map shows how the expectation value of tomorrow’s return depends both on today’s trend strength φ and its time horizon.
ig. 2 (left) can be thought of as a cross-section of Fig. 3 (left) along the dashed line. Right: The polynomial regression analysis of Section 4 models
he pattern of Fig. 3 (left) by an elliptic regime within which trends are persistent, and outside of which they revert. The values of the center and
f the semi-axes of the ellipse are statistically highly significant, as confirmed by bootstrapping.

ariance of the returns of our 24 markets. In this sense, these returns effectively live in a space of dimension nm ∼ 8.
dding more markets to our 24 time series does not significantly increase nm.
What is the highest annualized Sharpe ratio S that one can hope to achieve by systematically trading a broadly

iversified set of highly liquid futures markets based on trends and reversion? Experience with the Managed Futures
‘‘CTA’’) industry suggests that S can be at best 1. The small number of CTA’s that have achieved a higher Sharpe ratio
or several years in a row presumably also pursue other strategies that are not purely based on trends, or they are not
arket-neutral (in the sense of zero net exposure to each market over time).
An annualized Sharpe ratio of S = 1 implies a daily Sharpe ratio ρ for each market of

ρ =
S

√
260 · nm

∼ 0.02.

o the predicted next-day return of a market has a correlation of ρ = 0.02 with the actual next-day return. E.g., if we
nly try to predict the sign of the next return, we can at best hope to be right on 51 and wrong on 49 out of 100 days.
he adjusted R-squared (achieved out-of-sample in real trading) is then R2

adj ∼ ρ2
= 4 basis points (1 bp = 4 · 10−4).

learly, the variance of financial market returns is overwhelmingly due to random noise.
If we fit k parameters to our data, and if our returns were independent and identically distributed (‘‘i.i.d.’’), then, for

mall R2, the adjusted R-squared would be approximately

R2
adj ∼ R2

−
k
N

∼ 4 bp with N = 260 · nm · Y data points (9)

for Y years of daily data. If we require that the correction for the in-sample bias does not erode more than 20% of our
R2, then we conclude that we cannot fit more than k ∼ N · 1 bp ∼ 6 parameters to our 28 years of data. This 20%-
requirement is not too conservative, as our returns are only approximately ‘‘i.i.d.’’, and therefore the actual correction per
fitted parameter will be higher than 20% (below, cross-validation will show that it is indeed more than twice as big). We
conclude that we must use parameters wisely, and not ‘‘waste’’ them on features that may be artifacts of our limited data
set.

4. Regression analysis

In this section, we confirm and quantify the observations of the previous section by nonlinear regression based on
ordinary least squares. To this end, we model the next-day return of a market as a polynomial function of both the current
trend strength in that market and its time scale. This regression is performed directly on the underlying 1′753′200 pairs
of data, not on the bins we have defined in the previous section. Thus, our results are independent of any choice of how
to split the data into bins.

4.1. Dependence on the trend strength

The graph in Fig. 2 (left) suggests to model the next-day normalized log-return R(t + 1) (1) as a polynomial of the
urrent trend strength φ(t) (2) across all markets and time scales:

R(t + 1) = a + b · φ(t) + d · φ2(t) + c · φ3(t) + · · · + ϵ(t + 1), (10)
7
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Table 3
Regression with linear and cubic terms.
Coefficient Value Error t-statistics

a 1.33% ±0.41% 3.3
b 1.29% ±0.43% 3.0
c −0.62 % ±0.23% 2.7

R-squared Single time scales Aggregated across time scales

R2 1.31 bp 4.91 bp
R2
adj 1.03 bp 3.98 bp

where ϵ represents random noise, and a measures the average risk premium µi/σi across all assets. Similar models with
polynomial random force have been postulated previously, notably by econophysicists with a background in critical
henomena [20–23]. Our observations of the previous section give clear empirical support for a polynomial ansatz. We
ill discuss the relationship with critical phenomena in more detail in Section 5.
We have performed a corresponding regression analysis on the 1′753′200 data pairs {rt+1, φt}. Using only the linear

and cubic terms of (10) yields the results of Table 3.
Since market returns cannot be assumed to be independent, identically distributed normal variables, we cannot trust

the usual estimates of the t-statistics, adjusted R-squared, and F-statistic. Instead, the test statistics shown in Table 3 are
measured empirically as follows:

• The standard errors of the coefficients and their t-statistics are computed by bootstrapping: from the 7305 days, we
randomly create 5000 new samples of 7305 days each, with replacement. I.e., some days occur several times in a
new sample, while other days do not occur at all. Regression on each new sample of days yields the distribution of
5000 regression coefficients b and c shown in Fig. 2 (right). The errors of the coefficients in Table 3 represent half
the difference between the 84th and 16th percentile, which equals the standard deviation in the case of a normal
distribution.

• The adjusted R-squared is computed by 15-fold cross validation: we split our 7305-day time window into 15 sub-
windows of 487 consecutive days each. For each sub-window, we predict the next-day returns based on the betas
obtained by regression on the other 14 sub-windows. The square of the correlation between the predicted and the
actual returns is the out-of-sample R-squared R2

adj reported in Table 3.
• Table 3 also reports R2 and R2

adj ‘‘aggregated across time scales’’. Those are based on using the equally-weighted
mean of the 10 trend strengths on each day to predict the next-day return for each market. I.e., we combine the 10
different trend factors into a single one, which naturally has a higher predictive power than each single factor by
itself. This regression is thus performed on only 7305 · 24 = 175′320 pairs of data.

• The F-statistics can be computed numerically to be F = 4.6 with a p-Value of 0.7% by modeling the distribution of
regression coefficients in Fig. 2 (right) by an elliptical distribution. However, the distributions in subsequent sections
are not even approximately elliptical. We will therefore use R2

adj and not F to compare the out-of-sample explanatory
power of our models with each other.

The regression results of Table 3 confirm and quantify our conclusions from the previous section. We see that the
values of b and c – although very small – are statistically highly significant, despite the fact that market returns are
neither normally distributed, nor independent, nor identically distributed. So is the average long-term risk premium
a. The overall result is significant at the 99% level. The aggregated out-of-sample R2

adj that combines the predictions
from all 10 time scales matches our initial expectation of 4 bp (9). Note that the correction for the aggregated in-
sample bias, R2

− R2
adj = 0.93 bp, is much bigger than what would have been expected if returns were ‘‘i.i.d.’’, namely

2/(260 · 8 · 28) = 0.34 bp.
We have also tested the quadratic, quartic and quintic terms in φT in (10). None of them turned out to be statistically

significant at the 95% level. We therefore drop them from our analysis to avoid over-fitting the historical data (i.p., the
t-statistics for d is below 1).

4.2. Dependence on the time scale

Next, we try to refine our model by measuring the dependence of the coefficients b and c on the time scale, the asset
class, and the time period. We begin with the time scale T : we model the expected return as a function of both the
trend strength and T , trying to replicate Fig. 3 (left). We first repeat the linear and cubic regression (10) of the previous
ub-section for each of the 10 time scales separately. The resulting coefficients b(T ) and c(T ) are plotted in Fig. 4 (we
neglect the overall risk premium a, which is not the focus of this paper).

From the coefficient b of the linear term, which models trends, we observe that trend-following works best at time
scales from 3 months to 1 year, where b peaks. This appears to be in line with the time scales on which typical CTAs
follow trends. Even at those scales, the critical trend strength

φ =

√
−b/c ≤ 1.91 ,
c

8
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Fig. 4. Left: The coefficient b(T ) of the linear term (corresponding to the trending of markets) peaks at time scales T of 3 months to 1 year. Its scale
dependence is modeled by a parabola. Right: The coefficient c of the cubic term (corresponding to the reversion of markets) does not show a clear
dependence on the time scale.

Table 4
Refined regression with 4 parameters.
Coefficient Value Error t-Stat.

b 2.00% ±0.48% 4.2
c −0.63 % ±0.24% 2.6
k0 5.78 ±0.67 8.6
∆k 4.87 ±1.09 4.5

R-squared Single time scales Aggregated across time scales

R2 1.64 bp 7.51 bp
R2
adj 1.22 bp 6.04 bp

beyond which trends tend to revert, is below 2. So trends never become strongly significant. For scales below a few days
and above several years, b seems to go to zero, which means that trends are not persistent there. This is consistent with
the heat map in Fig. 2 (right).

On the other hand, the coefficient c of the cubic term, which ensures that trends revert, is quite stable, except that
its magnitude appears to be somewhat lower for the 2- and 4-year scales. The 2- and 4-year results must be taken with
a grain of salt, though, as there are only 14 independent 2-year trends and 7 independent 4-year trends in our 28-year
time window. Indeed, a preliminary check based on 60 years of monthly returns resulted in c ∼ −0.6% at the 8-year
scale. The available data thus indicate that, unlike trend-following, mean reversion works at all time scales. This is also
consistent with our earlier observation from the heat map in Fig. 3 (left).

To quantify these observations, we refine our regression ansatz (10). We continue to model the cubic coefficient c by
constant, but we model the dependence of the linear coefficient b(k) on the logarithm k of the time scale T = 2k by a
arabola:

b(k) = b − e · (k − k0)2

⇒ R(t + 1) = b ·

{
1 −

(k − k0)2

(∆k)2

}
· φ(t) + c · φ3(t) + ϵ(t + 1) (11)

with (∆k)2 = b/e. The critical trend strength φc(k) = (−b(k)/c)1/2, at which the expected return E(Rt+1) is zero (without
the noise ϵ), and beyond which trends revert, is then an ellipse with semi-axes ∆k and φc(k0). Altogether, we now fit 4
parameters to our data:

• The ‘‘persistence of trends’’ b, i.e. the value of b(k) at its peak
• The ‘‘strength of reversion’’ c
• The range k0 ±∆k of the log of the time scales T = 2k at which markets may trend.

A nonlinear regression on the full underlying data set yields the results of Table 4. Fig. 3 (right) plots the elliptic
region, which separates the ‘‘trend regime’’ (inside) from the ‘‘reversion regime’’ (outside). For its second semi-axis, we
find φc(k0) = 1.78±0.32. This quantifies the empirical heat map in Fig. 3 (left) and confirms that highly significant trends
of strength (i.e., t-statistics) φc ≥ 2 always tend to revert.

The errors of the regression parameters in Table 4 are again computed by bootstrapping. The distribution of b and c
looks the same as in the univariate case (Fig. 2, right). Fig. 5 (left) plots the distribution of the values of the center k
0

9
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Fig. 5. Left: Distribution of the regression coefficients for the center k0 and width ∆k of the elliptic region within which trends are persistent, as
obtained by bootstrapping. Right: Distribution of the linear and cubic regression coefficients b, c for a rejected alternative model.

and the semi-axis ∆k of the ellipse that separates the trending regime from the reversion regime. The ‘‘aggregate’’ R2 and
R2
adj in Table 4 now refer to a single factor that is a linear combination of the 10 trend strengths for the 10 time scales,

weighted by a parabolic weight function proportional to b(k). Note that the aggregated adjusted R-squared now exceeds
our original expectation (9) of 4 bp.

We have tried to further refine ansatz (11). First, b(k) in Fig. 4 (left) seems to be tilted to the right, which could be
accounted for by models such as b(k) ∼ b − e · (k − k0)2 + f · (k − k0)3, or b(k) ∼ exp(f · k) cos((k − k0)/∆k). We find that
such models increase the adjusted R-squared at best marginally. Therefore, we use the simplest model (11) in this paper,
to avoid over-fitting the historical data.

Second, we also tested for a polynomial dependence of c on k. The most significant ansatz was that c(k) is also a
parabola proportional to −b(k). In this case, the critical trend strength is constant across all time scales, and the region
within which markets trend is rectangular instead of elliptic. The distribution of the parameters b(k0), c(k0) then turns
out to have the shape of the stretched annulus shown in Fig. 5 (right). However, this scenario seems less likely, as it yields
a much lower adjusted R-squared (0.77 bp).

4.3. Dependence on the asset class

Can we refine our 4-parameter-model further by distinguishing between asset classes, i.e., by fitting separate regression
parameters for equities, bonds, currencies and commodities?

To test this, we have repeated the regression analysis of the previous section for these 4 sub-sets of our data. Fig. 6 (left)
shows the 16th, 50th and 84th percentile of the values of the 4 regression parameters for each asset class, divided by the
values of the regression parameters for the overall sample. E.g., for equities, the quantiles for b are (1.80%, 2.82%, 4.01%),
which are multiples of (0.90, 1.41, 2.01) of the overall regression coefficient 2.00% (see Table 3). Those multiples are what
is shown in the first bar of Fig. 6 (left).

For each asset class, we observe that the values of all four parameters are within one standard error of the overall
parameter values. Thus, based on our data set, we cannot justify fitting different parameters of our trend-reversion model
to individual asset classes, let alone to individual assets. This is consistent with our back-of-the-envelope calculation of
Section 3.3, which suggests that we cannot fit as many as 4 × 4 = 16 parameters for the four different asset classes to
our data. We thus use a single, universal model for all assets.

4.4. Dependence on the time period

Lastly, we investigate how our patterns have been evolving in time. First, we split up the 28-year (7305-day) time
window into three non-overlapping sub-periods of 2435 days each: An early period from Jan 1992 to Apr 2001, a middle
period from May 2001 to Aug 2010, and a late period from Sep 2010 to Dec 2019.

Fig. 6 (right) shows the 16th, 50th and 84th percentile of the values of the 4 regression parameters for each of these
time-windows, again divided by the values of the regression parameters for the overall sample. The persistence of trends
b has consistently and significantly decreased over time. With less consistency, this can also be observed for strength of
reversion c , while no clear trend is visible for the range k0 ±∆k, within which trends persist. The decrease of b is in line
with the industry observation that trend-following no longer works as well as it used to: markets seem to have become
more efficient in this respect. Given the decrease in trading costs, an increase in algorithmic trading, and an increase in
assets under management invested in trend-following, this is not surprising.
10
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Fig. 6. Left: Ratios of the values of our 4 regression parameters for equities, interest rates, FX rates and commodities, divided by their overall values
across all asset classes. The ratios do not differ significantly from 1. Right: The analogous ratios for the early, middle and late third of the time
period. At least b has decreased significantly over time.

Table 5
Refined regression with 6 parameters.
Coefficient Value Error t-Stat.

b̄ 1.91% ±0.49% 3.9
c̄ −0.62 % ±0.25% 2.5
k0 5.83 ±0.50 11.7
∆k 4.97 ±0.69 7.2
Qb 0.088 ±0.045 2.0
Qc 0.047 ±0.052 0.9

R-squared Single time scales Aggregated across time scales

R2 1.97 bp 8.90 bp
R2
adj 1.49 bp 6.98 bp

To verify and quantify these observations, let us introduce time t , measured in years, with its origin t = 0 on Dec 31,
2005, the center of our 28-year time window. We now further refine our model (11) by including linear trends in b and
c while leaving k0 and ∆k constant:

b(t) = b̄ · (1 − Qb · t) , c(t) = c̄ · (1 − Qc · t)

The results of a regression analysis, including bootstrapping and cross-validation, are shown in Table 5. The decrease of
c , which measures the strength of reversion, is only weakly significant. However, the decrease of b, which measures the
persistence of trends, is significant at the 97.5% confidence level. In principle, we could compute the year Y0, in which
b(t) = 0:

Y0 = 2005 +
1
Qb

∈ {2012, 2028} with expectation value Y0 ∼ 2017.

Thus, if one were to take this linear down-trend of b literally, one would conclude that the phenomenon of persistent
market trends may have already disappeared. However, there are other scenarios for the time decay of the persistence
of trends that are consistent with our data. E.g., for an exponential decay scenario, in which trends never disappear, we
find an only slightly lower adjusted R-squared of 1.39 bp instead of 1.52 bp, with

b ∼ b̄ · e−Qt with decay rate Q ∼ (24 years)−1.

We have also tested scenarios where all 4 parameters or other subsets of them change at different rates, but found
that all of these scenarios significantly reduce the adjusted R-squared. It is left for future work to investigate the time
evolution of the pattern of trends and reversion in more detail.

5. Analogies with critical phenomena

In this section, we point out some striking analogies between the empirical observations of Sections 3 and 4 and
ritical phenomena in statistical mechanics. Analogies between financial markets and critical phenomena, such as scaling
elations, have long been observed [24]. Our results go further: they seem to directly and specifically identify the trend
trength with the order parameter of a Landau-type mean field theory with a quartic potential.
11
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Analogies with critical phenomena are plausible, if financial markets are regarded as statistical–mechanical systems,
whose microscopic constituents are the Buy/Sell orders of individual traders. It is conceivable that these orders can be
modeled by degrees of freedom that sit on the vertices of a hypothetical ‘‘social network of traders’’. These degrees of
freedom may interact with each other in analogy with spins on a lattice, thereby creating the macroscopic phenomena of
trends (herding behavior) and reversion (contrarian behavior). To imitate these phenomena and their interplay, various
spin- and agent models have been proposed in the literature (see, e.g., [25,26], and [27] for a recent review).

Candidates for the ‘‘social network of traders’’ include small-world networks [28], scale-free networks [29], or the
Feynman diagrams of large-N field theory [30]. For a recent review of candidates for social networks, see [31]. To our
knowledge, no convincing specific model has emerged as a consensus so far. Our results provide an empirical basis for
accepting or rejecting such candidates: any statistical–mechanical model of financial markets, if accurate, must replicate
the interplay of trends and reversion observed in this paper.

To make this precise, let us first reap the benefits of our recursive definitions (5), (7) of the trend strength, which lead
to simple differential equations in the ‘‘continuum limit’’ T ≫ 1:

(
d
dt

+
2
T
) ψ(t) =

2
√
T

· R̂i(t), (
d
dt

+
2
T
) φ(t) =

2
√
2

T
ψ(t). (12)

o be specific, let us focus on the 6-month time horizon, i.e., T = 27
= 128 trading days (the results for other horizons

are similar). Combining (12) with the ansatz (10) implies the following second-order stochastic differential equation for
the trend strength φ:

(
d
dt

+
1
64

)2φ(t) = −
∂

∂φ
V (φ) +

1
256

ϵ(t) with V (φ) = −
b

512
· φ2

+
|c|

1024
· φ4, (13)

ith rescaled random noise ϵ. Its simpler cousin ψ in (5) obeys a first-order equation:

(
d
dt

+
1
64

)ψ(t) = −
∂

∂φ
Ṽ (ψ) +

1

4
√
2
ϵ(t) with Ṽ (ψ) = −

b̃
4

· ψ2
+

|c̃|
8

· ψ4, (14)

ith the following empirical parameter values, as measured by a regression analysis that is analogous to that reported in
ection 4 for ψ:

b = 2.94%, c = −0.95%, b̃ = 1.79%, c̃ = −0.66%.

(14) is the purely dissipative Langevin equation, which is reminiscent of the earlier description [20] of the dynamics
of financial markets at intraday scales by another Langevin equation. In the theory of critical phenomena, the Langevin
equation is well-known to describe the dynamics of the order parameter of certain statistical–mechanical systems near
second-order phase transitions [32,33]. This is consistent with the conjecture that the trend strength (defined as either φ
r ψ) plays the role of an order parameter, in analogy with the magnetization in spin models.
To take the analogy further, statistical–mechanical systems near second-order phase transitions are characterized by

niversal critical exponents. E.g., a scalar field theory with a φ4 potential similar to the potentials V in (13), (14) describes
ater and steam and other physical systems in the same universality class (such CO2 or the Ising model) near their critical
oints [33]. For all systems within this universality class, the parameters b and c show the same scaling behavior as a
unction of the length scale L (e.g., b ∼ Lκ for some exponent κ). In critical dynamics, scaling with L also translates into a
caling with the time horizon T [32].
In Section 4, we have seen that – within the limits of statistical significance – the values of the coefficients b and c

re the same for very different markets, such as equity indices, bonds, FX-rates, and commodities. The parameters k0 and
k in (11), which characterize how b behaves under a rescaling of the time horizon T , are also the same. This could be
n expression of universality and scaling in financial markets. To confirm this, it will be key to examine how the scaling
ehavior in (11) extends to intra-day and multi-year time horizons T = 2k with k > 10 or k < 1. For example, it might
eflect a complex critical exponent [34]. Together with the stochastic differential Eqs. (13), (14), the empirically observed
caling behavior may uniquely specify a particular social network that models financial markets.
To conclude this section, let us compare with some previous work. In [21], a related model for the dynamics of asset

rices was postulated. The role of the trend was played by the deviation of the current asset price from its unknown
‘value’’. Terms of any order were considered in the polynomial potential, and the corresponding classical solutions were
iscussed. Compared with [21], our trends are measurable, and we focus on a quartic potential, empirically observe the
alues of its coefficients and their scale dependence, and provide a simple and intuitive map between the quadratic
quartic) terms and trends (reversion).

In [22], another model with a polynomial random force similar to (10) was postulated. The trend strength was defined
y a moving average crossover (which does not lead to exact differential operators such as (12) in the continuum limit).
his model was applied in [23] to intraday returns for the USD/JPY and USD/EUR exchange rates during stress periods.
nstead of our quartic potential with stable coefficients, only a cubic potential was measured. Moreover, its coefficients,
ncluding their signs, were found to rapidly vary in time.

However, these studies were based on very different data sets, namely tick data (instead of daily data) for single
ssets over time periods of several weeks (instead of decades). Thus, it is no surprise that the stable quartic potential
12
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corresponding to the cubic term in (10)) was not found in [23]: as we have seen, in order to detect it with strong statistical
ignificance, one needs not only decades of data, but also aggregate them over a broadly diversified set of assets. Also,
ince the coefficient of the cubic potential reported in [23] varies rapidly in time, it can be expected to average out over
ong time scales. This is consistent with the fact that we do not observe a cubic potential in our empirical long-term
nalysis.

. Summary and discussion

In this paper, we have empirically observed the interplay of trends and reversion in financial markets, based on 30 years
f daily futures returns across equity indices, interest rates, currencies and commodities. We have considered trends over
en different time horizons of T = 2k days with k ∈ {1, 2, . . . , 10}, ranging from 2 days to approximately 4 years. For a
iven market i on a given day t , we have defined the trend strength φi,k(t) as the statistical significance (t-statistics) of a
moothed version of its mean return over the past 2k days, in excess of the market’s long-term risk premium.
Our key results, as illustrated in Figs. 2 and 3, are the following: for a given market i and each time horizon labeled by

, tomorrow’s normalized log-return Ri(t + 1) can accurately be modeled by a cubic polynomial of today’s trend strength
n that market:

Ri(t + 1) = αi + b · fk · φi,k(t) + c · φ3
i,k(t) + ϵi(t + 1). (15)

ere, ϵi represents random noise. αi is the normalized long-term risk premium of market i, which has not been not the
ocus of this paper. Instead, we have concentrated on determining the coefficients b, c , and the function fk, which measure
ow the expected return of an asset varies in time. As discussed, we interpret b as the persistence of trends, and c as the
trength of trend reversion. Within the limits of statistical significance, we find that they are universal, i.e., the same for
ll assets. Over the past 30 years, we find from Table 4:

b ∼ +2.0% , c ∼ −0.6% (16)

hile the strength of reversion is approximately constant, we find that the persistence of trends depends on the time
orizon of the trend. Within the range of time scales considered here, it can be approximated by a parabolic function of
he log of the time scale:

fk ∼ 1 −
(k − k0)2

∆k2
with k0 ∼ 6 , ∆k ∼ 5. (17)

his implies that trends may only be stable if the log of the time horizon is within the range k0 ± ∆k, corresponding
o time scales from a few days to several years. The parameters k0 and ∆k are also universal. By bootstrapping and
ross-validation, we have found that all four parameters in (16) and (17) are statistically highly significant out-of-sample.
Let us now discuss these results. First, they imply that trends tend to revert above a critical trend strength, where the

linear and cubic term in (15) balance each other. This critical trend strength lies below 2 in all cases. In other words,
by the time a trend has become statistically significant, such that it is obvious in a price chart, it is already over. This
supports a variant of the efficient market hypothesis [35–37]: inefficiencies in financial markets are eliminated before
they become strongly statistically significant.

Despite being insignificant, small trends can add value for investors through tactical asset allocation strategies,
if accompanied by appropriate risk management and broad diversification across assets. While this paper does not
recommend investment strategies, we note that the inclusion of the cubic term in (15) appears to be a major improvement
over classical trend-following, as it takes investors out of trends before they are likely to revert (see also the comments
on systematic asset management in Appendix A.3). We believe that publishing such strategies and subjecting them to an
academic discussion and independent review will ensure a high level of professionality in asset management.

Trend-following has been very successful in the 80’s and 90’s, when it was the proprietary strategy of a limited number
of traders. By now, large amounts of capital have flown into this strategy, so it can no longer be expected to provide a
‘‘free lunch’’. Indeed, while we have not observed a consistent weakening of the strength of reversion c , we have seen
that the persistence of market trends b has clearly decreased over the decades. This measures the rate, at which markets
are becoming more efficient with respect to trends.

What will happen, when all investors try to exploit trends and reversion? Then both phenomena should weaken,
until they earn a moderate equilibrium return that just compensates for the systematic risk of these strategies and their
implementation costs. In this sense, trend-following and mean reversion may just become ‘‘alternative market factors’’ as
part of the general market portfolio. In fact, the weakening of b that we have observed here indicates that this development
is already well underway at least for traditional trend-following.

On a conceptual level, our precise measurement of trends and reversion reveals intriguing analogies with critical
phenomena in physics. They support the conjecture that financial markets can be modeled by statistical–mechanical
systems near second-order phase transitions. In such a model, Buy/Sell orders would represent microscopic degrees of
freedom that live on a ‘‘social network’’ of traders. The trend strength would play the role of an order parameter, whose
dynamics is described by the stochastic differential Eqs. (13), (14). Together with an extension of the scaling behavior
(17) to shorter and longer horizons, these equations provide an empirical starting point for developing such a model.
13
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Table 6

Cap/Floor Different caps/Floors Inclusion of risk premia

2.0 2.25 2.5 2.75 3.0 0% 50% 100%

b 2.05% 2.03% 2.00% 1.95% 1.88% 2.00% 2.18% 2.32%
t-stat. 4.0 4.0 4.2 3.7 3.6 4.2 4.4 3.3

c −0.75% −0.69% −0.63% −0.58% −0.53% −0.63% −0.62% −0.53%
t-stat. 2.7 2.8 2.6 2.5 2.4 2.6 2.6 2.9

k0 5.90 5.85 5.78 5.72 5.69 5.78 6.75 8.21
∆k 4.87 4.90 4.87 4.77 4.67 4.87 5.96 7.20

R2
adj 1.12 1.39 1.64 1.82 1.96 1.64 1.64 1.59

R2
adj aggr. 0.74 0.98 1.22 1.40 1.54 1.22 1.19 1.22

If such a statistical–mechanical theory of financial markets can be established, it will introduce powerful concepts from
field theory into finance, such as the renormalization group, critical exponents, and Feynman diagrams. This will lead to
a new and deeper understanding of financial markets, and phenomena such as trends, reversion, and shocks will become
more accessible to scientific analysis. Further research in this direction is underway.
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Appendix

Table 6 compares the regression results of Section 4.2 with the results that would be obtained for alternative choices
of some of the parameters:

A.1. Caps and floors for the trend strength

In Section 2, we have capped the magnitude of the trend strength at 2.5 to limit the effect of outliers on the results.
Table 6 (col. 2–6) compares the results of Section 4.2 for the alternative caps/floors of 2.0, 2.25, 2.5, 2.75, and 3.0. We
observe the following:

• Increasing the cap beyond 2.5 increases the adjusted R-squared, but decreases the significance (t-statistics) of the
regression betas. This makes sense intuitively, because the results are now dominated by the regime of strong
reversion at ‘‘outlier’’ trend strength |φ| > 2.5. As such outliers are rare, the statistical significance decreases.

• Decreasing the cap below 2.5 decreases the adjusted R-squared without improving the overall significance of the
regression betas. This is also understandable, as it removes much of the reversion regime from the analysis. Thus,
our cap/floor of ±2.5 is a good compromise, where neither trends nor reversion outliers dominate the results.
14
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A
.2. Long-term risk premia

In Eq. (2), we have removed the long-term risk premia µi from the trend strengths φi,T . Here, we explain what happens
if we do not remove the risk premia from the trend strengths:

• Trends in markets, for which such risk premia are generally assumed, would then have an upward bias, i.e., positive
expectation value. Especially very-long-term trends in equity and bond markets would almost always be positive
and never revert.

• Table 6 (col. 7–9) shows how this mix-up of trends and risk premia would modify the results of Section 4.2 (shown
under ‘‘0%’’). If 50% or 100% of the risk premia were included in the definition of the trend strength, the parameter
k0 (which measures the time horizon at which the persistence b of trends peaks) would strongly increase.

• In fact, if we think of risk premia as trends with infinite time horizon, we expect that, without removing risk premia,
the trending regime of Section 4.2 would extend all the way to infinite horizon. We would then model it by a parabola
instead of an ellipse.

A.3. Comments on systematic asset management

The key motivation for this article is to lay the empirical basis for a statistical–mechanical model of financial markets,
which can hopefully explain the analogies with critical phenomena in physics. Nevertheless, let us briefly comment on
implications for systematic trading:

• According to the back-of-the-envelope estimate of Section 3.3, an annualized Sharpe ratio of order 1 for a systematic
futures trading strategy corresponds to an adjusted R-squared of about 4 basis points in predicting daily returns of
individual markets.

• By the same argument, the aggregated adjusted R-squared of 6 basis points of Section 4.2 corresponds to an annual
Sharpe ratio of

√
1.5 for a market-neutral strategy.

• Trading costs reduce the Sharpe ratio, especially at intra-month time horizons. Diversifying into new types of markets
or including risk premia can increase the Sharpe ratio.

• Risk control mechanisms, such as sizing positions based on current market volatility, or stop-losses in the reversion
regime, can either decrease or increase the Sharpe ratio.
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