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Abstract: This review aims to showcase the current use of graphene derivatives, graphene-based
nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief
introduction regarding the valuable attributes of available and emergent bioplastic materials is made
so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are
also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations,
from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or
electrical conductivity. The reported improvements in biopolymer-based composites carried out by
graphene derivatives in the last three years are discussed, pointing to their potential for innovative
food packaging applications such as electrically conductive food packaging.

Keywords: bionanocomposites; polysaccharides; proteins; polyesters; graphene derivatives;
graphene oxide; electrical conductivity; pulsed electric field; food packaging

1. Introduction

Non-sustainable food production and consumption leads to many serious health and
environmental problems. It is estimated that one third of the total foodstuffs produced worldwide,
1.3 billion tons, equivalent to one trillion dollars, is wasted. The United Nations (UN) 2030 sustainable
development agenda addresses this problem with Goal 12—Ensure sustainable consumption and
production [1]. To mitigate this global problem, the development of food processing technologies
and packaging materials is of the utmost importance. Packaging offers mechanical and barrier
protection against light, dust, pests, gases, moisture, volatiles, and both chemical and microbiological
contamination, extending the foodstuffs” shelf lives while ensuring their quality, safety, and authenticity
without requiring additives. However, the sustainability of conventional packaging has become a
major issue. The use and disposal of non-biodegradable polymers led to environmental issues across
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numerous ecosystems [2]. In this context, biopolymers with biodegradable properties have been
explored as an alternative to design novel packaging materials that can extend the foodstuffs” shelf
lives and, concomitantly, contribute to minimize the packaging negative environmental impact [3].
Although packaging is a top priority in research, with the development of bio-based and biodegradable
plastics representing 53% share of this global demand, their introduction in the food packaging industry
is well below expectations [4]. See, for instance, that sustainable packaging market alone is expected
to grow from ca. US$ 225 billion in 2018 to over US$ 310 billion by 2024 [5]. The high cost and
difficulty to overcome specific technical issues (e.g., viscosity, thermal stability, hydrophilicity, low
mechanical strength, and poor gas barrier properties), essential to preserve food quality and safety,
are the main obstacles for their large-scale use [6]. Investments in research have been enforced to
develop biodegradable food packaging materials, fitting practical criteria. Recently, the incorporation of
graphene derivatives into biopolymer has garnered attention due to their potential to provide enhanced
mechanical and barrier properties [7-9]. This review examines the advances made in the last three
years in the field of biopolymer-based biocomposites containing graphene derivatives. Additionally,
the most used biopolymers for packaging materials were reviewed. Nowadays, the current design
of biocomposites containing graphene derivatives goes far beyond the reinforcement of barrier
and mechanical properties. Some graphene derivatives, such as reduced graphene oxide (rGO)
with radical scavenging capacity, may assign an antioxidant activity to the packaging materials,
an extremely important property to enhance foodstuffs” shelf lives [10]. An interesting breakthrough
introduced through use of graphene derivatives is electrical conductivity, which is advantageous for
the development of food packaging materials suitable for their application in pulsed electric field
technology (PEF) [10-12].

2. Biopolymers as Food Packaging Raw Materials

Biodegradable biopolymers have been gaining societal, scientific, industrial, and economic
importance to develop sustainable food packaging bioplastics, alternatives to conventional
non-biodegradable fossil-fuel-based plastics [6,13]. In recent years, several approaches to develop
biodegradable plastic materials from biomass feedstock by biocatalytic transformation, chemical
synthesis, or simple feedstock polymers’ extraction have received much attention, taking advantage of
using renewable resources as raw materials during polymer production/purification. This strategy
contributes to a sustainable essence of the final packaging while advancing toward a circular economy [6].
According to nova-Institute data [4], simultaneous bio-based and biodegradable polymers had a 33%
increase in applications within the plastic packaging industry between 2017 and 2019, particularly
dominated by starch-based blends, polylactic acid (PLA), and polyhydroxyalkanoates (PHA) polymers
(Figure 1). However, the number of scientific research articles focused on the development of bio-based
and biodegradable formulations for food packaging application has had an even more notable increase,
78%, during the last three years. In this section, the available and emergent bio-based and biodegradable
polymers under research, namely polysaccharides, proteins, and polyesters, presented in Figure 1,
will be discussed as well as their production sources, technical properties, and challenges within the
food packaging industry.
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Figure 1. Upper scheme: (A) Evolution of commercial production capacities of bio-based and
biodegradable polymers within the packaging plastic market between 2017 and 2019; (B) the
representativity of different biopolymers on the 2019 market. Data for the graphical construction
acquired from the European Bioplastics Report [4]. Lower scheme: (C) Number of published research
articles focused on the various bio-based and biodegradable polymers combined with the term “food
packaging” in 2017 and 2020; (D) the distribution of the diverse biopolymers in research in 2020
(accessed on 7 October 2020 through “The Web of Science”).

2.1. Polysaccharides

2.1.1. Starch

Starch is constituted by two distinct polymers, the mostly linear amylose, a-p-(1,4)-linked
glucopyranosyl units, and the highly branched amylopectin, a-p-(1,4)-linked glucopyranosyl units
partially substituted by a-p-(1,6) linkages units (Figure 2), with a proportion of 20-30% and 70-80%,
respectively, depending on its botanical source [13-15]. It is considered one of the most promising
natural biopolymers since it is easy to acquire, it can be extracted from foodstuffs byproducts (has
four conventional sources such as wheat, corn, potato, cassava, and other sources including fruit
waste [16]), and it is biodegradable and low-cost [17]. It is important to note that more than 310 tons of
starch are industrially produced from corn, potato, or wheat for packaging purposes, accounting for
approximately 25% of all used bio-based and/or biodegradable plastics (Figure 1) [4].

Starch has been used to form edible or biodegradable films and granulates through casting from
aqueous solutions, film blowing, forming, injection molding, blow molding, and extrusion [18-22].

Plasticizers, along with temperature (for gelatinization) [16], allow the increase of the
starch-based films flexibility, improving processability. Starch-based films have reasonable gas
barrier properties; however, they still present some sensitivity to humidity conditions. Moreover,
they also exhibit poor moisture barrier and mechanical properties, limiting their applications as
packaging materials [23,24]. Furthermore, starch retrogradation naturally increases the matrix
crystallinity over time, promoting brittle films [25,26], another factor that prevents the starch-based
materials” widespread adoption. Nevertheless, starch has been used as a filler in plastics, allowing
to reinforce their structure [27,28]. Within commercial perspectives, plasticized starch is often
blended with a range of other polymers, like polyethylene (PE), polypropylene (PP), polystyrene
(PS), Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), or PLA in a proportion range between
30% and 70% [29], where biodegradability of the final product is dependent on the degradation
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abilities of the polymeric compounds [13]. There is a huge interest and new research focusing on
the trade-off between biodegradability and functionality of starch-based plastics, promoting their
efficiency and versatility. These blended materials have been considered as an alternative to pristine
PE, PP, or PS-based plastics [4,30,31].

Polysaccharides
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Figure 2. Structures of biopolymers.

In a laboratorial environment, other interesting future scalable approaches have been explored to
improve starch-based materials. Gongalves et al. [16] used oil and waxes recovered from potato frying
residues and potato peels, respectively, to tailor the surface properties (roughness and wettability) and
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flexibility of starch-based films. Chollakup et al. [32] found out that the incorporation of compounds
such as cinnamon oil and fruit peel extract can provide antibacterial and antioxidant properties. Still,
in both examples, the final product is not suitable for applications as food packaging at industrial scale.
Currently, the best option is, as mentioned, to use starch blended with other more resistant materials
(PE, PP, PLA, etc.).

2.1.2. Cellulose

Cellulose is a linear polymer of several hundred to many thousands of (31—4) linked D-glucose
units (Figure 2); it is the most abundant natural biopolymer on Earth [33], it is biodegradable, and it is
commercially derived by a delignification process from wood pulp, which contains 40-50% of cellulose
by weight [34]. This biopolymer, by itself, is unsuitable for film production due to its high crystallinity
and long fibers [33,35], which make it have a non-thermoplastic nature (it cannot be softened or melted
by the application of heat, nor can it be processed [36]) due to its strong intra- and inter-chain hydrogen
bonds [37]. Chemically modified forms of cellulose fare a better chance against water, while exhibiting
good mechanical properties, such as cellophane, cellulose esters (cellulose nitrate and cellulose acetate),
and cellulose ethers (carboxymethyl cellulose and hydroxyethyl cellulose) [38].

A notable material derived from acid hydrolysis of cellulose is the nanocrystalline cellulose (CNC).
It has been widely explored in numerous areas in food packaging (Figure 1) [39-41]. CNC has high
elastic modulus, optical transparency, low thermal expansion coefficient, good gas barrier properties,
and low toxicity, thus being biocompatible and biodegradable [42]. In packaging, CNC has been
used as a gas barrier and filler of nanocomposites [39,40,43]. Microcrystalline cellulose (MCC) and
nanofibrillated cellulose (NFC) have also used been for similar purposes [44,45]. Nanocellulose-based
films are usually combined with other biopolymers, as chitosan and PHA, or plasticizers (e.g., glycerol,
sorbitol, methoxypolyethylene glycol (MPEG) [46]) to improve or modify their physicochemical
properties and extend their application range [47-50]. These biocomposites have shown excellent
mechanical and oxygen barrier properties; however, their performances rapidly decline in the presence
of moisture [49-52]. To overcome this drawback, nanocellulose grafting or blending with hydrophobic
compounds as tannins, cholesterol, lignin, and fatty acids have been investigated [51,53,54]. However,
these solutions often showed insufficient improvements on the hydrophobicity performance and thus
are still unsuitable for using as food packaging materials.

2.1.3. Chitosan

Chitosan (CS) is a linear polysaccharide of 2-amido-2-deoxy-f3-p-glucoses attached by (31—4)
linkages (Figure 2), obtained by the deacetylation of more than 50% of chitin [55,56]. Chitosan’s
molecular weight depends on its source and, on average, can vary from 50 to 1000 kDa [57].
Manipulation of deacetylation percentages allows tailoring of its physicochemical properties and
degradation profile [58]. Studies comparing low, medium, and high CS molecular weights found
the latter molecular weight (>300 KDa) achieved better results in packaging [59,60]. CS is only
soluble in acidic media, and its chains become positively charged when the pH level is under their
pKa = 6.5 [61,62]. CS also contains a primary amino group (NH;) that can be protonated to NH3* and
readily form electrostatic interactions with anionic groups in an acid environment. This characteristic
allows the incorporation of a variety of chemical groups [63] (e.g., grafting phthalic anhydride, which
increases antibacterial properties against Gram-positive and Gram-negative bacteria [64]) and letting
prepared systems react to external stimuli such as temperature [65].

This biopolymer has been widely studied due to its potential in areas such as material science [66]
and pharmacology [67], since it can be obtained at low cost, has large scale availability, is nontoxic,
and is biodegradable [58]. Moreover, the antioxidant, antifungal, and antibacterial activities of CS
has been attracting special attention in the food packaging sector as demonstrated in Figure 1 [68,69].
Additionally, because CS also has selective permeability to CO, and O, it has been investigated as
edible coatings for fruit packaging applications. For this particular use, it delays the rate of respiration,
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decreases both weight loss and ethylene production, inhibits postharvest diseases, and increases the
antioxidant process, allowing to extend the product shelf life while preserving the fruits overall quality.
These results were achieved just by using CS as a packaging solution [17]. When applied to films
formation, CS gives rise to transparent, flexible, and good oxygen barriers [17,70]. However, CS-based
materials have some limitations such as low water vapor barrier characteristics and low mechanical
strength; thus, they still require additives as fillers or plasticizers (e.g., glycerol [71]) to overcome these
fragilities for food packaging applications [72,73].

2.1.4. Alginate

Alginate is the general name given to the family of linear polysaccharides consisting of binary
copolymers, made up of (1-4) linked 3-p-mannuronic acid (M) and a-L-guluronic acid (G) monomers
(Figure 2), occurring in different proportions and distributions across the chain, depending on the
source [74]. Thus, the molecular weight of alginate can vary between 32 and 400 kDa [75]. Alginate is
usually extracted from brown algae, mainly Laminaria hyperborean, Macrocystis pyrifera, and Ascophyllum
nodosum. In addition, microbial alginate can be produced by Azotobacter vinelandii and Pseudomonas
aeruginosa [76]. The alginate ability to form strong gels/low-soluble polymeric materials in the presence
of divalent cations, commonly Ca?*, due to the formation of a three-dimensional (3D) structure
designed as an “eggbox” model, has been explored for the production of biodegradable and edible
films [76]. The main advantages of alginate are: chemical stability, controllable swelling properties, and
low content of toxic, pyrogenic, and immunogenic contaminants [74]. Alginate has been studied for new
packaging options in the form of casted films [71,77] and as food-grade edible coatings [78]. Modified
alginate such as propylene glycol alginate [79], sodium alginate [80,81], or calcium alginate [82] are
frequently applied. The brittleness and low moisture barrier properties are the main disadvantages
of alginate materials, which can be optimized with the use of diverse additives. Plasticizers such as
glycerol and sorbitol improved the alginate films’ flexibility [71]. The combination of alginate with
other biopolymers such as PLA can increase the tensile strength and the oxygen barrier properties [80].
In the same way, blends with biopolymers, e.g., soy protein, increased the tensile strength and decreased
the water vapor permeability and water solubility [79]. Inorganic additives are also employed to
enhance the performance of alginate materials. Sulfur nanoparticles with antimicrobial activity
improved the mechanical properties of alginate films while increasing the UV barrier properties and
hydrophobicity [83]. Similarly, alginate composites containing antimicrobial silver nanoparticles
improved the shelf lives of fruits and vegetables [81].

2.1.5. Pullulans

Currently, the term “pullulan” is used in the literature to mean not only the “polymaltotriose”,
the maltotriose -(x1a4)Glcp-(x1a4)Glcp-(x1a6)Glep trimer (Figure 2), produced by different strains
of fungus-like yeast Aureobasidium spp.- Aureobasidium pullulans, Aureobasidium melanogenum, and
Aureobasidium mousonni, [84-86] but also other slightly different polysaccharide varieties (e.g.,
aubasidan-like, or pullulan-like), still similar to the pullulan, produced by distinct Aureobasidium
pullulans varieties (e.g., Aureobasidium pullulans var. aubasidani and Aureobasidium pullulans var. pullulans,
each with numerous distinct strains) [87].

This microbial extracellular polysaccharide is a biodegradable, biocompatible, non-mutagenic,
nontoxic, hygroscopic (meaning that depending on the relative humidity at which it stored it can absorb
water), non-carcinogenic, and edible polymer [88,89]. To create pullulan films or coatings, numerous
techniques such as solvent casting [90,91], extrusion [92,93], coating by dipping or spraying [94,95],
layer-by-layer assembly [96,97] or electrospinning [98-100] can be used. The resulting films are devoid
of color, opacity, taste, and odor, and are also heat-stable and impermeable to both oil and oxygen [88,89].
Still, these films present drawbacks such as poor mechanical properties, namely their brittleness and
their inability to resist water due to their hydrophilic nature and lack of active functions [88]. Thus,
it is necessary to combine pullulans with other polymers and/or plasticizers [98,101,102] or even
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(nano)particles, which act as fillers [88,103,104], to improve the materials barrier properties (water and
oxygen) and improve mechanical properties (e.g., tensile strength). The use of other materials such as
silver particles can also impart new properties such as antimicrobial activity [103,105].

2.2. Proteins

2.2.1. Gelatin

Gelatin is derived from the fibrous insoluble protein called collagen (by thermal denaturation of
collagen in the presence of diluted acid [106]) and is typically obtained from bones, skin, and connective
tissue generated as waste during animal slaughtering and processing [107]. It is a heterogeneous
mixture of single- or multi-stranded polypeptides, each with extended left-handed proline helix
conformations and containing between 300 and 4000 amino acids most of which make up glycine,
proline, and 4-hydroxyproline residues. Its structure is a mixture of x-chains (one polymer/single
chain), 3-chains (two «-chains covalently crosslinked), and y-chains (three covalently crosslinked
a-chains) [108]. Gelatin’s typical amino acid composition is Ala-Gly-Pro-Arg-Gy-Glu-4Hyp-Gly-Pro-
(Figure 2) [107]. There are two types of gelatin of animal origin: Type A, with an isoelectronic point
at pH ~8-9, obtained from acid treated collagen; and Type B, with an isoelectronic point at pH ~4-5,
derived from an alkali-treated precursor which converts asparagine and glutamine residues into their
respective acids, resulting in higher viscosity. The gelatin derived from pig skin is normally type A
and the one from beef skin or pig cattle hides and bones is type B [109].

Gelatin is abundant, low-cost, and biodegradable [106]. It has been broadly studied in food
packaging (Figure 1); however, it is hygroscopic, and consequently, it tends to swell or to be dissolved
when put in contact with foodstuffs with high moisture content [106]. Another major disadvantage is
its poor mechanical properties, especially when wet (poor water vapor permeability).

To overcome these issues, several approaches have been explored, namely addition of different
molecules such as crosslinkers (to reduce solubility), plasticizers, and antimicrobial or antioxidant
compounds [110,111]; combining gelatin with other biopolymers such as starch [112,113], chitosan [114,
115], and whey protein [116], among others, to improve mechanical and water resistance properties; and
adding nanoparticles such as silver, for instance, which can impart antimicrobial properties [114,116].
Recently, gelatin has been explored to create coatings and films for fruit packaging purposes due to its
excellent ability to form films, its good oxygen barrier capacity, and UV-absorbing properties mediated
by the presence of aromatic amino acids in its structure [117-121].

2.2.2. Zein

Zein, seen in Figure 2, is a natural prolamin which can be separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) into «-, 3-, y-, and d-zein [122]. It is the main storage
protein of corn at 45-50%, it is water insoluble (due to the hydrophobic character of its apolar amino
acids, proline and glutamine [123]), and it is nontoxic and biodegradable [124,125].

Zein is an option for food packaging because it has excellent oxygen and carbon dioxide barrier
properties and high thermal resistance [123,126]. Furthermore, in comparison with films produced
from other proteins, it presents higher tensile strength and lower water vapor permeability [123].
However, films produced solely from zein present fragilities specifically related with brittleness, low
surface functionality, and poor mechanical properties (such as lack of flexibility [127]) needed for
industrial processing. Additionally, they cannot resist a high relative humidity condition. All these
factors limit their use in food packaging applications [127].

To improve zein films, several different options have been explored: adding plasticizers (e.g.,
oleic acid, polyethylene glycol, glycerol, etc.) [128,129], adding micro- or nanoparticles (e.g., zinc or
silver) [129,130], using other biopolymers to create better biopolymer blends (e.g., PP, PLA, etc.), [123,
125,129,131,132] or adding other compounds (e.g., tannic acid, gamma-Cyclodextrin, etc.) which can
provide different supplementary abilities (e.g., antioxidant, antibacterial properties) [130,132,133].
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2.3. Polyesters

2.3.1. Polylactic Acid

Lactic acid is a monomer produced by fermentation of carbohydrates by bacteria, mainly
Lactobacillus which by polymerization originates the polylactic acid (PLA—Figure 2), a thermoplastic
aliphatic polyester [134]. PLA has good mechanical and thermal properties [17] which are strongly
related to the ratio between the two mesoforms D and L [17]. PLA has high stiffness, strength, and
water and oxygen permeability levels comparable to polystyrene [17,135]. PLA has excellent properties,
namely high transparency, rigidity, and biodegradability, and it can be produced from renewable
sources [37,136]. It can also tolerate various types of processing technologies, namely injection molding,
extrusion, blow molding, and thermoforming [137]. However, PLA also has several shortcomings such
as poor heat resistance, brittleness, poor melting strength, low degradation rate, and a narrow processing
window [138-140]. To overcome these drawbacks, PLA-based products are being designed not only
using PLA but also by mixing it with other biodegradable (bio)polymers and non-biodegradable resins
and/or by compounding PLA with fillers such as fibers or micro- and nanoparticles [141-143]. Currently,
PLA is being used in packaging applications as films, as thermoformed blow-molded containers
and as short shelf life bottles [139,140,142,143]. Commercially, it is a good candidate to replace PE,
PS, and polyethylene terephthalate (PET), which are non-biodegradable polymers commonly used
for food packaging [37]. More than 160 tons of PLA are annually produced at the commercial level
for plastic packaging purposes, which represent about 13% of all bio-based and/or biodegradable
materials, making it the second most used biodegradable polymer (after starch-based blends) within
this sector [4].

2.3.2. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), seen in Figure 2, is an aliphatic polyester
from the PHA family, known by its biodegradability, nontoxicity, and biocompatibility [144]. PHA are
linear polyesters that naturally occur in a variety of microorganisms and are accumulated intracellularly
as carbon and energy reserves [13]. Currently, this natural ability of some microorganisms has been
explored in the industrial synthesis of these biodegradable polymers by fermentation using renewable
matrices as carbon sources [13,38]. Within the packaging sector, 96 tons of PHA were produced in 2019
from sugarcane pulp, sugar beet pulp, corn, potato, and wheat [29]. The majority of PHA are composed
of 3-hydroxy fatty acid monomers [13]. A huge variety of PHA exist, and this diversity allows the
production of PHA with a wide range of properties to compete with conventional plastic materials
applied for food packaging [38]. Some PHA exhibit similar thermal and mechanical properties to PE, PS,
and PP, which make them promising for food packaging applications [13,37,38]. However, this process
is still not very cost effective and so the use of PHBV is limited due to its high production cost [144].
PHBYV consists of a poly(3-hydroxybutyrate) or PHB with a few added 3-hydroxyvalerate (HV)
units [145]. Moreover, PHBV has great oxygen barrier properties, chemical inactivity, high viscosity in
a liquid state (good for extrusion processes), and has better mechanical properties, namely increased
surface tension and more flexibility compared to PHB [144,145]. Nonetheless, PHBV still has some
considerable deficits, namely brittleness, a narrow processing window, poor thermal and mechanical
properties, no antimicrobial properties, and low resistance to water vapor permeability [145,146]. To
improve these properties, fillers as clays, cellulose nanocrystals, and metal oxides [146-149] have been
successfully used, enhancing thermal stability, mechanical properties, and barrier properties [146-149].

3. Graphene Derivatives-Based Biocomposites as Food Packaging Materials

As mentioned in the previous section, biopolymers by themselves do not present all the necessary
requirements intended for food packaging, namely in terms of mechanical resistance and water/gas
barrier properties. Furthermore, there is an ongoing trend towards active and intelligent packaging, i.e.,
approaching packaging that is able to interact with food to actively extend its shelf life, and to inform
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the consumer about the safety state of the food products, respectively [150]. In this context, graphene
derivatives may play a role on assigning activity and intelligence to the packaging, in addition to
other properties.

3.1. Graphene Derivatives

Graphene is one of the most promising nanomaterials which is constituted by a flat monolayer of
carbon atoms in a two-dimensional (2D) hexagonal lattice, held together by a backbone of overlapping
sp? hybrids bonds [151]. This structure confers to graphene many remarkable properties, such as the
strongest mechanical robustness with a modulus of over 1060 GPa [152], without losing its molding
properties, large surface area [153], impermeability to gases [154], and optical transparency [155],
among others. Graphene was considered by the scientists A.K. Geim and K.S. Novoselov, who isolated
it for the first time, to be the mother of all graphitic forms because it is the 2D building material for
carbon structures of all other dimensionalities, and because it can be encased into 0D fullerenes, folded
into 1D nanotubes, or stacked into 3D graphite [151]. When short stacks of graphene sheets are packed,
having a platelet shape, they receive the name of graphene nanoplatelets (GNP) [156]. Graphene oxide
(GO) is a derivative of graphene obtained from graphite in two steps. The first step is the chemical
oxidation (with strong acids) of graphite into graphite oxide, followed by simple stirring or mild
sonication (mechanical process) to exfoliate graphite oxide into single layers [157]. Thus, GO is a carbon
layer with several oxygen functional groups (carboxylic, hydroxyl, and epoxy) on its basal planes
and at its edges, resulting in a hybrid structure of sp? and sp® configurations [158]. The high oxygen
content has been demonstrated to be very useful for the chemical modification/functionalization
with other molecules, thus allowing its dispersion in different matrices enabling the preparation of
nanocomposites with interesting properties [159,160]. Globally, GO retains plenty of the properties of
the graphene, but it is much easier and cheaper to prepare in bulk quantities and to process (better
dispersion in different solvents). In fact, the chemical exfoliation of graphite in oxidative medium
originates stable aqueous suspensions of GO. Depending on the practical application of GO, a reduced
form can be more suitable—for example, to be incorporated in a polymeric matrix of hydrophobic
nature [161]. Thus, GO can be reduced (rGO) by chemical, thermal, microwave, photo-chemical, and
photo-thermal or microbial/bacterial methods, where the material can recover partial or complete
hybridized sp? configuration, thus approaching the graphene configuration [162-164].

Interestingly, graphene derivatives have been widely used as polymer reinforcement and are
well known to impact on several properties of the final nanocomposite, namely on its mechanical,
thermal, electrical, conductive, and fire retardancy properties, to name just a few [150-156]. Due
to the already described variety of graphene derivatives, the term “graphene” is often used in a
generic manner to describe indifferently each of these nanostructures, thus creating misinterpretations
about its properties [165]. Owing to the chemical and structural features presented by each graphene
derivative, they have different properties that make them proper additives for specific applications.
The most fundamental properties of graphene derivatives to consider are: (i) number of graphene
layers, (ii) average lateral size, and (iii) oxygen content (with a variable carbon-to-oxygen (C/O) atomic
ratio). The scheme presented in Figure 3 helps to visualize the categorization of different graphene
derivatives types according to the three fundamental properties mentioned previously [165].

The use of graphene derivatives in biopolymer-based composites for food packaging applications
is still lightly explored. The Web of Science search of the topic “biopolymers food packaging composites”
displays 234 results, but when refined including the word “graphene”, only nine articles are displayed
(accessed on 22 September 2020). However, given the potential of these nanomaterials to improve
determining properties of biopolymeric composites for food packaging application, this will certainly
be an expanding area with high impact in the future. Hereafter, some of the most relevant properties
obtained for biopolymer-based composites including graphene derivatives will be reviewed.
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Figure 3. Classification grid for the categorization of different graphene types according to three
fundamental graphene derivatives properties. The different materials drawn at the six corners of the
box represent the ideal cases according to the lateral dimensions and the number of layers reported in
the literature. The values of the three axes are related to the graphene derivatives at the nanoscale, but
it is feasible to expand the values to the microscale. Reproduced with permission from [165]. Copyright
Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany, 2014.

3.2. Properties of Biopolymer-Based Composites with Graphene Derivatives

The first step in the development of graphene-based biopolymer composites is to guarantee the
uniform dispersion of graphene materials into a polymer matrix, which might not be easy given the
high propensity for self-agglomeration of graphene-based materials, as a result of the strong van der
Waals forces and m—7t electrostatic interactions between nanosheets or nanotubes, and/or their common
weak dissolvability in water and organic solvents during biocomposite fabrication [152]. The solution
mixing is considered the most common and simplest method to prepare polymer composites. In this
method, fillers are mixed with the polymer solution, homogenized by physical stirring, and the
composites recovered after solvent evaporation [166]. However, achieving a good dispersion is still
a challenge. The low dispersion of these nanofillers and the consequent weak interfacial adhesion
between the graphene-based filler and the host biopolymer can compromise the final morphological,
mechanical, barrier, and physicochemical properties of the films [167]. Sonication, ultrasonication,
high-speed blending, and melt blending are some strategies used to achieve a proper dispersion of these
nanofillers in the bio-based matrices [168-170]. When these methodologies are not enough to achieve
a good dispersion, the wrapping of surfactants using noncovalent interaction methods [171] or the
chemical modification of graphene materials by covalent bonding [145,167] are some of the approaches
used. Recently, as an alternative to chemical modification, oil-in-water Pickering emulsions were used
to disperse carbon nanotubes (CNT) into PLA matrix using cellulose nanocrystals as stabilizer and as



Nanomaterials 2020, 10, 2077 11 of 32

dispersant due to its amphipathic character [172]. After the dispersion, films are commonly obtained
by solution casting method [7,170] or by melt processing, which is a more convenient method for
the potential industrial application [173-175]. The final structural organization of these composites
containing graphene derivative-based fillers (originally suggested for layered silicates) is categorized
in three types, namely phase separated, intercalated, and exfoliated (Figure 4). The performance of
composites is maximized in their exfoliated form, corresponding to the carbon nanostructures well
dispersed within the matrix. This condition provides a tortuous diffusion barrier and creates a good
percolation network, which greatly enhances the overall properties [176].

Dispersion L\ \\
omN 82 w0
Phase separated Intercalated Exfoliated
(Microcomposite) (Nanocomposite) (Nanocomposite)

Chemical interactions

® anion
€ cation

Van der Waals forces Electrostactic interactions Chemical bonding

Figure 4. (Upper scheme) Dispersion of platelet-like fillers into polymer composites. Adapted
from reference [177]. Copyright Elsevier, 2018. (Lower scheme) Interactions between typical carbon
nanostructures and different polymers in composites.

3.2.1. Mechanical and Thermal Stability Properties

The preparation of biopolymers nanocomposites with GNP [152,173,178,179], chemically modified
rGO [145,167,180,181], or CNT [172,174,175,182] reinforcement has exhibited significant enhancements
in the mechanical properties of chitosan, PLA, alginate, PHBV, cellulose nanofibers, and starch even
at very low concentrations (<5%), as described in Table 1. The Young’s modulus, tensile strength,
and elongation at break are increased with the incorporation of the diverse graphene derivatives as
fillers. For example, compared with the neat biopolymer, the incorporation of only 0.7 wt% rGO into
a PHBV-based formulation increased these properties by 100%, 119% and 24%, respectively [145].
In turn, the incorporation of 2 wt% of CNT into a PLA matrix also provides an improvement of
52% and 36% on the materials’ tensile strength and elongation at break, respectively [7]. There is,
therefore, a reinforcement of mechanical properties by the incorporation of graphene derivatives, and
the different morphology of these nanostructures does not seem to have a predominant or limiting role
for this mechanical improvement [183]. In some cases, the incorporation of graphene derivatives into
biopolymer-based formulations could result in a slight decrease of elongation at break, meaning that
these composites can present lower flexibility [152,170,178]. However, this drawback can be overcome
or limited through the synergism of graphene derivatives with other nanofillers, such as cellulose
nanocrystals (CNC) or ZnO [173,178]. The simultaneous use of different graphene derivatives as
fillers could also be a strategy to enhance the mechanical performance of final composites since the
reinforcement of PLA-based films with a 0.4 wt% of a hybrid co-filler with added single-walled carbon
nanotubes (SWCNT) and GO resulted in an increased tensile strength and Young’s modulus up to



Nanomaterials 2020, 10, 2077 12 of 32

75% and 130%, respectively [7]. Mechanical properties of biocomposites are directly related to the
biopolymer(s) interaction type established with the carbon filler(s), such as electrostatic interactions,
van der Waals forces, or hydrogen bonding between the hydrophilic groups of the biopolymer(s)
and the oxygenated functional groups on carbon nanostructures, or chemical bonding when grafting
processes are applied as illustrated on Figure 4. This interaction can improve the stress transfer
mechanism between graphene derivatives and the biopolymer matrix, thus increasing the material
rigidity and tensile strength of the nanocomposite [145,167]. In the case of GO or chemically modified
GO, mechanical properties are, therefore, strongly influenced by the degree oxidation [152], since the
incorporation of the same amount of GO (0.6 wt%) prepared with growing ratios of KnMO4/graphite
(from 2:1 to 8:1) into a CS matrix generated variable mechanical properties: Young’s modulus decreasing
and increasing by —20% to 307%, tensile strength increasing by 15% to 327% and elongation at break
increasing and decreasing by +1% to —29% with the oxidation degree increase when compared with
this neat biopolymer. The increase of the oxidation degree led to an increase of the rigidity and
strength, accompanied by a stretchability decrease, which is linked to the chain mobility restriction as
a result of more hydrogen bonds forming. The oxidation degree of rGO is, thus, a factor that should be
taken into account on the optimization of biocomposites processability. In addition, the grafting of
rGO with cellulose nanocrystals (rGO-CNC) potentiates the formation of hydrogen bonds between
biopolymer/graphene derivative, and thus better mechanical results are achieved even when compared
with the simultaneous incorporation of non-grafted rGO and CNC [145]. The combined use of rGO and
CNT seems to potentiate the Young’s modulus and tensile strength increase [184]. Generally, the upper
reinforcement degree of rGO or CNT and their chemically modified forms is usually reflected on the
improvement of tensile strength and Young’s modulus. However, at high concentrations (>20 wt%),
graphene derivatives can introduce defects in the biocomposite microstructure, compromising the
further improvement of mechanical properties [179,183]. In addition, it is still necessary to assess the
mechanical performance of graphene-based biocomposites as food packaging relative to shelf life.
Food products emit compounds such as CO, which, in the presence of water, form carbonic acid that
can interact with the biocomposites and influence their resistance [185].

The thermal stability of the biocomposites can also be improved with the inclusion of graphene
derivatives into biopolymer-based formulations. The temperature of degradation is delayed by 5 °C
up to 20 °C, when compared with the biopolymer film without these nanofillers [145,167]. The high
heat resistance of graphene derivatives seems to improve the thermal stability of biocomposites since
the introduction of these nanofillers into biopolymer matrix creates an effective heat and gas barrier
which prevents the diffusion of volatile degradation products and radicals, slowing the biocomposite
thermal degradation [145,167].
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Table 1. Preparation methods and mechanical properties of biopolymer/carbon nanostructures composites.

Polymer Nanomaterial Preparation Nanomaterial Plspersmn Main Mechanical Effects Ref.
Method Strategies
1(())55:\(7)’(‘31‘(/)‘]:1-/0 ggéd Physical blending (stirring); Covalently grafted GO-CNC achieved the
PHBV o ? & Solvent casting y . N &) highest YM, TS, and EB values, which were up to [149]
GOJENC, chemical grafting 138%, 170%, and 52% higher than neat polymer.
1 wt% grafted GO-CNC % % ° g polymet.
0.5 wt% GO with different . L . By increasing of oxidation degree of GO, the TS
degrees of oxidation Solvent casting Ultrasonic dispersion and YM increase and the EB decreases. [152]
CS 0.25 wt% GO and 3 wt% Synergistic reinforcements were found on the
ball-milled maleamic . . . composite with GO and MAIPS: highest YM and
acid-isobutyl polyoctahedral Solvent casting Physical blending TS (e.g., 50% and 38% higher, respectively, than [186]
silsesquioxanes (MAIPS) neat polymer).
The simultaneous incorporation of GNP and
5 wt% GNP and 5 wt% ZnO Solvent casting Ultrasonic dispersion Zn0 lead to highest values of YM and TS, and to [178]
a slight decrease of EB.
CS/GO showed higher TS (improvements of 70%
GO (0, 25, 40, 45, 48, or 50 to 110%), YM (improvements of 500%), and.
. . . o . lower EB (decay of 90%) when compared with
wt%, in relation to Solvent casting Ultrasonic dispersion . ) N . [170]
CS weight) chitosan films. No significative differences were
& found in CS-based composites with 40 to 50 wt%
of GO.
At the same ratios, CS/GNP and CS/MWCNT
exhibited similar TS and YM values. The highest
values of TS were achieved by incorporation of
15 wt% of GNP or MWCNT, which represented
o . s . improvements of 49% and 64% when compared
0 to 30 wt% GNP or MWCNT Solvent casting Ultrasonic dispersion [183]

to those of neat polymer. In turn, the highest
values of YM were achieved by incorporation of
30 wt% of GNP or MWCNT, which represented
improvements of 109% and 115% when
compared to those of neat polymer.
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Table 1. Cont.

14 of 32

Polymer Nanomaterial Preparation Nanomaterial Plspersmn Main Mechanical Effects Ref.
Method Strategies
3,6, and 9 wt% MWCNT The YM and TS were reduced and the EB was
Starch grafted with ascorbic acid Solvent casting Ultrasonic dispersion increased by enhancing the AA-MWCNT [182]
(AA-MWCNT) loading in the composite.
1wt% GNP and CNC (ratio Hot pressin, Melt blending with the fi?lﬁz?zzznl;er:isn?l?lélr\:[e/oissl iz(irElzrV:teil(;i of both [173]
50/50) P & Triton X-100 surfactant . y P
nanofillers.
PLA .
0.5 wt% GO and 1 wt% CNC Solvent casting Physical blending {gczl‘;i/se of PLA/CNC/rGO nanocomposite TS up [187]
Solvent casting or Higher flexural strength was achieved when
0.05 to 2 wt% GO-Ag hybrids direct mechanical Physical blend.mg ormelt  higher amounts of GO—Ag hybrids were add?d [188]
. blending and when physical blending and solvent casting
melt blending .
subsequent methods were applied.
o . s . The TS and EB have an enhancement of 52% and
2 wt% CNT Solvent casting Ultrasonic dispersion 36%, respectively, in comparison with PLA films. [174]
o Increments of 32.70% and 67.17% were obtained
0.5,1.0, 2.0, and 3.0 wt% Injection molding Mechanical blending for the TS and EB with the inclusion of 3 wt% of [175]
MWCNT
MWCNT.
The mechanical performance of the sample was
o Compression . . . maintained a high level (tensile strength: 45.52
PLA/CNCs 0.9 to 8.3 wt% CNT molding Pickering emulsions MPa, Young’s modulus: 3152 MPa) after the [172]
incorporation of 4.3 wt% CNT.
The inclusion of >2 wt% GO content into
alginate-based composites demonstrated
remarkable improvements in YM. The
Alginate 0 to 25 wt% GO Solvent casting Physical blending maximum upgrade achieved was of 230% in [179]

comparison with pure alginate (15 wt% GO).
The evolution of the TS suggested the inclusion
of defects in the microstructure as GO increased.

PHBV: poly(3-hydroxybutyrate- co -3-hydroxyvalerate). GO: graphene oxide. CNC: cellulose nanocrystals. YM: Young’s modulus. TS: tensile strength. EB: elongation at break. CS:
chitosan. MAIPS: ball-milled maleamic acid—isobutyl polyoctahedral silsesquioxanes. CNT: carbon nanotubes. PLA: polylactic acid. MWCNT: multi-walled carbon nanotubes. GNP:
graphene nanoplatelets. ZnO: zinc oxide. Ag: silver particles.
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3.2.2. Barrier Properties

Graphene-based biocomposites exhibit great barrier properties against gases, water vapor, and
UV light [7,145,152,167,173,179]. The gas barrier properties have a special importance on modified
atmosphere in food packaging. Water vapor barrier properties should avoid the water penetration
on packaging atmosphere or the dehydration of foodstuffs, and UV light barrier should avoid the
transmittance of UV light across packaging materials and the subsequent degradation of organic
compounds present in the food matrices, thus preventing its deterioration and quality lost. A hybrid
co-filler made with SWCNT and GO fillers with a loading of only 0.4% into PLA films decreased the
oxygen transmission rate by 67% and diminished the transmission of ultraviolet-visible light by 30%.
Manikandan et al. [8] proved that the use of polyhydroxybutyrate biocomposite containing 0.7 wt%
GNPs had improved water, oxygen, and UV barrier properties and was also able to promote a fourfold
increase of potato chips and milk products shelf life. The improvement in gas and water barrier
of graphene-based biocomposites is explained by the introduction of impermeable graphene-based
nanofillers with large surface area which restricts the motions of the biopolymer chains, and the
creation of a tortuous pathway into the film matrix that complicates gas molecules diffusion.

3.2.3. Surface Hydrophobicity Properties

Surface hydrophobicity of biopolymer-based materials is also enhanced by the incorporation
of graphene derivatives. As described in the Section 2, the hydrophilic character of the bio-based
and biodegradable polymers is the main limiting factor for their application. In contact with food,
these biopolymers can absorb water or even solubilize and, concomitantly, compromise their protective
function as packaging films. The integration of graphene derivatives into biocomposites increases
their surface hydrophobicity and decreases their water solubility. Recently, the use of 0.6 wt% of rtGO
grafted with maleic anhydride and subsequently with dodecyl amine increased the contact angle of
PLA/starch composite from 67° to 81° [167]. Furthermore, solubility of CS in water decreased from
38% to 22% with rGO at 0.5 wt% [152]. These values are promising, but they are not enough for these
composites” application as food packaging films.

3.2.4. Biodegradability

The development and optimization of graphene-based biocomposites is ongoing and it is
important to prove that the biodegradable properties of natural polymers are not compromised.
The biodegradation of polymers occurs as a result of the activity of specific microorganisms to
hydrolyze and oxidize these molecules in a short time after their disposal. The strong interaction
between graphene fillers and the biopolymer can improve the mechanical stability, as previously
mentioned; however, the degradation rate can be slightly reduced by delaying the diffusion of water
into the polymeric matrix [189]. Lyn et al. [152] supported this hypothesis by demonstrating that
solvent casting CS/rGO composites biodegrade completely after 20 days of composting. On the
contrary, melt processing films of PLA/starch blends with 5 wt% of rGO have 17-26% higher weight
loss than the blends without the rGO in 183 days of controlled aerobic composting process [190].
Nonetheless, despite the degradation rate decreasing, the biocomposites biodegradability is not
compromised [152,189,190].

3.2.5. Active Properties

Nowadays, in addition to the desirable biodegradable packaging, there are global research
interests for the development of active food packaging to extend shelf life, enhance safety, and
maintain the organoleptic properties. Biocomposites with graphene derivatives can exhibit antioxidant,
antimicrobial, and antifungal activity as extensively reviewed by Carvalho et al. [191]. The radical
scavenging capacity of rGO can provide antioxidant activity to biocomposites. CS-based films
with 20-33 wt% of rGO showed an increase of inhibition in the range of 54% to 82% after 8 h of
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incubation [170] and this activity can avoid the oxidation of packaged foodstuffs. The antimicrobial
and antifungal properties of graphene-based nanostructures are based on their capacity to induce cell
membrane disruption and oxidative stress that compromise bacterial proliferation and sporulation [191].
Biocomposites with graphene derivatives revealed in vitro antibacterial properties against a broad
spectrum of pathogenic microorganisms (such as Enterococcus faecalis, Staphylococcus epidermidis,
Escherichia coli, Staphylococcus aureus, Staphylococcus haemolyticus, and Bacillus subtilis). The surface
modification of graphene derivatives with essential oils or other metal compounds such as Ag,
ZnO, or TiO, has been adopted as strategy to enhance the inherent antimicrobial potential of these
nanostructures [191]. Recently, a PLA/CNT/cinnamaldehyde film revealed great potential application
as a controlled-release antibacterial active food packaging film with an active effect proven up to
21 days [192]. Antifungal activities of biocomposites containing carbon nanostructures against
Aspergillus niger, Cryptococcus neoformans, Candida tropicalis, Candida albicans, Botrytis cinereas, and
Rhizopus spp. have also been described [191].

Alternatively, the delocalized conjugated electron structure of graphene derivatives has been
recently explored for production of photocatalytic hybrid systems with application in organic
compounds’ degradation [186,193]. Organic compounds’ degradation might have special importance
for controlling the composition inside of the modified atmosphere packaging in order to extend the
shelf life of food products. The organic compounds’ degradation ability of visible light-responsive
GO/Bi;WOg hybrid system was shown to be 4.4 times more effective on ethylene degradation than pure
BipWOg when incorporated into starch-based films [193]. Ethylene is a phytohormone responsible for
inducing the fruit ripening process and its accumulation inside packaging leads to senescence of fruit.
The application of starch/GO/Bi;WO, composites as active packaging materials of highly perishable
fruit can be an opportunity to decrease fruit losses and wastes [193].

Therefore, the use of graphene derivatives into biopolymer-based composites reveals to be a
promising approach to develop active food packaging, enhancing the preservation of food products.

3.2.6. Clay-Graphene Bionanocomposites

Nano- and micro-particulated clay minerals could be incorporated as fillers leading to
biopolymer—clay nanocomposites (bionanocomposites) based on the assembly of polysaccharides,
proteins, polyesters, etc., with layered silicates, such as smectites and vermiculites, as well as fibrous
clays like sepiolite and palygorskite [194-201]. These clay-based biocomposites are of great interest
for diverse applications, including films and coatings for use in food packaging, as they can improve
barrier and mechanical properties, in addition to conferring water resistance and other characteristics
very attractive for these types of uses [200].

Clays could be assembled to carbon particles producing graphene-like materials of variable
composition and properties, including adsorption ability and electrical conductivity, mainly afforded by
the clay component and the graphene derivative component, respectively. These carbon—clay materials
could be synthetized following two main processing approaches: (i) top-down, by crushing together
both components, and (ii) bottom-up, by growing carbon on clay minerals used as supports [202,203].
Another interesting preparative way to develop carbon—clay composites is based in the use of the
fibrous clay known as sepiolite, which is processed and commercialized as a rheological grade product
(Pangel®). Tt is well known that the dispersion of carbon NP—for instance, carbon nanotubes—in
aqueous medium [204-208] is of paramount importance to homogeneously disperse carbon NP as
fillers in water soluble biopolymers. An efficient approach for this purpose is based on the use of the
rheological grade sepiolite assisted by ultrasonic irradiation in the presence of those carbon NP leading
to dispersions stable for several months without syneresis effects [209]. For instance, the stabilization
of MWCNT and GNP was initially interpreted in terms of steric stabilization where sepiolite nanofibers
act as interposed species in between the carbon NP avoiding its reassembly [209]. Based on this
behavior, diverse films of carbon—clay bionanocomposites containing gelatin, polyvinyl alcohol and
alginate provided with electrical conductivity have been reported [210].
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Clay—graphene materials dispersed in diverse biopolymers are fillers of great interest because
they can introduce significant improvement on the resulting biocomposites, increasing their barrier
properties and conferring electrical conductivity. In fact, synergistic effects of clay minerals and
graphene-based materials are observed for the use of clay—graphene systems as fillers of polymers.
For instance, GNP/sepiolite can be used as fillers of alginate leading to films showing simultaneously
reinforcing properties together marked in-plane conductivity (ca. 500 S m~!), which increases by the
additional incorporation of MWCNT favoring percolation reaching values up to 2500 S m~! [202,210].
These alginate-based biocomposite films show variable mechanical properties (e.g., elongation at
break and Young’s modulus) depending on the proportion of the starting components, i.e., sepiolite,
GNP, and alginate [210]. A clear disadvantage of the use of sepiolite in the preparation of these
carbon—clay fillers can be the possible loss of mechanical properties. Moreover, high clay content
significantly reduces the electrical conductivity in detriment of its use as films for pulsed electric field
(PEF) application.

3.3. Emerging Application for Biopolymer-Based with Graphene Derivatives

The use of electrically conductive graphene derivatives in food packaging can be an important
feature for the development of food processing technologies. Food processing by pulsed electric
field (PEF) is one of the most promising emerging non-thermal technologies. The PEF treatment
consists in the application of short high voltage pulses to food products to inactivate enzymes and
microorganisms, while maintaining their sensorial and nutritional properties [211-213]. Currently,
foodstuffs are processed before packaging in direct contact with the chamber electrodes [214].
This methodology compromises the food safety due to metals releasing from the stainless steel
electrodes and post-sterilization recontamination events (before food packaging) [215]. The release of
metals from electrodes could be avoided by covering the electrodes with an electrically conductive
material, while the recontamination could be prevented if the PEF treatment occurred after packaging
(Figure 5). Roodenburg et al. [216] used a commercially available electrically conductive plastic,
commonly used to pack electronic components, to cover the chamber electrodes. The use of this
composite constituted by ethylene vinyl acetate and 30 wt% carbon black particles, with an electrical
conductivity of 0.75 S m™!, led to a bacterial inactivation of 2.1 log1g. The same authors also studied
the effectiveness of PEF in-pack, using this composite material as a food packaging pouch. The results
showed a bacterial inactivation of 5.9 logyp, which reaches the pasteurization level [217].
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Figure 5. PEF processing in-pack. Food is packaged into an electrically conductive food packaging
prior to PEF Table 2. Adapted from reference [217] Copyright Wiley-VCH Verlag GmbH & Co, KGaA,
Weinheim, 2011.

After the PEF proof of concept, it is necessary to develop electrically conductive materials
suitable for food packaging. Biopolymer-based composites containing graphene derivatives can
be a solution. In this regard, CS-based biocomposites containing rGO were recently suggested for
electrically conductive food packaging [170]. In this work, rGO was prepared using caffeic acid as
reducing agent, representing a green alternative to toxic reducing agents that should be avoided



Nanomaterials 2020, 10, 2077 18 of 32

in food packaging applications. The bionanocomposite films containing 50 wt% rGO showed an
electrical conductivity of 0.7 Sm™! and 2.1 x 10> S m™!, in-plane and through-plane, respectively.
CS-based flexible films containing rGO-Fe;_,O,4 were also suggested for electrically conductive food
packaging [12]. These sustainable bionanocomposites, produced in absence of toxic chemicals, achieved
an in-plane electrical conductivity of ~0.016 S m~! with 50 wt% rGO-Fe;_,Oy4. In both works [12,170],
the electrically conductive films also display mechanical properties and antioxidant activity attractive
for food packaging applications. However, to the best of the authors knowledge, there are no other
reports specifically addressing this issue. Therefore, Table 2 lists reports from the last three years
regarding electrically conductive biocomposites suggested for other applications that are considered to
have potential for electrically conductive food packaging. The graphene derivatives found as fillers in
these biocomposites were MWCNT, SWCNT, rGO, GNP, and graphene. PLA, cellulose, and CS are the
most used biopolymer matrices. Polymer blends are a strategy to improve the mechanical properties
of the matrix and the dispersion of carbonaceous fillers [190,218]. Films containing GNP, as conductive
filler, and a matrix of a blend of PLA biopolymer and poly (butylene adipate-co-butylene terephthalate)
(PBAT) synthetic biodegradable polymer were successfully prepared [219]. PLA has a weak affinity
with GNP, while PBAT has a good affinity thus enabling to hold high GNP loadings. This strategy
created conductive channels by confining GNP into the PBAT continuous phase and constructed
good percolation networks leading to an electrical conductivity of 338 S m~!. The MWCNT were the
most used fillers due to their high electrical conductivity capacity, typically required for electronic
applications [172,174,175,201,218,220]. MWCNT were also used is small amounts as doping materials
to enhance the electrical conductivity of GNP in the CS matrix [221]. GNP and rGO are cost-effective
alternatives given the large-scale production of food packaging [222]. However, the rGO with high
electrical conductivity is usually prepared using toxic reducing agents that prevent its use for food
packaging. On the other hand, the use of nontoxic reducing agents produces rGO with lower electrical
conductivity [12,170,190,223,224]. The in-situ reduction of GO into NFC with hydroiodic acid (HI) lead
to an in-plane electrical conductivity of 22.22 Sm™!, while the same procedure using ascorbic acid lead
to an electrical conductivity of 0.83 S m~!. The films thermally reduced (TR) at 450°C achieved the
highest conductivity of 23.42 S m~!, but this method weakened the mechanical properties [225].

The food packaging materials for PEF treatment in-pack should have a through-plane electrical
conductivity close to the electrical conductivity of the packaged food, which is typically between
0.1-2Sm~! [216]. Many of the biocomposites listed in Table 2 present superior electrical conductivity to
the food conductivity. However, these values refer to the in-plane conductivity, since the through-plane
conductivity is not reported in most cases. These fillers have a preferential alignment in the
plane direction, leading to composites with low through-plane conductivity, even in cases of high
in-plane conductivity [170,210]. Thus, the through-plane electrical conductivity of graphene-based
nanomaterials is very poor [226]. Therefore, the development of novel strategies to improve the
through-plane conductivity are paramount to this emerging application.

Table 2. Biopolymer-based composites containing graphene derivatives suitable for electrically
conductive food packaging recently described in literature.

Biopolymer Graphene Derivative oc(Sm™1) Applications Ref.
4.3 wt% MWCNT 59.30 EMI shielding [172

15 wt% GNP 0.35 - [227

3 wt% MWCNT 6.42 EMI shielding [175

PLA

5 wt% SWCNT 1010 Organic devices [228

1

1

1

2 wt% MWCNT 19.70 EMI shielding [174]
1

15 wt% GNP 0.36 Electronics [229]
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Table 2. Cont.

Biopolymer Graphene Derivative o (Sm™1) Applications Ref.

5 wt% rGO 0.001 Packaging [190]

40 wt% GNP 338 Electronic devices [219]

5 wt% rGO 15,200 Electronic devices [230]

PLA/Starch 4.5 wt% MWCNT 10 Electrochemical devices [201]

PLA/PBAT 10 wt% MWCNT 37.6 Electronics [231]

Cellulose 9 wt% graphene 24 Diverse [223]

derivatives 9 wt% rGO 14 Diverse [223]

50 wt% rGO (AC) 0.83 Electronic devices [225]

50 wt% rGO (HI) 22.22 Electronic devices [225]

50 wt% rGO (TR) 23.42 Electronic devices [225]

0.25 wt% *MWCNT 0.82 - [218]

50 wt% rGO 0.7 Food packaging [170]

Ce““g’s“/ SFI 50 wt% rGO-Fes, Oy 0.016 Biomedical [12]
55 wt% GNP/5 wt% . .

MWCNT 2900 Bioelectrocatalysis [221]

2.5 wt% rGO 0.08 Biomedical [224]

PLA: polylactic acid. MWCNT: multi-walled carbon nanotubes. EMI: electromagnetic interference. GNP: graphene
nanoplatelets. SWCNT: single-walled carbon nanotubes. rGO: reduced graphene oxide. PBAT: poly (butylene
adipate-co-butylene terephthalate). AC: ascorbic acid. HI: hydroiodic acid. TR: thermally reduced. SPI: soy protein
isolate. CS: chitosan.

4. Future Perspectives

The returns of the combination of graphene derivatives with biopolymers were reviewed.
The electrical conductivity provided by the graphene derivatives opens the way for the development of
novel and auspicious materials and technologies, namely electrically conductive packaging materials
for food processing by PEF.

The electrically conductive biocomposites show great potential to be used in intelligent packaging
as flexible platforms to incorporate specific sensing molecules since the target detection would also
promote changes in the electrical conductivity of the biocomposites. In this context, a PLA-based sensor
containing a layer of paper coated with GO was recently described [232]. This sensor monitors the food
quality through the detection and quantification of biogenic amines. The PLA biopolymer was used as
a matrix to entrap colorimetric sensing compounds that detect the biogenic amines, while the ability of
GO to adsorb and desorb organic molecules allowed its quantification by laser desorption-ionization
mass spectrometry. This research area is expected to expand in the near future.

The presence of clays assembled to graphene derivatives is very attractive for the preparation
of multifunctional nanoplatforms with potential applications in food packaging. As reported above
(Section 3.2.6), the barrier properties regarding gases and water of layered graphene derivatives such
as GO and GNP could be enhanced by the simultaneous presence of clays—in particular, for smectite
silicates like montmorillonite. Carbon—clay materials could be functionalized by the immobilization
of semiconducting NP such as TiO; or ZnO on the clay surface [233]. This strategy appears as a
promising way to prepare improved UV-shielding films for packaging food, taking into account the
high performance of this type of semiconductor as a UV barrier in biopolymer films [234], given
that a synergistic effect with the graphene derivatives component present in these composites was
expected in our case. Remarkably, these semiconducting NP are also provided with bactericidal
activity. In addition, it may be considered that clay minerals are efficient adsorbents for many diverse
organic compounds as well as support of metal and metal oxide nanoparticles [235-237]. Therefore,
the presence of clays in the carbon—clay materials could be of interest to modulate the properties of the
resulting films based on clay—graphene biocomposites. For instance, bioactive compounds such as
bactericide or antifungal drugs might be easily incorporated into the pores of sepiolite and other clay
silicates acting as carriers of these bioactive agents. Moreover, characteristics as scavengers of oxygen
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can be introduced in the fillers by anchorage of metal oxide NP (e.g., iron-oxides) on the external
surfaces of clays.

Prior to the application of these materials, it is important to understand the risks of their migration
into food. Until now, there are few literature evidences, and those studies indicate that there is no
migration of graphene derivatives into food, or that the migration occurs far below the international
migration limits [145,169]. Additionally, these materials also constrain the diffusion and migration
of plasticizer molecules for food systems [167]. Still, there is a need to further investigate the risks
involved in the use of graphene derivatives in biopolymers. Notably, recent studies sustained
by sound science-based assessment of the potential impact on health and environment are being
developed with the aim to understand the graphene derivatives properties that control their biological
effects with promising results towards their safety application under controlled safe-by-design
approaches [238-240].
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