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Abstract
Aim: European grassland communities are highly diverse, but patterns and drivers of 
their continental-scale diversity remain elusive. This study analyses taxonomic and 
functional richness in European grasslands along continental-scale temperature and 
precipitation gradients.
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1  | INTRODUC TION

Grasslands are among the most diverse ecosystems in Europe (Wilson 
et al., 2012; Dengler et al., 2020). They have been extensively stud-
ied for a long time and with long-term monitoring schemes (Scholz, 
1975; Willems, 1983; Tilman et al., 2006). Various assembly pro-
cesses have been put forward that may explain the origin and main-
tenance of European grassland diversity, e.g., competitive hierarchy 
and niche partitioning (Mori et al., 2018). Yet, over the last 50 years, 
European grassland diversity has seen a dramatic decrease, often 
being attributed to increased nutrient availability (Wesche et al., 
2012), overgrazing (Dengler et al., 2020) or drought (Carmona et al., 
2012; Nogueira et al., 2018). Insight into patterns of plant diversity 
over environmental gradients is needed to aid deeper understanding 
of the effects of global change on biodiversity (e.g., Mooney et al., 

2009; Cardinale et al., 2012; Funk et al., 2017) and may also improve 
our understanding of the mechanisms that underlie community as-
sembly (MacArthur & Levins, 1967; McGill et al., 2006).

In the context of macroecology, diversity patterns of vegeta-
tion are typically discussed via various filtering mechanisms (e.g., 
Weiher et al., 2011). First, the dispersal filter determines the abil-
ity of a species to be present in a specific location, and hence the 
regional plant species pool and plant trait pool (Cadotte & Tucker, 
2017). Second, environmental conditions act as an additional filter 
on plant communities, sorting those that fulfill local (fundamental) 
niche requirements constituted by physiological constraints (Leibold 
et al., 2004; Tingley et al., 2014). Under the favorability hypothesis, 
the more extreme or unfavorable environmental conditions are, the 
more selective environmental filters are (Fischer, 1960). This sug-
gests that only plants with trait values well adapted to the extreme 
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Methods: We quantified functional and taxonomic richness of 55,748 vegetation 
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of minimum temperature, temperature range, annual precipitation, and precipitation 
seasonality using a multiple general additive modelling approach.
Results: Functional and taxonomic richness was high at intermediate minimum 
temperatures and wide temperature ranges. Functional and taxonomic richness 
was low in correspondence with low minimum temperatures or narrow temperature 
ranges. Functional richness increased and taxonomic richness decreased at higher 
minimum temperatures and wide annual temperature ranges. Both functional and 
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conditions persist, resulting in a reduction in community functional 
diversity in extreme conditions (de Bello et al., 2009; Mayfield & 
Levine, 2010; Shen et al., 2016). A third filter may be biotic interac-
tions, representing a counter-gradient with competitive interspecific 
interactions being the main driver of plant community composi-
tion at low abiotic stress (the stress gradient hypothesis; Bertness 
& Callaway, 1994). While this competition may lead to exclusion of 
species and reduced trait variation (Grime, 2006; Mayfield & Levine, 
2010; Kunstler et al., 2012), facilitative interactions have been sug-
gested to dominate when abiotic stress is high (Bertness & Callaway, 
1994; Brooker & Callaghan, 1998), leading to higher trait divergence 
and increased functional diversity (Valiente-Banuet & Verdú, 2007; 
McIntire & Fajardo, 2014). Finally, the occurrence and abundance of 
a plant may also be influenced by temporal variation in climate or 
other stressors (Díaz & Cabido, 1997; González-Moreno et al., 2015; 
Fischer et al., 2020). Plants can occur in a place as long as species’ 
niche requirements are met at some time of the year, i.e., exploiting 
temporarily empty niches (Godoy et al., 2009). This expansion of the 
realized niche can be especially important for the diversity of plant 
communities in temperate regions (Scheiner & Rey-Benayas, 1994; 
Breitschwerdt et al., 2018).

When describing diversity patterns, the focus should not only 
be on plant species identity (i.e., their taxonomy) but also on plant 
traits. As traits describe a more direct link between the performance 
of an organism, local environmental conditions, and a plant's func-
tioning in the community (Keddy, 1992; Funk et al., 2017), they play 
a critical role in determining local plant community diversity (Tilman 
et al., 1997; Weiher et al., 1998). Especially when non-random pro-
cesses determine community assemblages, species diversity is 
not an adequate surrogate for functional diversity (Díaz & Cabido, 
2001). However, both species and trait composition vary along en-
vironmental gradients (e.g., Raymundo et al., 2018), making the sep-
aration of taxonomic and functional diversity difficult (e.g., Hooper 
et al., 2002; Petchey & Gaston, 2002). To control for potentially 
coincidental similarity in diversity–environment trends, specifically 
designed field experiments are needed or one can use null models 
that check for functional diversity patterns different from random 
sampling of species (Gotelli & Graves, 1996; Swenson et al., 2012).

Taken together, the net influence of the various filtering mecha-
nisms on taxonomic and functional plant richness along large envi-
ronmental stress gradients remains elusive. Part of this ambiguous 
question is the value of considering plant trait diversity in addition 
to taxonomic diversity. Here, we analyzed functional and taxonomic 
richness in European grasslands along temperature and precipita-
tion gradients. We quantified the absolute functional and taxonomic 
richness directly derived from the community data, as well as the 
effect size of functional richness. The effect size indicates higher or 
lower functional richness than expected given the observed taxo-
nomic richness (e.g., Harvey et al., 1983; Götzenberger et al., 2016). 
First, we focused on annual minimum temperature, as extreme tem-
peratures limit metabolic activity, growth and constrain leaf size, and 
thus are likely to filter trait composition (Went, 1953). Second, we 
included annual precipitation, as drought constrains leaf longevity, 

photosynthetic efficiency, and seed mass (Sandel et al., 2010). Last, 
we included annual temperature range and precipitation seasonality 
to be able to assess the influence of seasonality on plant diversity at 
the continental scale (Scheiner & Rey-Benayas, 1994; Godoy et al., 
2009).

2  | METHODS

2.1 | Data collection and cleaning

2.1.1 | Vegetation plots

Plant community data (i.e., vegetation-plot records or relevés) were 
obtained from the European Vegetation Archive (EVA; Chytrý 
et al., 2016) on 2 March 2020. Relevés were classified by the expert 
system EUNIS-ESy to the habitat types of EUNIS (European Nature 
Information System) Habitat Classification (Chytrý et al., 2020). All 
grassland habitats (EUNIS group R) and coastal dune habitats (EUNIS 
habitats N15, N16 and N17) were selected. Plots not classified to 
any of these habitat types but assigned in the EVA database to the 
phytosociological class Molinio-Arrhenatheretea (Mucina et al., 2016) 
were added to the data set.

Data covered the whole of Europe. The islands of Macaronesia 
were excluded to remove any effects of isolated oceanic islands 
with significant within-island speciation and endemism (Humphries, 
1979). We selected plots recorded between 1979 and 2013 to cre-
ate an optimal match with climatic data. In addition, we selected 
plots with a georeferencing uncertainty smaller than 1  km, which 
further improved the match with high-resolution climatic data. Such 
a direct link between plant community and climate data reduces the 
effects of confounding factors like habitat heterogeneity (Szilágyi & 
Meszéna, 2009). We only included flowering plants as the available 
traits for this group are consistent within the data set. By doing so, 
we excluded ferns, bryophytes, lichens and fungi.

These selection criteria resulted in a georeferenced occurrence 
data set with presences of all selected plant species in all selected 
plots. From this initial data set, we excluded plots with particular 
ecological conditions (Münkemüller et al., 2020) using the follow-
ing criteria: (a) plots influenced by high salinity, identified by the 
presence of species known to favor extreme salty conditions (e.g., 
Suaeda maritima) were excluded, as their composition is likely driven 
by salinity rather than temperature or precipitation; and (b) plots 
with a cover of tree or tall shrub species, identified as all plant spe-
cies with an average height of more than 3  m (obtained from the 
TRY database, see below), that exceeded 5% in cover. All sources of 
vegetation-plot data are listed in Appendix S1.

2.1.2 | Trait data

We obtained trait data from the TRY database version 5 (Kattge et al., 
2020), containing both public and restricted data sets. We retrieved 
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root trait data from the Fine-Root Ecology Database (FRED; Iversen 
et al., 2018). All data sources are listed in Appendix S2. After stand-
ardization of trait units, we merged trait data from the two data-
bases and calculated species averages. While averaging excludes 
intraspecific trait variation and trait plasticity, which determines a 
large part of community diversity (Albert et al., 2010; Jung et al., 
2010; Ross et al., 2017; Barbour et al., 2019; Niu et al., 2020), this 
step was necessary as trait data were not available for most species 
across the different plots.

Functional richness depends on the selected set of traits. We 
used a sequence of selection criteria leading to our final trait data 
set. First, we selected traits based on their importance for vegeta-
tive growth and reproduction (Wright et al., 2004; Díaz et al., 2016). 
Then, we selected both above- and below-ground traits with good 
data coverage. Third, we removed traits of the same plant organ with 
high covariance (e.g., specific leaf area and leaf dry matter content) 
in order to equalize organ and trait importance in the functional di-
versity calculation, keeping the trait with the highest data coverage. 
Fourth, we selected numeric traits only to minimize the effects of di-
mension choice to calculate functional diversity (Maire et al., 2015). 
Our final trait data set contains six plant traits (Table 1).

As functional richness calculations (see below) are sensitive to 
the completeness of the species list per plot (Pakeman, 2014) and 
thus require a complete trait data set, we filled the gaps (14.7% of 
overall missing data) in our trait database (Table 1; Appendix S3). 
Imputing missing data is considered a better alternative to remov-
ing incomplete plots, which can potentially result in systematic bi-
ases (Nakagawa & Freckleton, 2008). We used the mice function of 
the mice package in R-3.6.1, which relies on between-trait correla-
tions using multi-variate imputation with chained equations to fill 
gaps. This method has been shown to have lower imputation error 
and bias compared to other multiple imputation approaches, espe-
cially when the percentage of missing data is high (Penone et al., 
2014). Although gap-filling techniques require only one trait value 

per species, we only retained species with at least two trait values 
to achieve a more accurate imputation. This resulted in the removal 
of complete relevés if the trait values for at least one species in the 
community did not meet this requirement. This resulted in the data 
set having 61,714 relevés containing a total of 2,884 species. Prior 
to the imputation, we log-transformed all trait data since some 
approaches could be sensitive to data with varying scales in the 
variables (Penone et al., 2014). Then, we used the predictive mean 
matching method for the imputation of all traits to preserve non-
linear trait–trait relationships. We ran 24 multiple imputations (van 
Buuren, 2012) where trait predictions were updated five times in 
the chained equations to improve the quality of the predictions. 
Because multiple imputation performance benefits from the addi-
tion of other traits that may be related to those of interest, we also 
included plant longevity (categorical trait), as this trait was com-
plete at the genus level. The gap-filling step resulted in 24 trait data 
sets, where the variation between them represents the uncertainty 
of the gap-filling technique. Qualitatively consistent results from 
different imputed data sets indicate that the conclusions on the 
directionality of the effects are not influenced by the gap-filling 
procedure.

2.1.3 | Climate data

We constructed four environmental gradients. The first was daily 
average minimum temperature (°C) of the coldest month of the year 
and the second was annual precipitation (mm). For both, environ-
ments were assumed to be harsher at the low end of the gradient 
(Went, 1953). Third, we considered precipitation seasonality (%), 
defined as the coefficient of variation based on monthly precipita-
tion. Fourth, we considered annual temperature range (°C), defined 
as the absolute difference between the daily average maximum 
temperature of the warmest month and the daily average minimum 

TA B L E  1  List of functional plant traits used. Missing data for species represent the percentage of species that have no data for that trait. 
Missing data overall represent the percentage of gaps in the overall data set for that trait

Trait Unit Descriptiona  Related function

Missing data (%)

Species Overall

Specific leaf area mm2 mg-1 One-sided area of a fresh leaf divided by its 
oven-dried mass

Photosynthetic rate, drought 
tolerance

16.4 1.2

Leaf nitrogen 
concentration

mg g-1 Total amount of nitrogen per unit of dry leaf 
mass

Photosynthetic rate, stress 
tolerance

46.9 13.3

Plant height m Shortest distance between the upper 
boundary of the main photosynthetic 
tissues on a plant and the ground level

Light capture, above-ground 
competition, dispersal distance

3.0 0.7

Seed mass g Oven-dried mass of an average seed of a 
species

Dispersal distance, seedling 
competition

12.8 1.7

Specific root length mm mg-1 Ratio of root length to dry mass of fine roots Resource uptake, stress tolerance 85.3 35.3

Rooting depth m Maximum soil depth from which resources 
can be acquired

Resource uptake, drought tolerance 76.1 35.9

aStandardized definition from Pérez-Harguindeguy et al. (2013).
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temperature of the coldest month of the year. Other climatic vari-
ables were also used in this study as additional information (daily 
average warmest temperature of the warmest month [°C], mean 
temperature in the warmest quarter of the year [°C], mean tempera-
ture in the coldest quarter of the year [°C], annual mean temperature 
[°C], temperature seasonality). All climatic data were downloaded 
from CHELSA version 1.2 at a resolution of 0.01 degree (~1​ km grid 
cells; Karger et al., 2017).

2.2 | Diversity

We used two diversity metrics, taxonomic richness and multi-variate 
functional richness. Taxonomic richness quantifies the number of 
species present in a community or sampling plot, while functional 
richness expresses the minimum volume encompassing the most 
extreme trait values in an assemblage and is a commonly used met-
ric to quantify changes in assembly processes along environmental 
gradients (Mason & de Bello, 2013; Kraft et al., 2015; Münkemüller 
et al., 2020). These metrics suit the goals of describing plant diversity 

along environmental gradients. To calculate functional richness, we 
first created a species-specific trait distance matrix based on scaled 
values of the six selected traits and using multi-variate Euclidean 
distances without trait weighting. Second, we performed a Principal 
Coordinate Analysis (PCoA) on the distance matrix. Third, we used 
the resulting coordinates of the PCoA to build a multi-variate trait 
spectrum of all traits within a plot. Each data point in the multi-
variate trait spectrum describes the traits of a species, and the dis-
tances between points represent the similarity or diversification in 
traits between species. The global trait functional richness was com-
puted as the smallest six-dimensional convex hull enclosing all trait 
values in an assemblage. For a specific plot, the functional richness is 
quantified as the volume of the convex hull that encloses all species 
of that individual plot (Villéger et al., 2008; Mouillot et al., 2013).

In this functional richness calculation method, selecting the 
number of axes resulting from the PCoA was a trade-off. This calcu-
lation needs a higher number of species per plot than the number of 
included PCoA axes and thus convex hull dimensions. We chose to 
include all six axes to avoid excluding any trait variation. The removal 
of plots with six or fewer species did not create any bias as a low 

F I G U R E  1   Geographic distribution of vegetation plots used in this study. Colours represent the minimum temperature (a) and annual 
temperature range (b) of each plot in °C, as well as the annual precipitation in mm (c) and precipitation seasonality in percentages (d). The 
environmental distribution of all locations is plotted in Appendix S4
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number of species per plot occurred along the entire environmental 
gradient and followed the same pattern as plots with more than six 
species (Appendix S4). Removing these communities resulted in 24 
final data sets, each with 55,748 plots and 2,830 different species 
(Figure 1).

2.3 | Null model

We used a null model to test for potential effects of taxonomic 
richness on functional richness, revealing non-random patterns that 
indicate ecological processes as opposed to random patterns expected 
by chance (Gotelli & Graves, 1996; Swenson et al., 2012; Chalmandrier 
et al., 2013). Hence, we calculated a functional richness effect size using 
results from a null model which randomly shuffles species trait values 
in the trait data set but retains species’ trait combinations. Specifically, 
the species’ PCoA scores were randomly shuffled among species (but 
not within species) from the entire species pool (de Bello et al., 2012). 
The number of species per community was kept equal to the number 
of species observed to ensure the assessment of functional richness 
trends, independent of differences in taxonomic richness (similarly to 
Swenson et al., 2012; Craven et al., 2018).

The effect sizes were calculated using probabilities since the dis-
tribution of the null model was not symmetric (Appendix S5; Ulrich & 
Gotelli, 2010; Bernard-Verdier et al., 2012; Lhotsky et al., 2016). We 
used the probitlink function (Φ-1) of the VGAM package:

where

Here, we estimated the one-tailed probability of the observed 
functional richness (obs) having a lower value than expected com-
pared to the functional richness values resulting from the null model 
with 1,000 iterations (NULL) (Equation 2). When effect size calcula-
tions result in values close to zero (i.e., obs is close to the median of 
the null distribution), functional diversity is not different from the null 
expectation of no filtering of plant traits. Larger deviations of effect 
size values from zero indicate larger differences between observed 
and expected (by chance, i.e., without any plant trait community 
assembly processes) functional richness. Since we randomized trait 
values across species, negative effect size values indicate less vari-
ation in trait range than would be expected based on the number of 
species in the community, i.e., functional convergence or functional 
underdispersion (clustering). Positive effect size values indicate more 
variation in trait range than would be expected based on the number 
of species in the community, i.e., functional divergence or functional 
overdispersion (Bernard-Verdier et al., 2012; Swenson et al., 2012; 
Lhotsky et al., 2016).

2.4 | Statistical analyses

We used the average of the original functional richness values and 
effect size values in one grid cell (~1 km2) if more than one plot was 
sampled to reduce possible effects of spatial autocorrelation. This 
resulted in 19,179 data points and grid cells (Figure 1). For each of the 
24 imputed data sets, functional richness, taxonomic richness, and 
effect sizes were assessed along gradients of minimum temperature, 
temperature range, annual precipitation and precipitation 
seasonality in multiple generalized additive models with a Gaussian 
distribution using the gamm4 package. These models allowed for 
finding patterns in the data without a priori hypotheses on the 
shape of the relationship. However, we restricted the curviness of 
the trends by setting the knots (k) to 4 to prevent overfitting. Since 
the difference between the models was small (Appendix  S6), we 
averaged the trait data over the 24 imputed data sets, recalculated 
functional richness values, reran the null model, and used these data 
in our plots of functional richness and effect sizes so that confidence 
intervals could indicate model uncertainty instead of differences 
between imputed data sets.

3  | RESULTS

The diversity of grassland communities varied considerably over 
temperature and precipitation gradients (Figure 2; Appendix S7). We 
found functional and taxonomic richness to be lower in areas with 
low minimum temperatures and in areas with narrow temperature 
ranges (Figure 2a,c). These corresponded to locations in mountain 
ranges or with higher latitude or longitude and locations on islands 
or along the west coast of France, Belgium and the Netherlands, 
respectively (Appendix  S9). This similarity in trend between func-
tional and taxonomic richness may be due to a substantial correla-
tion (r  =  0.7; Appendix S8). However, at wide annual temperature 
ranges, functional richness increased with increasing minimum 
temperatures (Figure 2a), while taxonomic richness decreased with 
increasing minimum temperatures after reaching an optimum at a 
minimum temperature of around −5 °C (Figure  2c). These plots 
were located in continental Europe, where the highest minimum 
temperatures (i.e., highest functional richness values) were found 
along the coasts of southern Europe (Appendix S9). Note that for 
all temperature variables (annual maximum, maximum of the warm-
est quarter, annual minimum, minimum of the coldest quarter, and 
annual mean temperature), both richness metrics showed the same 
non-linear pattern as for the minimum temperature (Appendix S10). 
Likewise, temperature variation variables (annual temperature range 
and temperature seasonality) showed the same non-linear pattern 
(Appendix  S10). Considering the variation of functional and taxo-
nomic richness across precipitation gradients, we found a decrease 
in richness with increasing precipitation seasonality (Figure  2b, d; 
Appendix  S9). In addition, functional and taxonomic richness ap-
peared to have an optimum at average values of annual precipitation, 

(1)ES = Φ
− 1(p)

(2)p =

number(NULL< obs) +
number(NULL = obs)

2

1, 000
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though the variation in functional richness across this gradient was 
small (Figure 2b, d). Overall, temperature could explain more of the 
variation in functional and taxonomic richness than precipitation 
(Appendix S11).

Assessing the variation in trait diversity while controlling for 
the number of species in the assemblage, functional richness ef-
fect sizes showed an opposite trend from functional and taxo-
nomic richness along all environmental gradients (Figure 2e, f). 
Effect size values were positive when minimum temperatures 
dropped below −11 °C or exceeded −1 °C, representing sampled 
grasslands in the Alps, Russia and Scandinavia, and in south-
western Europe respectively (Appendix S9). Larger effect sizes 
were found in locations with extremely low minimum tempera-
ture and at low annual precipitation with extreme precipitation 
seasonality. Slightly negative effect size values were found at 

intermediate minimum temperatures, where sampled grasslands 
are mostly located in central Europe (Figure  2e; Appendix  S9). 
In contrast, effect sizes did not show a clear pattern along the 
temperature range gradient (Figure 2e), nor did they vary much 
across both precipitation gradients (Figure 2f).

4  | DISCUSSION

The results of our continental-scale study show that European 
grassland communities vary substantially in functional and taxo-
nomic richness along temperature and precipitation gradients. 
Highest richness in both traits and species was found in communi-
ties experiencing favorable, intermediate to warm climates. These 
locations contain more species with trait combinations that show 

F I G U R E  2  Heat maps depicting fitted 
results of three multiple generalized 
additive models. Values for functional 
richness (a + b) indicate the logarithm 
of the original values, while values for 
taxonomic richness (c + d) and effect sizes 
of functional richness (e + f) represent 
the original values. In panels (a–d), lighter 
colours indicate lower functional richness 
values and darker colours indicate higher 
functional or taxonomic richness values. 
In panels (e) and (f), yellow to red colours 
are positive effect sizes, and blue to 
purple colours are negative effect sizes. 
White spaces are locations without data 
and/or represent combinations of climatic 
variables that do not exist anywhere in 
Europe
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greater functional variation compared to other locations. This 
pattern is expected under the favorability hypothesis of lower 
diversity in harsh (low minimum temperatures and less precipita-
tion) environments and higher diversity in more benign (warmer 
and more frequent precipitation) environments (Fischer, 1960). 
Additionally, this pattern is in line with taxonomic and functional 
diversity patterns found in non-European grasslands (Moradi & 
Oldeland, 2019). Note that Moradi & Oldeland (2019) reported that 
precipitation limits plant diversity more than minimum tempera-
ture in dry areas, which contrasts with our results (Appendix S11). 
This may suggest that, when drier areas would have been included 
in this study, taxonomic richness may decrease more toward more 
water-limited sites and determine the diversity patterns more than 
temperature. Another explanation of the peak in functional and 
taxonomic richness at average minimum temperature values is the 
mid-domain effect (Colwell & Hurtt, 1994; Colwell & Lees, 2000). 
Here, the geometric limits in relation to the distribution of spe-
cies increases the overlap of species ranges and thus of species 
richness in the middle of the gradient (Colwell & Lees, 2000). We 
assume this effect to be of minor importance as grasslands ex-
tend from southwestern Europe to Middle and Central Asia, many 
grassland species have large geographical ranges (extending be-
yond the area included in this analysis), and many included species 
also occur in other habitats besides grasslands.

Remarkably, functional richness values further increased toward 
higher minimum temperatures and wider temperature ranges, while 
taxonomic richness decreased. Environments with a wide temperature 
range may hold co-existing species with dissimilar trait values as they 
can exploit different temporal niches, thereby dominating in differ-
ent seasons without outcompeting the other species (Figure 2e; Díaz 
et al., 1999). This may explain the positive effect sizes at high minimum 
temperatures and wide temperature ranges (Scheiner & Rey-Benayas, 
1994; González-Moreno et al., 2015). Nevertheless, such a hypothesis 
should be investigated further by inspecting variation in species abun-
dance in a community over time (Tilman, 1996; Pescador et al., 2015). 
Further note that due to the disregard of intraspecific variation in this 
study, we potentially overestimate functional richness in environmen-
tally constricted areas as adaptive traits may be more similar between 
species in these locations due to environmental filtering under the 
favorability hypothesis (Grant & Abbott, 1980; Swenson & Enquist, 
2009; Swenson et al., 2012). Conversely, we may underestimate func-
tional richness in other areas as adaptive traits may be more dissimilar 
between species under the principle of limiting similarity (Weiher & 
Keddy, 1995; Stubbs & Wilson, 2004; Mason & Wilson, 2006; Violle 
et al., 2011). Future field campaigns might invest in local trait measure-
ments for all species to enable the inclusion of intraspecific trait varia-
tion (Albert et al., 2010; Niu et al., 2020).

Functional and taxonomic richness decreased toward higher 
minimum temperatures and narrow temperature ranges. Under the 
stress gradient hypothesis, the reduced diversity may indicate strong 
competition due to a benign, warm climate (Bertness & Callaway, 
1994). However, temperature range is known to affect functional 
richness (González-Moreno et al., 2015) and might act as a stressor in 

these locations explaining the reduction in functional and taxonomic 
diversity under the favorability hypothesis. Since positive effect 
sizes were found in these environments, it could be a more stress-
ful environment where facilitation possibly causes trait divergence. 
This may follow the same explanation for the trait divergence found 
at extreme low minimum temperatures. In addition, facilitation was 
also observed in an alpine study where greater variation in tempera-
ture made for more stressful environments (Molenda et al., 2012). 
Nevertheless, these opposite effects may suggest that the locations 
with high minimum temperatures and narrow temperature ranges 
might be restricted by additional stressors that were not included in 
this study, like summer temperatures, wind, solar radiation, or even 
different herbivory levels. Experiments are required to disentangle 
the causal mechanisms underlying the functional and taxonomic 
richness patterns. They may also determine if and which environ-
mental factors determine the diversity in these European grasslands, 
but our results indicate the importance of climate seasonality.

Interpreting patterns in community diversity along climatic 
gradients is difficult, particularly because the variation in our data 
explained by the temperature and precipitation variables was rela-
tively low (8–10%; Appendix S10). Results should be interpreted with 
caution and experiments are required to back up possible explana-
tions of diversity patterns. The low explained variation indicates that 
other factors beside climate vary between locations and play a large 
role in determining the plant diversity of European grassland com-
munities, such as variation in soil, herbivory, management, landscape 
history and various biogeographical influences (e.g., Willems, 1983; 
Bakker et al., 2006; Dainese et al., 2015). It should also be empha-
sized that functional diversity is always dependent on the traits that 
are included in the study, where results may change when different 
traits are selected (Villéger et al., 2008). This means that the conclu-
sions regarding functional richness trends in this study depend on 
the specific set of traits we selected. Future research could benefit 
from the ever-growing availability of trait data (Kattge et al., 2020) 
and vegetation-plot data from other ecosystems (Bruelheide et al., 
2019) to assess the generality of plant community diversity patterns 
along environmental gradients and to assess how community assem-
bly may change in response to global warming (Mouillot et al., 2007; 
Mason et al., 2011; Catford et al., 2020).
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