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Abstract—Compression as data coding technique has seen
approximately 70 years of research and practical innovation.
Nowadays, powerful compression tools with good trade-offs exist
for a range of file formats from plain text to rich multimedia. Yet
in the dilemma of cloud providers to reduce log data sizes as much
as possible while having to keep as much as possible around for
regulatory reasons and compliance processes, many companies
are looking for smarter solutions beyond brute compression.
In this paper, comprehensive applied research setting around
network and system logs is introduced by comparing text com-
pression ratios and performance. The benchmark encompasses
13 tools and 30 tool-configuration-search combinations. The tool
and algorithm relationships as well as benchmark results are
modelled in a graph. After discussing the results, the paper
reasons about limitations of individual approaches and suitable
combinations of compression with smart adaptive log file han-
dling. The adaptivity is based on the exploitation of knowledge
on format-specific compression characteristics expressed in the
graph, for which a proof-of-concept advisor service is provided.

Index Terms—log file management, compression algorithms,
text compression, benchmark, adaptivity, smart systems

I. INTRODUCTION

Cloud computing has become a mature backbone for mil-

lions of delivered applications and services. Besides global-

scale/hyper-scale infrastructure providers with dozens of

data centres, many smaller managed network and platform

providers are successfully covering market needs for spe-

cialised services [1]. One key issue for these providers is the

handling of dynamically generated data from their services

and hosted applications. Increasingly automated operations

demand more insights into the provisioning and delivery

situations, and therefore access to larger amounts of historic

data [2]. Additionally, regulations may demand the storage of

such data for longer periods of time, and occasional search

for suspicious occurrences of terms. One of the most impor-

tant information sources are log files, and therefore complex

log management systems are set up to collect, transform

and unify log messages. At the end of such pipelines, logs

are compressed and stored for as long as necessary, while

still being available for occasional information retrieval [3].

Consequently, providers aim at finding compression tools

which squeeze the logs into the smallest possible files, while

tolerating slow compression, as long as content search, in

most cases preceded by decompression, should be fast. The

additional cost of log management, along with monitoring and

other operations, should be kept to a minimum to allow for

tight pricing of offered cloud services. Increasing diversity and

progress in generic compression tools and log-specific algo-

rithms [4], [5], [6] leaves many operators without a systematic

framework to choose suitable and economic log compression

tools and respective configurations. This prevents a systematic

solution to exploit cost tradeoffs, such as increasing investment

into better compression levels while saving long-term storage

cost. In this paper, such a framework is constructed by giving

a comprehensive overview with benchmark results of 30 to-

tal combinations of compression tools, decompression/search

tools and associated configurations.

The four concrete technical contributions of the paper are:

1) A rich graph model of compression algorithms,

formats, tools, settings and runtime characteristics

(compressgraph).

2) A robust test bench aiming at reproducible model cre-

ation with integration of relevant tools for accurate ratio

and performance benchmarking (compressbench).

3) A reference input and results dataset of text compres-

sion and search tools applied to representative log files

(compressrefdata).

4) A programmable advisor service that exploits the graph

to recommend suitable compression for a given situation

(compressadvisor).

All four contributions are publicly available1. The relation

between them is summarised in Fig. 1.

Fig. 1. Contributions of this paper

In the next sections, related works are summarised and

log file scenarios defined. Afterwards, the tool comparison

is introduced with the compression graph model, a testbed

with curated sample data and the plan of the experiments.

The results are then presented and discussed, and the advisor
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service presented, before proceeding to an outlook on potential

future compression tools that favour smart handling over the

quest for raw compression ratios.

II. RELATED WORK

In recent years, the use of online services has seen a

significant growth, leading to an increase in log messages

to preserve (spatial growth). For multiple reasons, including

legal requirements, log files are also stored longer (tempo-

ral growth). The product of both growth factors leads to

a superlinear increase in resources required to store logs.

Hence, some researchers have focused specifically on new

compression algorithms for log files, while others have looked

into comparison approaches.

Logs can be produced by application, by system components

or by network or user activities on a system. They are typically

semi-structured, combining regular entry types (dates, times,

hosts) with irregular user-defined messages. For a primer on

application log structures and their semantic interpretation,

which is also exploited by more recent compression algo-

rithms, the work by Nimbalkar et al. [7] explains the problem

domain and offers an RDF-based solution that links to domain

vocabularies.

Logzip [4] has been proposed to exploit log-specific redun-

dancy in contrast to that found in generic text. Specifically,

Logzip extracts hidden structures by first sampling log lines

and then clustering them by tokens and other features. One

limitation of Logzip is the reliance on spaces as token separa-

tors which excludes widespread other formats. Vehicle traffic

logs can be compressed semantically with high efficiency as

shown in a recent study [8]. Multi-level Log Compression

(MLC) [9] is another proposal aimed at compressing log files

in a cloud backup workflow. It promises ratio improvements of

around 16% over state of the art compression tools. Text com-

pression beyond ASCII, applicable to the human-readable log

messages, has been explored by modifications to existing byte-

level compressors such as bzip2, with significant effectiveness

improvements reported [10], and semantic compression for

text has been investigated as well [11].

While these research prototypes are promising, a baseline

comparison of widely deployed compression tools would be

of immediate usefulness to operators and is in the focus of

this paper. There are many benchmarks and measurements

related to the comparison of compression techniques, often

on specific file types. The Squash Compression Benchmark

uses Squash, a generic abstraction layer running multiple

codecs across configurations, files and machines, with a total

of almost 60’000 individual results [12]. A general benchmark

framework for compression applicable to in-memory databases

has been proposed by Damme et al. [13].

In terms of benchmark results and documented comparisons,

text compressions for inverted indices have been compared by

Kounelis and Makris [14]. However, their work is limited to

two specific techniques, OptPFD and IPC. An older compar-

ison specifically on Java application server logs encompasses

three tools, gz, bzip2 and xz [15]. There is a distinct lack of

recent and comprehensive comparisons of log file compression

and smart selection of best tools for this task.

A general observation can be made about the apparent

business necessity of industrial compression research and tool

development. This is evidenced not only by Logzip (Huawei),

but also by the generic tools Brotli (Google) and Zstandard

(Facebook). A second observation concerns the optimisation

dimension. Most recent research works aim at a decreased

compression ratio, typically at the cost of increased compres-

sion time. In contrast, another class of compression algorithms

aims primarily on searchable compression with ratios being a

secondary concern. Our work combines them in a common

model.

III. ADAPTIVELY COMPRESSED LOG FILE SCENARIOS

Software adaptivity is controlled by goals and constraints.

For compression processes, typical goals are fast compression

or decompression times, fast search (often in conjunction with

decompression), low-memory or low-energy (de)compression,

or optimal compression ratio. The constraints are manyfold,

ranging from not having the appropriate tool installed to

inherent file size limitations in the tools. This knowledge needs

to be captured in a knowledge base so that it can be exploited

at runtime. In contrast to pure mechanical abstraction layers

such as Squash, the knowledge can then lead to dynamic

decisions about which codec and which parameterisation to

use in any context. The novel proposal in this paper is

to model the relationships in a graph, so that for instance

format-equivalent compression tool alternatives can be queried

dynamically based on situational context defined by goals

and constraints. Through autonomous or intelligent decision-

making between the possible candidates, based on an advisor

service, smart adaptive log file handling is achieved.

This handling shall be illustrated by a scenario: A provider

wants to store and rotate logs, asks the advisor, and gets a

command-line ready to execute on the files to achieve the

highest possible compression. Afterwards, the provider notices

that CPU usage is high and negatively affects the business ap-

plication. The constraint for less CPU involvement is brought

to the advisor, leading to updated advice on a command-line

that achieves still high compression with tolerable CPU load.

As the higher-level choice is remembered, new tools that are

added in later years are taken into account for smart and

gradual self-optimisation of the system.

IV. COMPARISON OF COMPRESSION TOOLS

A. Compression tools overview and graph model

The selection on compression tools is based on chronologi-

cally ordered algorithms, whereas the compression tool imple-

mentations might be newer and thus are not guaranteed to be in

any temporal order. In total, 13 widely used (de)compression

tools have been chosen and are modelled in the graph.

• Lempel-Ziv-Welch (LZW) (1984), implemented by

(n)compress.

• Deflate (1993), implemented by zlib-flate and zip.



• Further common compression tools: gzip, bzip2, xz, zstd,

LZMA/7-zip and lzop (all 1993+).

• ZPaq (2009).

• Zopfli and Brotli (2013 and 2015, respectively) [16].

Further tools, emerging from industrial and academic re-

search, can be added to compare them on equal terms. Fig.

2 shows the base graph that relates entities among the algo-

rithms, file formats and tools. The tools relate to command-

line utilities for compression, decompression and text string

search. As the graph is quite complex, the lower part of the

figure zooms in on one particular entity combination with

explanatory labels.

Fig. 2. above: Overview of entire base graph of compression algorithms,
tools, file formats and search interfaces; below: Magnified labelled excerpt

The base graph, when shown on a large screen or printed

out, is already helpful to operators to gain an overview about

possible and compatible combinations. Yet considering its

foreseen extensions with further tools, it might soon exceed the

human cognitive ability to draw meaningful decisions based

on its visual representation. Moreover, it does not yet serve

as knowledge base to give answers to more complex question

of high relevance in production scenarios, including the one

outlined before. Such questions are for instance:

• Which tool should be used with which configuration to

compress a certain file type?

• How should the tool be invoked, and how will it behave

on a certain system?

• What are the implications after compression - will plain

text search or regular expression search be possible?

For this reason, the base graph will later be extended

into the final compressgraph with the benchmark results

on runtime behaviour, achieved ratios and further augmented

information such as direct searchability of the coded data.

B. Sample data

The Loghub [17] is a well-known reference source for het-

erogeneous log file formats. A final graph model is best anno-

tated with comprehensive information about the compression-

related metrics involving these files. To get a first usable graph,

we use a subset of three representative server log files of

different sizes and formats.

• fw.log: Checkpoint firewall log with approximately

20.4 million lines, 5.4 GB.

• shp.log: Connectivity log with around 7.3 million

lines, 1.2 GB.

• admin.log: Firewall syslog with around 33000 lines,

4.4 MB.

C. Experiments

All experiments are conducted in a reproducible manner

using compressbench. This benchmark tool first reads

the tools to assess, along with their respective configurations

like compression levels, from the base graph. It then pre-

checks eligibility of tools, including their installation and

successful test invocation, repeats each measurement 10 times,

and stores the results in structured files. Further invocation

flow information about the tools is gained from the graph

model, including details about suffixes created after file-based

compression, whether the compressed file is deleted after

decompression, and whether the (de)compression operations

create files at all or use standard output that must hence be

redirected.

For this paper, all experiments are conducted on a virtual

machine with 2 GB RAM and without swap partitions. Al-

though no explicit memory measurements are conducted, the

compression experiments run under oomcheck to see if run-

ning out of memory would be an issue, which reports memory

and CPU consumption as a by-product of its functionality.

For the chosen tools, producing an out-of-memory error is

not the case as all adapt to the available memory. It should

however be stated that the different memory utilisation profiles

may be another factor to consider in practice. Further, tools

may crash for various reasons, including hardcoded (memory-

independent) inability to handle large files.

D. Results

The experiment has been conducted in the default config-

uration and a single compression level per tool, except two

for ZPaq due to the inherent difference of the algorithms. It

ran for several days in a row due to the factors of file size,

number of tool combinations, and repetitions. Fig. 3 compares

the achieved compression ratios. Apart from Compress, all

results stay consistently below 10% due to the high degree of

redundant information in the log files. While Brotli achieves

the best results, BZip2 which has been around for much longer

and whose algorithm is much simpler is not off worse by

much, with both achieving around 4%. ZPaq sets the optimum

bar with around 2%. Apart from the ratio, auxiliary runtime

behaviour is captured. For instance, Zopfli is unable to process

the largest of the files, as it exceeds the 2 GB limit; hence, the



orange bar is missing for Zopfli, and the limit is accordingly

recorded in the graph.

Fig. 3. Comparison of compression ratios with existing log compression tools

Fig. 4 conveys the associated compression times. It is

evident that Brotli and Zopfli are least efficient. However, it

should be noted that the compression time is hardly relevant

in a log management scenario because most log lines are com-

pressed incrementally as they arrive, with an arrival frequency

of typically much less than 1 GB/100s most tools manage

to compress. Hence, the performance interest shifts to post-

compression processes such as decompression and search.

Fig. 4. Comparison of associated compression times

Fig. 5 compares the time needed to search for a substring or

a regular expression. This includes the time needed to transpar-

ently decompress the file if the compression scheme does not

support searchable compression. The substring searches for a

concrete time stamp (STAMP), and the regular expression for

a timestamp in conjunction with a source IP address in the

firewall log file fw.log (ˆSTAMP.*src:SRC). The search

settings include both the plain and the GZip-compressed

variant of the log file.

It is observable that the regular expression search (egrep)

is faster than its substring counterpart by being able to skip

whole lines when the beginning of the expression does not

match. Once compression is added, this advantage is lost due

to the relatively larger time component required to decompress

first.

Fig. 5. Comparison of search times

The mentioned operational goal of many cloud providers is

to achieve primarily low compression ratios and fast search

times, with secondary concerns on compression speed or

memory consumption. The correlation of compression ratios

with search times is therefore a suitable guidance for choosing

the most suitable tooling. Fig. 6 shows this correlation based

on the experimental results. There is evidently a Pareto front;

no tool is able to enter the grey triangle, while the theoretic

optimum would be the lower left corner.

Fig. 6. Correlation of compression ratio with search times



The sample data along with the raw results is public

(compressrefdata). Furthermore, the measured charac-

teristics (ratios, times and resource consumption measured

by oomcheck) are augmenting the base graph model into

compressgraph.

V. GRAPH-BASED ADVISOR SERVICE AND ADAPTIVITY

The augmented compressgraph provides rich knowl-

edge to automate smart choosing of the most suitable

command-line to invoke on a given file. For instance, Zopfli

and GZip are competing implementations that can process

the same log file format, with just slightly better ratios and

much worse compression times when using Zopfli. Moreover,

Zopfli is limited by the 2 GB file barrier. In addition to

this knowledge, the advisory service would therefore need

to know the size (and potentially content) of the file, as

well as side constraints on time and resource consump-

tion. The advisor functionality has been implemented as a

RESTful service and an interactive CLI client to be used

by managed service administrators. The service narrows the

possible combinations through a set of filter expressions of

type <name>::<value>, such as searchtool::grep.

Listing 1 shows a slightly abbreviated sample interaction with

the advisor CLI in local mode, not connected to the API but

sharing the same implementation.

Listing 1. Excerpt of using compressadvisor

You have 13 compression tools.

- zpaq

- zopfli

...

Your choice?

0 Quit

1 Filter on format

2 Filter on search

...

> 2

Select from a search tool below:

- zgrep

- bzgrep

...

> zgrep

Current filters:

- searchtool::zgrep

You have 5 compression tools.

...

Your choice?

...

> 1

Select from a format below:

- gzipformat

- bzip2format

...

> gzipformat

Current filters:

- searchtool::zgrep,format::gzipformat

You have 4 compression tools.

- zpaq

- gzip

- zstd

- lzop

Your choice?

...

Beyond search tool and file format, the advisor accepts the

following filters:

• filesize, to indicate the size of the file to be

(de)compressed.

• maxmem, maximum memory consumption during

(de)compression.

• priority, an ordered list of ranking criteria en-

compassing compresstime, compressratio and

decompresstime.

• searchable, boolean flag to exclude schemes without

direct search support

In addition to the filters, which follow a typical filter

syntax of key::value, the RESTful API also takes regular

parameters with a syntax of key=value. The parameters are:

• filename, template placeholder to place the filename

into the right position in the produced system command.

This parameter is required.

• verbose, to produce rich log output on the process of

command-line construction which is then written to the

web server log.

The service interface is aimed at automated systems opera-

tions and directly delivers the command to execute. Obviously,

along with the potential use of any public data or API this

raises security concerns, which are not addressed in this paper

as the complexity of holistic system security is high by itself.

It is assumed, and acknowledged as limitation of the work, that

the advisor should only be run in trusted environments with a

protection of the graph against unauthorised modifications. To

make users at least aware of potential security problems, two

control points are defined for consumers of the API including

the CLI client: The first allows for inspecting the chosen

command to execute. The second records previous invocations

and allows to define a notification hook for reporting any

deviations.

Listing 2 shows how to run a compression using the advisor

service using both the CLI wrapper in non-interactive mode,

connected to the API, and the raw HTTP access to the API

itself. In contrast to the interactive mode of the CLI, the

response of the API and its CLI wrapper is always guaranteed

to include one result. If multiple results are found after

filtering, the first one will be returned consistently. If no results

are found, the returned command refers to the advisor CLI

itself which outputs an appropriate error message so that the

compression will not fail silently.

Listing 2. RESTful query of compressadvisor

# CLI API wrapper, determines file size

automatically

compressadvisor compress prod.log format::gzip

# API

$(curl -sSX GET "http://compressadvisor/compress?

format::gzip&filesize::2gb&filename=prod.log")

To elaborate on the integration options, Fig. 7 shows the

possible workflows. In security-sensitive environments, the

benchmark would be first re-run to build a trustworthy private

graph, and all commands determined by it would be verified

manually before put into production along with notifications

in case the command differs from previous invocations. For



convenience in non-critical environments, a publicly hosted

API could be used directly. In order to demonstrate the

convenience, the advisor service has been deployed to the

Google Cloud Platform and is publicly available for interested

users2.

Fig. 7. Flexible workflows around the compressadvisor service

VI. CONCLUSIONS

In the recent decade, several new compression tools were

introduced and others were updated. Further research on better

compression techniques continues, mainly driven by com-

mercial interests of global players in need of handling huge

amounts of data in a cost-efficient way. With the comparison

presented in this paper, operators of managed services, who

are among the key users of balanced compression needs, first

get an up-to-date overview about the behaviour of currently

available tools. They can further keep it up to date by

repeating the experiments and extending the covered tools as

needed. Furthermore, they can exploit the compression-related

characteristics graph as knowledge base to control adaptive

compression based on system constraints and differing needs

concerning future search through the compressed files. We

expect smart and knowledge-based compression to extend

into other areas such as efficient caching [18]. Moreover, as

mentioned in the introduction, the larger problem extends to

the economics of data handling, thus we expect advanced

knowledge graphs that take per-provider compute and storage

cost into account.
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Serra-Sagristà, and James A. Storer, editors, 2017 Data Compression

Conference, DCC 2017, Snowbird, UT, USA, April 4-7, 2017, page 441.
IEEE, 2017.

[11] Dariusz Ceglarek. Semantic compression for text document processing.
Trans. Comput. Collect. Intell., 14:20–48, 2014.

[12] Evan Nemerson. Squash Compression Benchmark. online:
https://quixdb.github.io/squash-benchmark/, December 2018.

[13] Patrick Damme, Dirk Habich, and Wolfgang Lehner. A benchmark
framework for data compression techniques. In Raghunath Nambiar
and Meikel Poess, editors, Performance Evaluation and Benchmarking:

Traditional to Big Data to Internet of Things - 7th TPC Technology

Conference, TPCTC 2015, Kohala Coast, HI, USA, August 31 - Septem-

ber 4, 2015. Revised Selected Papers, volume 9508 of Lecture Notes in

Computer Science, pages 77–93. Springer, 2015.

[14] Fotios Kounelis and Christos Makris. Comparison between text com-
pression algorithms in biological sequences. Inf. Comput., 270, 2020.

[15] Stefan Seidel. Log file compression. online:
https://www.stefanseidel.info/Log file compression, June 2012.

[16] Jyrki Alakuijala, Andrea Farruggia, Paolo Ferragina, Eugene Kliuch-
nikov, Robert Obryk, Zoltan Szabadka, and Lode Vandevenne. Brotli:
A general-purpose data compressor. ACM Trans. Inf. Syst., 37(1):4:1–
4:30, 2019.

[17] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng,
and Michael R. Lyu. Tools and Benchmarks for Automated Log Parsing.
In International Conference on Software Engineering (ICSE), 2019.
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