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Abstract: Sedentary behaviour is an emergent public health topic, but there is still no method to
simultaneously measure both components of sedentary behaviour—posture and energy expenditure—
with one sensor. This study investigated the accuracy and precision of measuring sedentary time
when combining the proprietary processing of a posture sensor (activPAL) with a new energy
expenditure algorithm and the proprietary processing of a movement sensor (ActiGraph) with a
published posture algorithm. One hundred office workers wore both sensors for an average of
7 days. The activPAL algorithm development used 38 and the subsequent independent method
comparison 62 participants. The single sensor sedentary estimates were compared with Bland–Atman
statistics to the Posture and Physical Activity Index, a combined measurement with both sensors.
All single-sensor methods overestimated sedentary time. However, adding the algorithms reduced
the overestimation from 129 to 21 (activPAL) and from 84 to 7 min a day (ActiGraph), with far
narrower 95% limits of agreements. Thus, combining the proprietary data with the algorithms is an
easy way to increase the accuracy and precision of the single sensor sedentary estimates and leads
to sedentary estimates that are more precise at the individual level than those of the proprietary
processing are at the group level.

Keywords: ActiGraph; activPAL; calibration; free-living behaviour; machine learning; objective mea-
surement; office worker; physical activity; Posture and Physical Activity Index (POPAI); validation

1. Introduction

Sedentary behaviour is an emerging public health topic. In November 2020, the World
Health Organization (WHO) released a new guideline recommending adults limit their
sedentary time because higher amounts of sedentary behaviour are associated with several
detrimental health effects, such as all-cause, cardiovascular, and cancer mortality, as well
as the incidences of cardiovascular disease, type 2 diabetes, and cancer [1]. The WHO
adopted the sedentary behaviour definition of the Sedentary Behavior Research Network,
defining sedentary behaviour as “any waking behaviour characterised by an energy expen-
diture of 1.5 METs (Metabolic Equivalents) or lower while sitting, reclining or lying” [1,2].
This definition includes a posture (sitting, reclining, or lying) and an energy expenditure
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component (≤1.5 METs). However, the evidence synthesis on which the WHO relied is
almost exclusively based on movement sensors classifying energy expenditure [3]. In fact,
Katzmarzyk and colleagues concluded in 2019 when updating the evidence synthesis for
the American guidelines that there is a pressing need to develop sensor-based methods to
simultaneously assess the two components of sedentary behaviour that can be applied in
surveillance and research settings to properly quantify sedentary time [4]. The need was
recently repeated while updating the WHO guidelines [5]. To date, however, there is still a
lack of methods to measure both components of sedentary behaviour simultaneously with
a single sensor applicable to surveillance and research settings.

For a couple of years, it has been well established that body-worn accelerometers
should be the method of choice to measure sedentary time [6]. Depending on the placement
and way of data processing, they can be divided into two groups: posture sensors and
movement sensors [7]. The most frequently used posture sensor is probably the activPAL
(PAL Technologies Ltd., Glasgow, SCO), for which the time classified as sitting is taken
as an estimate of sedentary behaviour [8,9]. The most frequently used movement sen-
sor is probably the ActiGraph (ActiGraph LCC, Pensacola, FL, USA) worn at the waist,
for which the minutes with fewer than 100 counts (a proprietary acceleration unit) on
the vertical sensor axis are typically taken as an estimate of sedentary behaviour [3,10].
Thus, the activPAL’s sedentary estimate is exclusively based on posture (i.e., sitting),
while the ActiGraph’s sedentary estimate is exclusively based on energy expenditure (i.e.,
≤1.5 METs). For both sensor types, efforts have been made to develop new algorithms
to classify the other component, i.e., energy expenditure for posture sensors [11,12] and
posture for movement sensors [13–15]. However, thus far, these algorithms have not been
combined with the proprietary data processing of the sensors to classify posture and energy
expenditure simultaneously.

We recently presented a simultaneous measurement of both components of sedentary
behaviour: The Posture and Physical Activity Index (POPAI) [16]. POPAI combines the
proprietary data processing of a thigh-worn activPAL with the proprietary data processing
of a waist-worn ActiGraph. Each activPAL sitting event is classified on a minute-by-minute
level into inactive (≤1.5 METs) and active (>1.5 METs) using the ActiGraph counts. Com-
pliant with the definition, only the inactive sitting time is considered sedentary. The com-
parison to the single sensors revealed that they substantially overestimate sedentary time
by 30.3% (activPAL) and 22.5% (ActiGraph). This observation confirmed the results pre-
viously observed for other posture and movement sensor combinations [17,18]. In our
study, the overestimation of the activPAL could be perfectly explained with active sitting
(r2 = 1.0), while the overestimation of the ActiGraph could be almost perfectly explained
with inactive standing (r2 = 0.92) [16]. However, the most serious limitation of POPAI is
the need for two sensors, significantly limiting its suitability for application in surveillance
and research settings. Therefore, the present study examined the accuracy and precision
of measuring both components of sedentary behaviour with a single sensor, a thigh-worn
activPAL (proprietary data with and without a new energy expenditure algorithm) and a
waist-worn ActiGraph (proprietary data with and without a published posture algorithm).

2. Materials and Methods

To measure both components of sedentary behaviour with one sensor, the propri-
etary posture classification of the activPAL was combined with an energy expenditure
algorithm to activPAL+, while the proprietary energy expenditure classification of the
ActiGraph was combined with a posture algorithm to ActiGraph+. The development
of the activPAL algorithm is presented here, while the development of the ActiGraph
algorithm is presented in [15]. Both algorithm developments used the same data and devel-
opment procedure. All single sensor sedentary estimates (activPAL, activPAL+, ActiGraph,
and ActiGraph+) were then compared to POPAI to analyse how accurately (group level)
and precisely (individual level) the single sensors measure sedentary behaviour compliant
with its definition.
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2.1. Participants

The study used the same 100 office workers as in [16]. The same 38 participants
already used for the development of the ActiGraph algorithm were used to develop
the activPAL algorithm (development sample), and the remaining 62 participants were
used for the subsequent independent method comparison (comparison sample, Figure 1).
The development sample consisted of 25 men and 13 women with an average age of
42.3 ± 8.4 years and an average body mass of 71.2 ± 10.2 kg. The comparison sample
consisted of 36 men and 26 women with an average age of 39.6 ± 9.4 years and an average
body mass of 71.8 ± 14.1 kg.

Figure 1. Flow-chart of the study with the development of the new activPAL energy expenditure
algorithm for activPAL+ (left) and the subsequent independent method comparison with accuracy
and precision (right).

2.2. Data Recording

All participants were recorded within the Brain-Health-Study investigating the asso-
ciation of physical activity and sedentary behaviour patterns to cognition, mental health,
and sleep in office workers [19]. Participants were equipped with a thigh-worn activPAL3
(attached with waterproof adhesive film) and a waist-worn ActiGraph wGT3X-BT (worn on
a belt during waking hours). Both sensors were worn on the right body side for an average
of 7 days. Participants kept a diary to note sensor wear-time.

2.3. Pre-Processing

A detailed pre-processing description can be found in [16]. Briefly, the pre-processing
consisted of three steps: (1) activPAL wear-time detection; (2) sensor synchronisation;
and (3) ActiGraph wear-time detection. The activPAL wear-time detection ensured that
only days with at least 500 steps, at least 12 h (without bedtime), and no more than 95%
of the time spent in one posture were analysed [20]. Bedtime was excluded with an estab-
lished activPAL algorithm [20] and, in the case of a late start (after 1:00) or an early end
(before 4:30), visually inspected and adjusted using the diary information. The subsequent
sensor synchronisation ensured that the raw sensor data matched in time. This step was
required since there was an obvious delay of the ActiGraph compared to the activPAL,
evident in the raw signal comparison. Finally, ActiGraph non-wear-time was excluded by
removing all events with a constant ActiGraph raw signal for ≥90 min or if the activPAL
recorded a posture change or classified part of the event as locomotion. The pre-processing
finally led to synchronised raw and proprietary sensor data (activPAL event file, gener-
ated with activPAL3 v7.2.38; ActiGraph counts-per-second file, generated with ActiLife
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v6.13.4 using the low-frequency-extension filter) for the time both sensors were worn,
hereinafter referred to as wear-time.

2.4. activPAL Algorithm Development

The development of the energy expenditure algorithm for the activPAL was split
into an algorithm training to develop several algorithms with machine learning and an
algorithm selection to identify the single best algorithm to be used subsequently in the
method comparison (Figure 1). Only the data of the development sample (n = 38) were used.

For the algorithm training, all activPAL sitting events ≥ 1 min were identified and
as many integer minutes as possible were extracted. For example, from a sitting event of
5.5 min, the middle 5 min were extracted. Each sitting minute was labelled as inactive
or active using the synchronised ActiGraph counts-per-minute (cpm) and a cut-point of
75. In a previous study, the 75 cpm cut-point turned out to have a substantially higher
validity (kappa of 0.69 compared to an indirect calorimeter) than the frequently used
100 cpm (kappa of 0.56) to separate inactive (≤1.5 METs) and active sitting (>1.5 METs) [21].
Subsequently, three different feature sets were generated: Feature Set 1 consisted of the
same 563 signal features already used for the ActiGraph algorithm development [15].
Feature Set 2 consisted of the 213 time-based features for the raw sensor axis and vector
magnitude of Feature Set 1. Feature Set 3 consisted of 52 cross-recurrent features calculated
for the raw sensor axis and vector magnitude [22]. Note that each feature (e.g., range)
was treated for each sensor axis (e.g., x-axis) independently. For Feature Sets 1 and 2,
a random forest classifier limited the number of features to the most relevant 100 [23].
The features were then iteratively included into a bagged classification tree ensemble in
MATLAB (Mathworks Inc., Natick, MA, USA). In each iteration, the feature with the highest
cross-validity was added and the corresponding algorithm was retrained with optimised
training properties (using the fitcensemble-function with hyperparameteroptimisation set
to “all”). This technique searched for the optimal learning method (boosting or bagging),
split criterion (gini diversity index, deviance, or twoing), tree size, maximum number of
splits, minimum leaf size, and learning rate (all numerical). The iterative feature inclusion
stopped when the maximum cross-validity was reached (no further increase for the next
10 features). The cross-validity was assessed with the mean of sensitivity and specificity
using the leave-one-subject-out approach [14,24].

The subsequent algorithm selection identified the most accurate (lowest Bland–Altman
bias) and precise (narrowest 95% limits of agreement) algorithm to measure sedentary time.
Differently from the training data, the data for the algorithm selection included all activPAL
sitting events of the development sample, regardless of duration. Thus, for the 5.5-min
sitting example, the first 5 non-overlapping minutes were extracted beginning with the start
of the event, and the last minute was extracted so it ended at the end of the sitting event.
This procedure caused an overlap of the last and second last minute. However, the last
minute was only used to classify the remaining fraction of the event (0.5 min in the 5.5-min
example). To classify sitting events < 1 min, the input minute equally overlapped the start
and end of the event, but again only the event itself was classified. For each algorithm,
the sedentary estimate for each day was put in relation to wear-time, averaged over all
days for each participant, and the bias and 95% limits of agreement were calculated by
subtracting the sedentary estimate of POPAI. Only the most accurate and precise algorithm
was subsequently used in the independent method comparison; the accuracy and precision,
as well as the properties of all remaining algorithms, are presented in Tables S1 and S2.

2.5. Independent Method Comparison

Sedentary behaviour was classified with each method independently using the data
of the comparison sample (n = 62).

• The POPAI processing started with the activPAL event file and reclassified each sitting
event on a minute-by-minute basis into inactive (equal to sedentary) and active sitting
using the ActiGraph counts and a cut-point of 75 cpm [16]. Sitting events < 1 min and
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the remaining fraction of longer events were classified with the corresponding fraction
of the cut-point (e.g., 25 counts for a 20-s sitting event). When the classification changed
during a sitting event, the event was split accordingly into sedentary behaviour and
active sitting.

• The activPAL processing directly used the activPAL event file and classified each
sitting event as sedentary behaviour, just as a typical field study does [25].

• The activPAL+ processing started with the activPAL event file and reclassified each
sitting event on a minute-by-minute basis into inactive (equal to sedentary) and active
sitting using the new activPAL energy expenditure algorithm. Sitting events < 1 min
and the remaining fraction of longer events were classified as for the selection of
the best activPAL algorithm. When the classification changed during a sitting event,
the event was split accordingly into sedentary behaviour and active sitting.

• The ActiGraph processing directly used the ActiGraph counts-per-second file and
classified each minute with <100 counts as sedentary behaviour, just as a typical field
study does [25].

• The ActiGraph+ processing used the new ActiGraph posture algorithm [15] and
classified each minute into sitting, standing, and locomotion and subsequently re-
classified each sitting minute into sedentary behaviour and active sitting using the
corresponding ActiGraph counts and a cut-point of 75 cpm.

For each method, total sedentary time per day was averaged for each participant over
all days with ≥10 h of recording. The method comparison used the bias as a measure of
accuracy (group level) and the 95% limits of agreement as a measure of precision (individ-
ual level) [26]. Both were calculated by subtracting the POPAI sedentary estimate from the
single sensor estimates (activPAL, activPAL+, ActiGraph, and ActiGraph+). In the case the
bias and/or the 95% limits of agreement depended on the mean of both methods, the re-
gression approach was used [26]. For better understanding, the accuracy was additionally
expressed in relation to the sedentary estimate of POPAI (relative bias, which indicates
the relative over-/underestimation), the precision was additionally expressed with the
root mean square error, and the correlation to POPAI was expressed with the Pearson
correlation coefficient. The comparison was done with absolute (minutes per day) and
relative numbers (as a percentage of wear-time). However, only the absolute numbers
are presented to simplify interpretation, while the relative numbers can be found in the
Supplementary Materials (Tables S3 and S4).

To analyse whether the accuracy (bias) and precision (95% limits of agreement) of the
single sensors varied over the day, both were additionally calculated for non-overlapping
30-min intervals, e.g., from 12:00 to 12:30 or from 12:30 to 13:00, and expressed in relation
to the interval length. The results were plotted against daytime, separately for weekdays
and weekend days, but only for intervals with data from at least 80% of the participants,
i.e., n ≥ 50.

Finally, the Bland–Altman analysis was repeated for sedentary time accumulated
in bouts ≥10 min and ≥30 min since future studies might want to clarify the impact of
prolonged sedentary bouts on health.

3. Results

The development sample spent 395 ± 72 min or 6.6 ± 1.2 h a day sedentary, which is
equal to 43.9 ± 7.9% of the 14.9 ± 0.8 h wear-time per day (mean ± SD of POPAI).

The comparison sample spent 411 ± 80 min or 6.9 ± 1.3 h a day sedentary, which is
equal to 45.7 ± 8.3% of the 14.9 ± 0.8 h wear-time a day (mean ± SD of POPAI). Fur-
thermore, the comparison sample accumulated 242 ± 84 and 75 ± 53 min per day or
26.9 ± 9.1% and 8.3 ± 5.9% of the wear-time in bouts ≥10 and ≥30 min.

3.1. activPAL Algorithm Development

The most accurate and precise activPAL algorithm used 10 time- and 2 frequency-
based features from Feature Set 1 (features are given in the Supplementary Materials,
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Table S1). The algorithm combines 466 decision trees trained with gentle adaptive boosting,
a learning rate of 0.43, a minimum leaf size of 9, and a maximum of 1253 splits. The al-
gorithm is freely available from GitHub (https://github.com/RomanKuster/POPAIv2.0,
accessed on 26 May 2021). In the development sample, the algorithm’s bias (±standard er-
ror) was 6 ± 1 min per day, while the 95% limits of agreement ranged from −3 ± 1 to
14 ± 1 min per day.

3.2. Method Comparison

All single-sensor methods overestimated total sedentary time per day compared to
POPAI (Table 1). The ActiGraph+ had the lowest bias (absolute and relative), while the
activPAL+ had the narrowest 95% limits of agreement and highest correlation. The 95%
limits of agreement for both the activPAL+ and ActiGraph+ were lower than the biases of
their proprietary counterparts (Figure 2).

Table 1. Average sedentary time per day measured with each single-sensor method compared to POPAI.

Method Sedentary Time
(±SD)

Absolute Bias
(±SE)

Relative Bias
(±SE)

[95% LoA]
(±SE) RMSE Correlation

[CI]

activPAL 540 ± 82 129 ± 5 33.2 ± 2.0% [50; 208] ± 9 134 0.88 [0.81–0.93]
activPAL+ 432 ± 79 21 ± 2 5.4 ± 0.5% [−10; 52] ± 3 26 0.98 [0.97–0.99]
ActiGraph 495 ± 73 84 ± 4 22.1 ± 1.6% [16; 151] ± 7 90 0.91 [0.85–0.94]

ActiGraph+ 418 ± 83 7 ± 3 1.9 ± 0.8% [−43; 57] ± 6 26 0.95 [0.92–0.97]

Data are given as minutes per day, except relative bias (in per cent of POPAI sedentary time and thus indicating over-/underestimation)
and correlation (unitless). Abbreviations: SD, Standard Deviation; SE, Standard Error; LoA, Limits of Agreement; RMSE, Root Mean Square
Error; CI, Confidence Interval. The corresponding table in per cent of wear-time is given in the Supplementary Materials (Table S3).

The analysis in relation to daytime showed for both new methods (activPAL+ and
ActiGraph+) a lower bias and narrower 95% limits of agreement compared to their pro-
prietary counterparts (activPAL, ActiGraph) for weekdays and weekend days (Figure 3).
On weekdays, the activPAL+ bias and 95% limits of agreement remained roughly constant
over the entire day, while the ActiGraph+ bias was slightly higher and the 95% limits of
agreement slightly wider in between 8:00 and 16:00 compared to after 17:00. Both observa-
tions reflect the bias and 95% limits of agreement of the corresponding proprietary data
processing in an attenuated manner. No such pattern was observed on weekend days.

For sedentary time accumulated in bouts ≥10 and ≥30 min, the ActiGraph+ was
the only method not overestimating but underestimating sedentary time (negative bias,
Table 2). The ActiGraph+ had the lowest bias (absolute and relative) and root mean square
error, as well as the narrowest 95% limits of agreement and highest correlation. As for total
sedentary time, the 95% limits of agreement of both the activPAL+ and ActiGraph+ were
lower than the biases of their proprietary counterparts.

https://github.com/RomanKuster/POPAIv2.0
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Figure 2. Bland–Altman plots for average sedentary time per day, expressed in minutes per day. The bias (bold line) and
95% limits of agreement (thin lines) are indicated, both with 95% confidence intervals (in grey). The corresponding figure in
per cent of wear-time is given in the Supplementary Materials (Figure S1).

Figure 3. Bias (bold line) and 95% limits of agreement (thin lines) for total sedentary time over 30-min intervals throughout
weekdays and weekend days, with 95% confidence intervals (in grey). The data are presented as per cent of the interval
length (100% equals 30 min) and shown for intervals with valid wear-time of ≥50 participants, i.e., 07:30–23:00 for weekdays
and 09:30–23:00 for weekend days.
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Table 2. Average sedentary time per day accumulated in bouts ≥10 and ≥30 min measured with each single-sensor method
compared to POPAI.

Method Sedentary Time
(±SD)

Absolute Bias
(±SE)

Relative Bias
(±SE)

[95% LoA]
(±SE) RMSE Correlation

[CI]

Sedentary time accumulated in bouts ≥10 min
activPAL 447 ± 83 205 ± 8 105.3 ± 10.1% [74; 336] ± 14 215 0.69 [0.54–0.80]

activPAL+ 268 ± 87 26 ± 4 13.3 ± 2.2% [−38; 90] ± 7 41 0.93 [0.89–0.96]
ActiGraph 295 ± 87 53 ± 3 25.3 ± 2.2% [2; 103] ± 6 58 0.96 [0.93–0.97]

ActiGraph+ 233 ± 87 −9 ± 2 −4.3 ± 1.0% [−47; 29] ± 4 21 0.98 [0.96–0.99]
Sedentary time accumulated in bouts ≥30 min

activPAL 263 ± 73 188 ± 8 # 531.3 ± 115.9% [68; 309] ± 13 199 0.51 [0.30–0.68]
activPAL+ 84 ± 54 10 ± 3 26.6 ± 7.5% [−45; 64] ± 6 29 0.87 [0.80–0.92]
ActiGraph 100 ± 61 25 ± 2 # 49.8 ± 6.4% [−11; 61] ± 4 32 0.95 [0.92–0.97]

ActiGraph+ 73 ± 55 −2 ± 1 −2.2 ± 3.0% [−22; 19] ± 2 10 0.98 [0.97–0.99]

Data are given as minutes per day, except relative bias (in per cent of POPAI sedentary time and thus indicating over-/underestimation)
and correlation (unitless). The hashtags mark the methods for which the bias depended on the mean of both methods. Abbreviations:
SD, Standard Deviation; SE, Standard Error; LoA, Limits of Agreement; RMSE, Root Mean Square Error; CI, Confidence Interval.
The corresponding table in per cent of wear-time is given in the Supplementary Materials (Table S4). The hashtags (#) mark the methods for
which the bias depended on the mean of both methods.

4. Discussion

The present study analysed the accuracy (bias) and precision (95% limits of agreement)
of measuring both components of sedentary behaviour, posture (i.e., sitting, reclining,
or lying) and energy expenditure (i.e., ≤1.5 METs), with a single sensor: a thigh-worn
activPAL or a waist-worn ActiGraph. All single-sensor methods overestimated total
sedentary time per day compared to POPAI. Thus, the two-sensor POPAI should remain
the first choice to measure sedentary behaviour compliant with its definition. However,
if the use of two sensors is deemed unsuitable—which will be most likely the rule rather
than the exception—our recommendation is to combine the proprietary data processing of
the single sensors with the corresponding new algorithm: the energy expenditure algorithm
when using the activPAL and the posture algorithm when using the ActiGraph.

Both algorithms substantially reduced the overestimation of total sedentary time:
from 129 to 21 min per day for the activPAL and from 84 to 7 min per day for the ActiGraph
(Table 1). In relation to the sedentary time measured by POPAI, adding the activPAL energy
expenditure algorithm reduced the overestimation from 33.2% to 5.4%, while adding the
ActiGraph posture algorithm reduced the overestimation from 22.1% to 1.9%. Whether the
rather small overestimation and thus the bias of the activPAL+ and ActiGraph+ is of any
relevance with respect to health needs to be clarified in future studies. In the case it is
irrelevant, the activPAL+ and the ActiGraph+ can be considered interchangeable with
POPAI at the group level. In the case it is relevant, one should adjust for the bias by
subtracting it from the sedentary estimate of each participant [26], which would make the
methods interchangeable at the group level. Adjusting for the bias would centre the 95%
limits of agreement around zero (while keeping its range), reduce the root mean square
error of the activPAL from 26 to 16 min per day, and reduce the root mean square error of
the ActiGraph from 26 to 25 min per day.

Another, probably even more important, figure of the method comparison is the 95%
limits of agreement for which there is no straightforward adjustment available. The 95%
limits of agreement cover the range within which 95% of the differences to POPAI will
lie at the individual level. In the case the 95% limits of agreement cover a range that
can be considered irrelevant, one could use the two methods interchangeably at the in-
dividual level [26]. Here, the 95% limits of agreement for the activPAL+ ranged from
−10 to +52 min per day and the 95% limits of agreement for the ActiGraph+ ranged from
−43 to +57 min per day. Even though the range was considerably smaller than for the pro-
prietary data processing (activPAL: +50 to +208 min per day; ActiGraph: +16 to +151 min
per day), a range of ≥62 min per day might still be relevant. Accordingly, the activPAL+
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and the ActiGraph+ cannot be considered interchangeably with POPAI at the individual
level, supporting our conclusion that POPAI should remain the first choice to measure
sedentary behaviour compliant with its definition.

Even though they are not interchangeable, one must bear in mind that the 95% limits
of agreement of both the activPAL+ and the ActiGraph+ did not span over the bias of
their proprietary counterparts. This indicates that the precision with the new algorithms
at the individual level (95% limits of agreement) is higher than the accuracy without
the new algorithms at the group level (bias). Furthermore, adding the new algorithms
resulted in rather low root mean square errors (26 min per day) and an almost perfect
correlation to POPAI (0.98 and 0.95, respectively). Both the activPAL+ and the ActiGraph+
might therefore be reasonably accurate and precise choices with the benefit that only
one sensor needs to be used. Moreover, research groups already using one of the two
sensors can apply the algorithms without having to spend money on new hardware
to improve the accuracy and precision of their sedentary measurements substantially,
even retrospectively on data already collected. Both new methods are freely available
on GitHub (https://github.com/RomanKuster/POPAIv2.0, accessed on 26 May 2021),
and researchers without access to MATLAB are welcome to contact the corresponding
author to process the data with activPAL+ and/or ActiGraph+.

The analysis in relation to daytime showed a rather constant accuracy (bias) and
precision (95% limits of agreement) for the activPAL and activPAL+, and a somewhat lower
accuracy and precision for the ActiGraph and ActiGraph+ from 08:00 to 16:00 compared to
after 17:00 on weekdays. Since all included participants were office workers, it seems that
the activPAL+ might be the better choice for studies focusing on office work (the domain in
which our participants spent most of their time from 08:00 to 16:00 on weekdays), while the
sensor choice has less bearing for the time after 17:00 on weekdays and for weekend days.
This observation confirms the results of a previous laboratory study in which we noticed
the highest accuracy for lower-body sensors to measure both components of sedentary
behaviour in desk based office work [27] and adds the information that this does not
directly translate to outside the office. In this regard, it is important to note that the bias
of the activPAL perfectly reflects active sitting (which was spread throughout the day),
while the bias of the ActiGraph almost perfectly reflects inactive standing (which was most
dominant between 08:00 and 16:00) [16]. In other words, the investigated office workers
sat equally active throughout the weekdays but stood more inactive during office hours
than afterwards.

The current evidence on whether the time spent in prolonged sedentary bouts mat-
ters is inconclusive, and future studies might want to clarify this issue [28]. Therefore,
the present study investigated the accuracy and precision of the single sensors to measure
sedentary time accumulated in bouts ≥10 and ≥30 min. The results demonstrate that the
proprietary processing of the single sensors substantially overestimates sedentary time:
by ≥100% and ≥500% for the activPAL and by 25% and 50% for the ActiGraph (Table 2).
Accordingly, due to the serious lack of accuracy and precision of the single sensors, we
recommend reanalysing the existing evidence on prolonged sedentary behaviour measured
with the ActiGraph (e.g., [29]) and activPAL (e.g., [30]) using the new algorithms. The ad-
dition of the new algorithms substantially reduced the overestimation: down to 13.3% and
26.6% for the activPAL and down to −4.3% and −2.2% for the ActiGraph (which represents
an underestimation). In this line, the addition of the new algorithms substantially reduced
the range covered by the 95% limits of agreement for both sensors, which did not even span
over the bias of the proprietary data processing (Table 2). This indicates that the precision
with the new algorithms on an individual level (95% limits of agreement) is higher than
the accuracy without the new algorithms on group level (bias). The ActiGraph+ had the
highest accuracy and precision and should therefore be the single-sensor method of choice
for the sedentary bout analysis.

https://github.com/RomanKuster/POPAIv2.0
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Critical Appraisal

The present study is subject to some critical aspects that should be carefully consid-
ered. First, POPAI, our reference method, is a new method, which questions its use as a
reference method here. However, POPAI combines the well-established proprietary data
processing of the activPAL to classify posture with the well-established proprietary data
processing of the ActiGraph to classify energy expenditure [16]. Compared to the standard
processing of the two sensors, the most serious difference is the use of a lower cut-point to
separate inactive and active sitting (75 cpm instead of 100 cpm). We compared the cut-point
validity in a preceding study to an indirect calorimeter and observed that the 100 cpm is a
fairly valid choice when separating inactive and active behaviours without consideration
of posture, but the 75 cpm is a much more valid choice when separating only inactive and
active sitting [21]. Accordingly, and in line with the literature, the ActiGraph processing
without consideration of posture used the 100 cpm cut-point [3,10], while the POPAI and
ActiGraph+ processing with consideration of posture used the 75 cpm cut-point [21]. Com-
bining the validity of the activPAL posture classification [8,31,32] with the validity of the
75 cpm cut-point [21,33] actually leads to an estimated sensitivity and specificity of 92.5%
and 91.9% to measure sedentary behaviour with POPAI (see Tables S5 and S6). Since we are
not aware of any similarly valid method using established sensors to measure free-living
sedentary time, we consider the use of POPAI as a reference method to be justified and in
fact a strength of this study. An alternative would have been to use a two-sensor Vitaport or
VitaMove system [17,34]. However, the validity of these sensor combinations is unknown
to us, and our participants would then have had to wear four sensors.

Another limitation of this study is the lack of predefined satisfactory accuracy and
precision limits [26]. Based on the available evidence collected with movement sensors [3],
we did not feel qualified to quantify meaningful and relevant accuracy and precision limits.
The lack of an absolute limit, however, does not mean that one method could not be more
accurate (when having a lower bias) and precise (when having narrower 95% limits of
agreement) than another, nor that a particular method cannot be inaccurate and imprecise.
In fact, whether a method overestimating sedentary time by 84 min per day with 95%
limits of agreement covering a range of 167 min per day is accurate and precise is highly
questionable. However, the evidence of the adverse health effects of sedentary behaviour
has almost exclusively been collected with such a method: the 100 cpm cut-point for the
ActiGraph [3].

The next limitation that needs special attention is the reuse of data captured for another
purpose and the resulting sample size. We did not perform a sample-size calculation to
develop the algorithms or compare the methods. To include a development sample of
38 office workers was a convenient choice taken for the ActiGraph algorithm development
and kept for the activPAL algorithm development for consistency. The typical algorithm
development in free-living uses approximately half the size of our sample [24], which is why
the development sample should be seen as rather large. The size of the comparison sample
was then a consequence. We strictly separated the two samples to ensure an independent
method comparison, and only the data of 62 office workers remained. Consequently,
we did not perform any statistical inference testing. We described the differences between
the methods explanatively and added wherever possible a measure of certainty (i.e.,
standard error and 95% confidence intervals). We are aware that standard errors and
confidence intervals could be used to detect significant differences (which here would lead
to rather low p-values, i.e., <0.001) [35], but we see no benefit in doing so when analysing
accuracy and precision [26]. For those researchers less familiar with Bland-Altman statistics,
we additionally included the relative bias (indicating over-/underestimation), the root
mean square error, and the Pearson correlation as additional measures to compare the
methods. In this light, we consider the reuse of data captured for another purpose as an
additional strength of this study. All participants were recorded before starting this project,
which means that the researchers in charge of data recording were completely blinded to the
purpose of this study, and the sensors were used as in a normal field study. This includes
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practical aspects of data recording that likely reduced the accuracy and precision of the
developed algorithms, such as sensor non-wear or sensor worn upside-down. The sample
used for the method comparison spent 9.0 ± 1.4 h per day sitting (activPAL data) and
8.3 ± 1.2 h per day inactive (ActiGraph data). This is in the range previously described
by others [25,36–38], and the presented accuracy and precision might very well reflect
the sensor use in future field studies. However, this study was limited to office workers.
From the daytime analysis for weekdays and weekend days shown in Figure 3, there is
no evidence that using the algorithms will lead to less accurate and precise sedentary
measurements in other populations, but future studies are needed to verify this.

After completing the method comparison, we additionally investigated the perfor-
mance of the activPAL+ if we had chosen another algorithm to inspect our algorithm
selection (see Table S1). This analysis showed that the chosen algorithm also had the
highest accuracy and was among the algorithms with the highest precision in the com-
parison sample. We interpret this as a justification of our algorithm selection procedure,
which identified the single best activPAL algorithm to measure sedentary behaviour. More-
over, the comparison among all algorithms for each feature set (Table S1) showed that no
feature set generalised markedly better than another did, a finding that stands in contrast
to those of Montoye et al., who noticed a better generalisability for time- than frequency-
domain features for a wrist-worn sensor [39]. However, only decision trees were trained
in this study, and it remains unknown how the feature sets perform with other machine
learning techniques such as k-nearest neighbours or support vector machines. Since we
have no evidence that there is a serious difference between different machine learning
techniques [24,40], we decided to limit this study to decision trees and trained the trees
with optimised parameters (e.g., allowing for boosting and bagging) and different feature
sets to improve the classification.

5. Conclusions

The present study showed that measuring sedentary behaviour compliant with its
definition is inaccurate and imprecise when using the proprietary data processing of the
activPAL or the ActiGraph. A much more accurate and precise single-sensor method
is to combine the proprietary data processing with an energy expenditure algorithm
(activPAL+) or a posture algorithm (ActiGraph+). In fact, the precision at the individual
level was higher when adding the algorithms than the accuracy at the group level when
not adding the algorithms. The ActiGraph+ was the most accurate method showing
its strength especially in the assessment of prolonged sedentary behaviour, while the
activPAL+ was the most precise method showing its strength especially during office
hours. Even though neither was interchangeable with the two-sensor POPAI, the activPAL+
and the ActiGraph+ are reasonably accurate and precise choices to measure sedentary
behaviour in applied surveillance and research settings with a single sensor, and we
recommend using them to improve our understanding of sedentary behaviour and its
health effects. Both methods rely only on the raw and proprietary sensor data and can
even be retrospectively applied on data already captured. The methods are freely available
from GitHub (https://github.com/RomanKuster/POPAIv2.0, accessed on 26 May 2021),
and researchers without access to MATLAB are welcome to contact the corresponding
author for data processing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph18115782/s1, Figure S1: Bland–Altman plots for average sedentary time per day,
expressed in relation to wear-time; Table S1: Accuracy and precision of all trained activPAL algorithms
in the development and comparison sample; Table S2: Properties of all trained activPAL algorithms;
Table S3: Average sedentary time per day measured with each single-sensor method compared to
POPAI, in relation to wear-time; Table S4: Average sedentary time per day accumulated in bouts ≥10
and ≥30 min measured with each single-sensor method compared to POPAI, in relation to wear-
time; Table S5: Validity of the activPAL posture classification applied to free-living data; Table S6:
Validity of POPAI, the Posture and Physical Activity Index.
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