
This contribution was presented at CSEDU 2021: http://www.csedu.org/?y=2021. The final version is available via
https://doi.org/10.5220/0010479805790586.

Examination Cheat Risk Reduction through FIPEs

Josef Spillner a

Zurich University of Applied Sciences, Winterthur, Switzerland

josef.spillner@zhaw.ch

Keywords: e-Assessment, Grading, Automation, Variability

Abstract: Fully Individualised Programmable Exams (FIPEs) are physically or digitally written examinations in which

the task descriptions are different for all students according to programmatically controlled variability. FIPEs

reduce the risk of collaborative cheating while adhering to institutional equality policies by controlling how

many differences are introduced. The individualisations are based on permutations, deviations, randomisations

and sampling. They allow for meeting legal constraints and yet gaining the desired ability to further automate

solutions checking. This paper contributes a software solution to address the need from exam specification

to distribution. It introduces a categorisation for FIPEs, presents a working implementation to generate and

disseminate exam documents and delivers an experience report in two curriculums, computer science and

engineering sciences.

1 INTRODUCTION

Examinations are one of the traditional and versa-

tile instruments to assess and grade the performance

of university students with regards to the learning

goals and learning outcomes (Piontek, 2008). Writ-

ten examinations in particular can be among the most

efficient and fair instruments if they adhere to cer-

tain forms and are conducted with technology sup-

port to address various problems in physical and on-

line settings (Maroco et al., 2019). Cheating is among

those traditional yet undesired problems with any as-

sessment, defined by the unauthorised acquisition of

help and leading some educators to rethink the con-

ceptual forms of assessment altogether (Lancaster and

Clarke, 2017). Simultaneously written end-of-term

assessments are favourable in this aspect, but also

often mandated and a necessity from an effort per-

spective. There are multiple kinds of cheating during

concurrently written examination sessions – collab-

orative communication with other participating stu-

dents during the process of writing, and using ex-

ternal sources of knowledge, including just-in-time

contract cheating, which are then reflected in the

answers instead of using the own knowledge and

capabilities. Such cheating should be at least de-

tected, and should ideally be discouraged and pre-

vented from happening in the first place (van Om-

mering et al., 2018). Online examinations and e-

a https://orcid.org/0000-0002-5312-5996

assessments, in particular concurrently digitally writ-

ten ones, make it harder to both prevent and detect

cheating due to the inability to holistically supervise

dozens or hundreds of participating students and their

environments. Such settings lead to more complex

threat models (Küppers et al., 2020) that call for im-

proved technology support. Fully individualised pro-

grammable exams (FIPEs) are suggested as a means

to mitigate the likelihood of success of the first (col-

laborative) kind of cheating. With appropriate forms

(such as avoiding binary ’is this correct’ questions

quickly answered by a web search) and conditions

(such as open book rules), the second (external) kind

can also be addressed. FIPEs ensure that all students

get exam documents that are different to a control-

lable and permissable extent, skewing the cost to ben-

efit ratio for collaborative cheating and quickly con-

veying the infeasibility to exchange information about

solutions to anybody who tries. To make the adop-

tion of FIPEs feasible and safe, a novel computer-

supported tooling approach – a compiler for exam

documents – is proposed.

In this paper, a categorisation and realisation of

FIPEs is being introduced along with practical ad-

vice for educators. Specifically, the paper contributes

a compiler-style software system design and imple-

mentation to aid in the automation of FIPE creation,

dissemination to students and results scoring. Fur-

thermore, the adoption of FIPEs in the examination

of two modules is presented in the form of an experi-



ence report, covering a programming examination in

engineering sciences and a distributed systems exam-

ination in computer science. The paper is structured

to first report about related work before presenting es-

sential requirements. It then proceeds by introducing

the categorisation system, presenting a working im-

plementation, reporting on the experience and arriv-

ing at the conclusions.

2 RELATED WORK

Digitalisation is a major trend throughout all as-

pects of education. Computer-supported examina-

tions are one of the most challenging aspects due to

the inability to accept faults and ambiguities. The

topic branches out into online examinations, remote

proctoring and other forms of digitalised examination

processes including task generation and correction

(Andersen et al., 2020). A broad review of online ex-

aminations (Butler-Henderson and Crawford, 2020)

reports that online examinations are preferred by both

students and staff and that cheating is a problem as it

is made easier by online examination although miti-

gations exist. The review points out that many mit-

igations are not effective, and that cheating as a so-

cial problem is best tackled by reducing propensity.

In other words, altering the cost/benefit ratio by us-

ing multiple banks of questions, questions/answers

randomisation and similar techniques is promising.

However, the review does not point out any techno-

logical support to develop such formats with low ef-

fort from the educator side.

Randomised questions and topic assignments have

been investigated in the examination preparation

phase and are understood to be advantageous for

the students who come across the same questions

in the examination (Denny et al., 2017). For sev-

eral decades, it is known that there are psychologi-

cal factors involved that require a careful determina-

tion of the minimum threshold for correct answers to

pass such randomised tasks (Hubálovská and Satánek,

1971). Intelligent random selection algorithms based

on repositories of questions and answers are already

discussed in the literature (Alghamdi et al., 2020).

However, the use of artificial intelligence is risky

from a legal perspective, thus educators might prefer

a more controlled approach based on modest stochas-

tics. Furthermore, the scope of the proposed algo-

rithms is limited to repetitive questions/answers tasks.

Cheating detection and prevention is understood to be

among the best practices for conducting online ex-

aminations and e-assessments in general (Gruenigen

et al., 2018). The detection of cheating is made easier

in the digital space through solution data analytics in-

cluding text mining (Cavalcanti et al., 2012). Yet the

technological infrastructure to reduce or even prevent

cheating is found to be lacking in this survey, a gap

that the work on FIPEs intends to narrow down.

A learning at scale study has investigated the de-

gree of randomisation necessary to deter cheating on

asynchronous exams (Chen et al., 2018), a setting

that requires similar measures as online exams which,

even when being conducted synchronously, may lead

to the use of uncontrolled communication channels

among students. The findings state that while cheater

advantages remain even when using random orders

and permutations, they drop considerably when using

selection of tasks out of a pool.

On the practical side, there is a distinct lack of

tooling to help educators with advanced cheat reduc-

tion and identification in online settings. Learning

Management Systems (LMS) and Virtual Learning

Environments (VLE) like Moodle or OLAT typically

allow for shuffling questions and implementing ques-

tion banks. They also support mixing answers within

questions, and a certain extent of random questions in

their quizzes and tests, including calculated questions

with formula-based answers. Still, LMS generally do

not support a controlled variability of questions and

tasks, in particular for visuals beyond text, and tools

like MoodleRanQ have been proposed to address that

concern (Pérez-Solà et al., 2017). An orthogonal con-

cern is that LMS/VLE enforce online education while

many educators prefer to maintain on-site teaching

and examination except for crisis situations. Other re-

searchers have also pointed out the absence of digital

forensics architectures to assist with incident investi-

gation related to online examination fraud (Kigwana

and Venter, 2018).

3 REQUIREMENTS

In order to achieve a helpful computer-supported

process for educators and individualised yet balanced

examinations for all students, seven requirements

need to be fulfilled.

1. The individualisation only applies to the assign-

ment of exam documents to students through ran-

dom distribution. The documents themselves

must not refer to any particular student, and must

not be created with knowledge on which student

will eventually receive it. This requirement en-

sures fairness, avoids discrimination, and reduces

psychological stress among students.

2. The amount of different tasks and therefore the

level of protection against cheating is limited



when following a pure permutation or shuffling

approach. Rather, the combination of permuta-

tions with further value deviations, content ran-

domisations and sampling (pooling) needs to be

considered.

3. Differences need to balanced and controlled.

While syntactic differences are introduced, the se-

mantic equivalence of all exams in terms of diffi-

culty, fairness and alignment with the educational

content needs to be assured. This demands a con-

trolled approach in which minor changes beyond

pure permutations are bounded by deviation cor-

ridors and summarised for verification.

4. Permutations, deviations and randomisations need

to be covered by the institutional legal frame-

works to exclude the possibility of legal actions

by students. This exclusion can only realistically

be achieved if the requirements stated above are

fulfilled. Institutional requirements such as 80%

identical tasks (apart from strict permutations and

numeric variables) need to be considered globally.

5. The manual crafting of all permutations, devia-

tions, randomisations and samples is not feasible.

Rather, programmatic generation of tasks through

appropriate programming interfaces is essential to

keep the effort low for educators and hence in-

crease the chance of adoption.

6. Likewise, educators will have a much increased

effort with corrections when the correct solutions

necessarily differ as well. Again, a program-

matic generation of reference solutions, individ-

ualised per student and consulted during the cor-

rections, helps reducing the effort. Furthermore,

while cheating probability should be reduced, it

remains above zero and a solution should aid in

uncovering it at the latest before grading.

7. On the technical side, a compiler-style FIPE

framework should support constraint adherence

and various forms of output, including PDFs to

allow for using the framework to produce printed

documents for on-site examinations.

4 CATEGORISATION SYSTEM

FOR FULLY INDIVIDUALISED

EXAMS

A categorisation system is introduced to link

the basic exam modifications (permutation, devia-

tion, randomisation and sampling) to common types

of tasks and questions, following the achievement

test categories from best practices (Piontek, 2008)

(binary-choice/true-false, multiple-choice, and more

complex tasks) along with the exam layout as a whole.

Bounding these basic modifications are the de-

grees of equality according to pedagogic consider-

ations and institutional policies. Fig. 1 positions

them as trade-off between several competing fairness

terms. The more liberty educators have in trading

cheat risk reduction for appeal risk reduction, the

more applicable far-ranging and cheat-reducing exam

modifications can become, but the less balanced the

cognitive demand on students may end up.

Figure 1: Three degrees of equality for exam questions and
tasks from a legal perspective

4.1 Global Considerations

Making the order of tasks unpredictable may cause

slight confusion with students in case they are used

to a certain order, but also brings advantages in terms

of reduced cheating opportunities. A pure permuta-

tion can be coupled with deviations or shuffling in

the form of random inclusion of similar (alternative)

tasks. A declarative specification (shown in pseudo-

code) does not imply any order and thus leaves the or-

dering, and potentially the choice among alternatives,

to the individualised creation of the exam documents.

Task1 AND Task2 AND (Task3a OR Task3B)

To avoid the consultation of online sources, edu-

cators must be careful to not ask any question that can

quickly be looked up online. For instance, answers

about the validity of a particular programming state-

ment can easily be given with the appropriate state-

ment execution tools, whereas filling gaps in a cer-

tain statement is harder to do because, in most cases,

the required artificial intelligence can not yet be freely

obtained through online tools. However, blindly ran-

domising gaps means that students who collaborate

could fill each other’s gaps, a problem likely sharing

aspects with differential privacy concerns (Holohan

et al., 2017).

These modifications are considered state of the

art in existing LMS/VLE and only included for com-

pleteness. A novel FIPE tool should support them,

but also go beyond into the individual tasks and ques-

tions. Owing to recursion, the modifications also ap-

ply to tasks consisting of multiple sub tasks, such as



an exam with five tasks and the first task encompass-

ing ten questions.

4.2 Binary and Multiple Choice

When exams contain binary choice and multiple

choice questions, these are often grouped in blocks. A

block with ten ordered binary choice (true/false) ques-

tions can lead to 1024 unique combinations through

re-ordering alone. Further variety can be introduced

by negating answers, which is straightforward to au-

tomate for any logic or arithmetic task by using appro-

priate markup as shown below. The appropriate value

deviations can automated based on the data types of

the marked results that default to true answers.

x = 17 + 4. x equals *21*.

True AND True equals *True*.

The result may look like the following:

Student 1:

1. x = 17 + 4. x equals 20. → False

2. True AND True equals True. → True

Student 2:

1. True AND True equals False. → False

2. x = 17 + 4. x equals 21. → True

Extending this concept to multiple choices per

question is trivial and requires the specification of all

choices. The same applies for variations of the task,

as exemplified by the following question about cor-

rectness of a URL from the domain of network pro-

tocols, where each first element of a conjunction de-

faults to the correct answer:

(GET OR POST OR DELETE) /students("" OR

"?action=delete"). Retrieves a list of

students.

4.3 Complex Tasks

Beyond simple statements as questions and choices

as answers, permutations also apply to more complex

examination tasks such as text-based work and those

based on advanced data structures including trees and

graphs. In such tasks, the permutations can take vari-

ous forms.

1. Declarative and imperative text structures. Asso-

ciated tasks are filling random gaps and calculat-

ing results based on random facts contained in the

text.

2. Graphs. Associated tasks are built around graph

processing algorithms such as graph rewriting or

identification of problems in the corresponding

application domain, for instance in graphs rep-

resenting software architectures that may contain

scalability bottlenecks.

The following example uses markers to control the

location as well as the permissible values of the quan-

titative permutation for numeric arguments. It also

uses qualitative randomisation of three text parts, for

which the educator needs to be carefuly to balance the

efforts.

Write a program that calculates the cumu-

lative weight of passengers and their

luggage and check whether the plane is

allowed to start with such a configu-

ration. The maximum take-off mass of the

plane is *[400,500,600]*kg.

*--

Use a list to represent the weights of

*[3-6]* passengers and crew, and a second

list to represent the associated luggage

weights.

*--

Use a tuple to represent the weights of

*[2-5]* passengers, and a scalar variable

to represent to pilot weight. Assume that

each passenger carries 10kg luggage.

*--

Apart from markup that combines ease of editing

with still limited variability, arbitrary questions and

answers can be constructed as pairs through regular

programming means.

5 IMPLEMENTATION

To make the proposed categorisation and syntax

approachable to educators, an examination individu-

alisation software acts as compiler-style FIPE inter-

face. A sample implementation is made available as

open source software1.

The implementation (Fig. 2) assumes that the

exam tasks are specified with the proposed syntax and

other programmatic facilities. It is divided into two

main parts. The first processes the input and produces

both the permutated, deviated and randomised exam

documents, to be distributed to the students, and as-

sociated reference solutions, to remain with the edu-

cator. At this stage, only the number of students are

known, while no further information about them is in-

cluded to avoid any bias or discrimination in the pro-

duced documents. The second step handles the distri-

bution of the documents to students through a server-

based provisioning to reduce the management effort

for educators. In this step, the names of students are

mapped to identifiers so that each student, by using

1FIPE implementation: https://github.com/
serviceprototypinglab/fipe



the personalised identifier, is able to access the cor-

responding FIPE. The mapping is used for the auto-

mated provisioning process and beyond that remains

available for the educator who, after grading the ex-

ams without necessarily knowing the student identity,

is able to assign the scores or grades to the correct

students.

Figure 2: Implementation overview

The entire process is conveniently wrapped into a

single command, fipe, that is designed to only fail

with actionable advice. Hence, it will guide educa-

tors from first use to ready-to-use examination in a

streamlined process.

In the next three paragraphs, the possible presen-

tation formats of the exam documents, the exam gen-

eration process and the subsequent exam provisioning

process are explained in detail.

5.1 Presentation Formats

The concrete format of examination documents de-

pends on the requirements and conventions. To make

the system flexible and usable according to dominant

e-assessment conventions, it should support at least

the following formats:

1. Plain PDF. The PDF can either be printed and

scanned, annotated on the screen, or form-filled.

This format has the advantage that it will also

serve the needs for traditional offline examination,

and is thus of high value to educators when the

modality of an exam has to be changed on short

notice based on for instance the epidemiological

situation.

2. Text files. For tasks in which plain text or tem-

plate documents need to be provided, for instance

source code based on templates.

3. HTML. In case the exam should be entirely con-

ducted through web-based systems.

All exam documents are joined into larger files or

archives containing all file formats. The output for-

mats and their corresponding inputs are associated in

Fig. 3.

Figure 3: Formats overview

5.2 Exam Generation

The exam generation happens programmatically. It

consists of a number of modules (FIPE mods), one

for each type of task, with a function maketask to

call once per student. As the framework evolves, we

expect to make dozens of task types available as in-

spiration and blueprint for other educators, while new

modules can still be added anytime. At the time of

publication, fifteen modules are available.

The modules work internally on permutated lists

and conditionally included branches and, depending

on the task type, are able to process the proposed syn-

tax for controlled variability in task texts. For each

task defined in the exam specification, this function

returns three representations, the task itself, the solu-

tion and the achieved entropy. All tasks along with ad-

ministrative information, including the solutions and

the student identifiers, are stored in a directory that

serves as entry point to the subsequent exam provi-

sioning step.

For PDF exam documents, the output is stored as a

number of LaTeX files which are compiled into the fi-

nal document in a termination step after all tasks have

been processed.

The entropy returned by each module is used to

calculate the degree to which any two exams are iden-

tical. For each invocation, the identical points i are

determined by the total points p and the entropy e as

indicated in Eqn. 1. The entropy is used with a factor

of two to account for potential differences in any two

exams used for the comparison.



i = p−

{

p if 2e > p

2e otherwise
(1)

5.3 Exam Provisioning

Due to the individualisation, each student needs to be

informed about the specific modalities for retrieving

the exam documents and for submitting the answers

and solutions, depending on the exam format (PDF

with optional template files or HTML).

The retrieval is the most critical moment in terms

of system load, as many students will attempt to ac-

cess the exam documents within a short period of

time. Hence, the provisioning system needs to be

sufficiently scalable to either concurrently serve static

content (PDF, template files, HTML) or render dy-

namic content for direct submission (HTML only) in

burst situations. The provisioning tool covers the fol-

lowing associated tasks.

1. Preparation of a web server including configura-

tion for load spike at examination start time.

2. Upload of all exam documents with read protec-

tion. Each document, along with possible instruc-

tions on when and how to submit solutions, is

stored in a dedicated folder with individualised

and secret name.

3. Notification of students with individualised hy-

perlinks pointing to these folders along with in-

dication of start time.

4. Removal of read protection at examination start

time.

5. Indication of submission link, either on the same

server or on a third-party system (Moodle, Teams

Tasks and similar alternatives), for answers and

solutions in reference to static exam documents.

6. Query of administrative information on behalf of

the examiner such as overviews on students hav-

ing and not having accessed the exam documents.

The legal interpretation of any client-side issues

of accessing the documents are handled depend-

ing on the institutional procedures.

5.4 Exam Corrections

The workflow for corrections requires opening a gen-

erated solutions document per student. This overhead

is acceptable given the time spent per student is typ-

ically in the order of several minutes. Furthermore,

per-task corrections, which are considered more fair

when spanning multiple classes with different educa-

tors, are made possible by generating the solutions in

the appropriate format and distributing the solutions

documents to the responsible educators per task.

Any cheating requires a comparison of solutions

as well as a consultation of auxiliar information such

as network access logs in case of suspicions. The

FIPE implementation contains a tool that parses web

server log files and reveals anomalies. It offers two

modes, multiple source hosts per student document

and multiple student documents per single source

host. The first mode is not suitable for open Internet

environments due to students using multiple devices

with different Internet connections as well as the in-

volvement of major cloud providers in automated re-

quests from their hosts (e.g. Google SafeBrowsing).

The second mode is more suitable but still requires

careful interpretation of results, for instance due to

host re-allocation for mobile Internet users or shared

proxy servers in dormitories.

6 EXPERIENCE REPORTS FROM

APPLIED FIPES

FIPEs have been practically validated on two oc-

casions. Both times, they have shown to result in vari-

able yet balanced exams adhering to institutional poli-

cies. A text-only (code and data files) representation

has been used in a programming exam with n = 380

engineering sciences students (ES exam). A PDF-

based representation has been used with n = 28 com-

puter science students (CS exam). The difference in

scale is exploited to find out how well FIPEs work for

smaller and larger groups of students.

6.1 Tasks

The ES exam consisted of six tasks ranging from mul-

tiple choice questions (mixed pickles true/false) to

complex tasks whose variability was driven by auto-

generated data files containing different symbols. The

CS exam had greater heterogeneity with nine tasks,

including two based on autogenerated graphs repre-

senting software dependencies and workflow execu-

tion. Templates to set up such questions and tasks are

available from the FIPE implementation. Hence, even

though the initial effort to set up all FIPE modules to

a combination of 70–80 points took several hours per

task as the framework evolved, the creation of further

exams based on these templates will be more econom-

ical by reducing that effort to less than half an hour per

task. This effort is justifiable considering the overall

time spent on assessment design. Moreover, the at-

tractiveness of the framework will increase as more

FIPE mod templates become available over time.



Fig. 4 shows two example graph-based task ex-

cerpts from the CS exam that is programmatically

generated within the variability and scoring bounds.

Each student gets a graph with three or four se-

quences, each consisting of two to four nodes, and

needs to calculate the maximum parallel set of nodes

as defined by the product of their weights. Such an

individualised task is non-trivial to produce without a

FIPE framework.

request

A
128

E
512

G
1024

response

B
256

C
64

D
512

F
1024

H
64

I
128

J
32

request

A
64

C
256

F
1024

I
256

response

B
128

D
128

E
1024

G
64

H
128

J
256

Figure 4: Variability in graph-based task

6.2 Student Perception

The students were not informed in advance about the

use of FIPEs. Rather, they were broadly advised

that despite less privacy-invasive examination, allow-

ing them to keep microphone and camera switched

off, the educators would have means to detect cheat-

ing. Contrary to expectations, the FIPE effects were

not brought up by participants, even when a feedback

round was organised for the CS exam. This suggests

that introducing FIPEs can be done in a non-intrusive

way.

6.3 Access Behaviour

Exam documents for both occasions were hosted on

the same institutional server. The document access

workflow for the ES exam consisted of an HTML en-

try page, followed by two code file documents along

with one data file. Fig. 5 shows the server load from

the time of informing students of the (still blocked)

link to the actual exam, covering a period of several

days and notably spiking around the exam. Fig. 6

shows the exam spike in detail. The FIPE provision-

ing tool takes this sudden surge behaviour into ac-

count when producing the web server configuration.

In the ES exam, all documents were delivered suc-

cessfully without reliance on external services. An

examination of the access link has not revealed any

link sharing between students.

0 1000 2000 3000 4000 5000 6000
minute

100

101

102

103
hits

Figure 5: Overall timeline from exam information to exam

6080 6100 6120 6140 6160 6180
minute

0

100

200

300

400

500

600

700

800 hits

Figure 6: Zoom into narrow exam period; the dashed line
marks the start of the exam writing

6.4 Cheat Reduction and Exposure

Discussion

In both examinations, suspicions were raised during

the manual check of all solutions along with auto-

mated log file analysis. In one such case, the evidence

led to the exposure of an actual case of unallowed col-

laborative cheating that took place during the exam

writing period. A detailed analysis of the influence

of FIPEs on cheat exposure, beyond a-priori reduc-

tion of cheat potential, is currently missing but will

have to consider the trade-off that by limiting the sur-

face area for plain copied solutions, the corresponding

exposure will also become more difficult. The com-

bination with log file analysis increases the chances



of exposure, but relies on the curiosity of students to

share links instead of undetectable direct sharing of

documents.

7 CONCLUSIONS

This paper has introduced a practical path towards

fully individualised exams beyond current question

bank randomisation. The COVID-19 pandemic has

shown that even universities emphasising quality

presence teaching are occasionally subject to unan-

ticipated online examinations and should therefore be

in a strong position to flexibly choose between differ-

ent examination modalities without sudden increases

in cheating risks. The concept of FIPEs contributes to

that flexibility while supporting institutional policies.

The compiler-style software implementation further

supports the flexibility by being able to produce vari-

able PDF files that can be printed for classroom use

or filled on screen in online settings, as well as other

formats. It is currently undergoing further discussion

and evolution with the aim of lowering the learning

curve for educators and assembling further task types

as modules. To foster the argumentation and provide

a basis for further research, the FIPE implementation

is provided as early-stage open source prototype at

https://github.com/serviceprototypinglab/fipe.

REFERENCES

Alghamdi, A. A., Alanezi, M. A., and Khan, Z. F. (2020).
Design and implementation of a computer aided intel-
ligent examination system. iJET, 15(1):30–44.

Andersen, K., Thorsteinsson, S. E., Thorbergsson, H.,
and Gudmundsson, K. S. (2020). Adapting en-
gineering examinations from paper to online. In
2020 IEEE Global Engineering Education Confer-
ence, EDUCON 2020, Porto, Portugal, April 27-30,
2020, pages 1891–1895. IEEE.

Butler-Henderson, K. and Crawford, J. (2020). A system-
atic review of online examinations: A pedagogical
innovation for scalable authentication and integrity.
Comput. Educ., 159:104024.

Cavalcanti, E. R., Pires, C. E., Cavalcanti, E. P., and Pires,
V. F. (2012). Detection and evaluation of cheating on
college exams using supervised classification. Infor-
matics in Education, 11(2):169–190.

Chen, B., West, M., and Zilles, C. B. (2018). How much
randomization is needed to deter collaborative cheat-
ing on asynchronous exams? In Luckin, R., Klem-
mer, S., and Koedinger, K. R., editors, Proceedings
of the Fifth Annual ACM Conference on Learning at
Scale, London, UK, June 26-28, 2018, pages 62:1–
62:10. ACM.

Denny, P., Tempero, E. D., Garbett, D., and Petersen, A.
(2017). Examining a student-generated question ac-
tivity using random topic assignment. In Davoli, R.,
Goldweber, M., Rößling, G., and Polycarpou, I., ed-
itors, Proceedings of the 2017 ACM Conference on
Innovation and Technology in Computer Science Ed-
ucation, ITiCSE 2017, Bologna, Italy, July 3-5, 2017,
pages 146–151. ACM.

Gruenigen, D. V., de Azevedo e Souza, F. B., Pradarelli,
B., Magid, A., and Cieliebak, M. (2018). Best prac-
tices in e-assessments with a special focus on cheating
prevention. In 2018 IEEE Global Engineering Ed-
ucation Conference, EDUCON 2018, Santa Cruz de
Tenerife, Tenerife, Islas Canarias, Spain, April 17-20,
2018, pages 893–899. IEEE.

Holohan, N., Antonatos, S., Braghin, S., and Aonghusa,
P. M. (2017). (k, ε)-anonymity: k-anonymity with ε-
differential privacy. CoRR, abs/1710.01615.

Hubálovská, H. and Satánek, A. (1971). To the question of
the random choice of right answers and to the succes
at programmed exams. Kybernetika, 7(4):328–333.

Kigwana, I. and Venter, H. S. (2018). A digital forensic
readiness architecture for online examinations. South
Afr. Comput. J., 30(1).

Küppers, B., Eifert, T., Zameitat, R., and Schroeder, U.
(2020). EA and BYOD: threat model and comparison
to paper-based examinations. In Lane, H. C., Zvacek,
S., and Uhomoibhi, J., editors, Proceedings of the 12th
International Conference on Computer Supported Ed-
ucation, CSEDU 2020, Prague, Czech Republic, May
2-4, 2020, Volume 1, pages 495–502. SCITEPRESS.

Lancaster, T. and Clarke, R. (2017). Rethinking assessment
by examination in the age of contract cheating.

Maroco, P., Cambeiro, J., and Amaral, V. (2019). A mo-
bile system to increase efficiency of the lecturers when
preventing academic dishonesty during written ex-
ams. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), volume 1,
pages 236–241. IEEE.

Pérez-Solà, C., Herrera-Joancomartı́, J., and Rifà-Pous, H.
(2017). On improving automated self-assessment with
moodle quizzes: Experiences from a cryptography
course. In Ras, E. and Guerrero-Roldán, A., edi-
tors, Technology Enhanced Assessment, 20th Interna-
tional Conference, TEA 2017, Barcelona, Spain, Oc-
tober 5-6, 2017, Revised Selected Papers, volume 829
of Communications in Computer and Information Sci-
ence, pages 176–189. Springer.

Piontek, M. E. (2008). Best practices for designing and
grading exams. Occasional Paper, 24:1–12.

van Ommering, C. J., de Klerk, S., and Veldkamp, B. P.
(2018). Getting to grips with exam fraud: A qual-
itative study towards developing an evidence based
educational data forensics protocol. In Draaijer, S.,
Brinke, D. J., and Ras, E., editors, Technology En-
hanced Assessment - 21st International Conference,
TEA 2018, Amsterdam, The Netherlands, December
10-11, 2018, Revised Selected Papers, volume 1014
of Communications in Computer and Information Sci-
ence, pages 199–218. Springer.


