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Abstract: Programming education has become a mandatory element of many engineering curriculums, covering skills

from digitally controlled mechanical processes to intelligent traffic and aviation systems. Many of these disci-

plines require the interaction with physical devices as programming interfaces. Higher education institutions

focusing on quality presence labs with the need for occasional online teaching are thus looking for blended

and multimodal solutions in which the physical interaction can be carried over as much as possible into the

digital channels. In these solutions, various touch points between the physical and digital worlds should be

exploited. This paper contributes such a solution. It introduces a cyber-physical educational support structure

called EPOSS aimed at programming ’things’, including robots and derivative stationary and mobile units, that

works in flexible lab and online teaching combinations. The system integrates domain-specific scenarios and

open data sources for realistic autoprogramming simulations and is made available as open source prototype

to foster adoption. The usefulness of the support system is demonstrated with traffic engineering education

scenarios.

1 INTRODUCTION

Programming is widely seen as one of the key

competences that any engineer should be able to mas-

ter (Guo, 2013; dos Santos et al., 2018; Thode et al.,

2020). From an economic and employment perspec-

tive, this need is driven by the desire to automate pro-

cesses, to reduce operational errors, and to decom-

pose complex problems into smaller assignable tasks.

From a technology perspective, programmability in-

creasingly enters the environments of prospective en-

gineers and of society as a whole. Programming

is thus increasingly reflected in teaching to prepare

students for the life and work in a software-defined

and programmable world. To given an example, an

engineering-focused institution like the School of En-

gineering at the author’s higher-education institution

requires programming skills across all curriculums:

• Computer science: Students learn foundational

concepts of programming and apply them mostly

in the digital space (web applications, cloud-

native services, machine learning tasks) with

some physical touchpoints (computer architec-

tures, sensors).
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• Business engineering and data science: Students

learn with emphasis on automation and apply their

skills mostly in the digital space (spreadsheets

processing, analytics over unstructured data col-

lections).

• Aviation, traffic systems, environmental sciences,

machine technology and electrical engineering:

Students are exposed to complex physical systems

and have an intrinsic interest to apply their skills

in their respective physical domain. This leads

to cyber-physical systems (e.g. programmable

car with control program) and systems of sys-

tems (e.g. transport within one city), with pro-

grammable physical ’things’ being the smallest

unit.

The importance of programming skills was not yet

widely acknowledged by most industry domains in

the mid-2010s (Prinsley and Baranyai, 2013). Conse-

quently, in the curriculums mentioned last, the acqui-

sition of competences in programming has changed

status from being nice to have to being obligatory

and highly important. However, this change has hap-

pened without the necessary support structures for ed-

ucators who need to convey characteristic real sys-

tem behaviour while being able to expose students

to these systems directly in most situations. Fail-



ure to convey with the appropriate support leads to

a reduction in attractiveness and attention, and even-

tually to reduced subjective acceptance of program-

ming exercises as integral part of studies (Santana

et al., 2018). This problem is reinforced when pro-

gramming lectures for engineers are merely copying

approaches from computer science instead of con-

sidering a domain-specific outlook on how the engi-

neers would apply programming in their future ca-

reers. Programming real ’things’ such as vehicles or

production machines could increase attention but re-

quires privileges which are not always attainable in

educational settings due to high procurement cost or

the sheer size of hardware. Furthermore, students are

not always on campus and might be physically sepa-

rated from both the ’things’ and the educators.

This problem has recently become more severe

due to forced hybrid and online teaching settings

(Ocaña et al., 2020). A lot of the public de-

bate concentrated on collaboration tools for sharing

course materials and performing video calls (Klimova

and Poulova, 2014), but omitted a critical view on

pedagogic concerns specifically for applied learning

(Nortvig et al., 2020). Mobile applications and as-

sessment tools for programming education of engi-

neers are available (Ortiz et al., 2015) but likewise

do not consider physical objects. The problem rather

calls for a substitute environment in which the pro-

gramming target systems are abstracted to avoid inter-

ruptions and upheavals of the respective curriculums.

Among the suitable abstractions that can convey a

comparable set of characteristics related to the origi-

nal ’thing’ are physical and digital models. The physi-

cal models are programmable yet simplified miniature

equivalents of the actual ’things’, whereas the digi-

tal models are objects represented by an application

programming interface (API). This leads to the model

of Fig. 1 to consider as starting point for the antici-

pated educational programming and observation sup-

port structure (EPOSS).

Figure 1: Scope of the support structure among real and
model systems

This paper thus introduces an EPOSS suitable for

programming curriculums focused on ’things’. First,

it introduces the underlying didactic concepts and

functional requirements (Sect. 2). Then, it sum-

marises existing related works aiming at similar con-

cepts (Sect. 3). Afterwards, it dives into the techni-

cal realisation. For that matter, it introduces the soft-

ware system architecture and implementation (Sect.

4) and demonstrates a concrete use case with traffic

engineering students (Sect. 5). The paper concludes

with remarks on future work (Sect. 6).

2 DIDACTIC CONCEPTS

2.1 Learning Goals and Teaching

Concepts

Learning imperative programming, the dominant

paradigm for interfacing with the physical world

(Smith, 2007), requires learning how to apply algo-

rithmic thinking and planning before proceeding to

the implementation. The planning needs to consider

all intended effects as well as unintended and unnec-

essary side effects. In the context of physical objects,

the laws of physics and various degrees of imperfec-

tion, such as loss of connectivity and unexpected la-

tency, need to be considered in addition to purely dig-

ital concerns. For instance, if a mobile robot is in-

structed to take a turn, this action might take a few

seconds during which the submission of further in-

structions might be blocked. Similarly, if a light sen-

sor shall determine the colour of an object, the light-

ing conditions in the room and the sensor quality will

effect the accuracy (Karaimer and Brown, 2018). Fur-

thermore, real damage might occur if a robot is in-

structed to move to the cliff of a table in the lab room,

and such risks might increase due to limited self-

awareness linked to restricted sensing qualities of the

hardware available in the classroom. In the orthogo-

nal context of online education, assuming the students

do not individually carry the entire physical installa-

tion to their places of living, it is important that the

consequences of any instructions remain visible and

audible immediately.

Hence, the remote teaching of physical objects

programming focuses on the following goals:

1. Combination of practical labs and demonstration

phases in which the occupancy of the ’things’

changes between educators and students.

2. Ability to determine the correctness of a program

resulting from practical labs through observation,

from both the student’s and educator’s perspec-

tive.

3. Reasoning about the representativeness of physi-



cal and digital models for the respective engineer-

ing domain.

2.2 Modalities and Student Engagement

Students learn in supervised or unsupervised condi-

tions in on-site, hybrid or online settings with direct

or remote access to physical ’things’. Typically, in-

stitutions with hundreds of students concurrently en-

rolled in programming courses will not purchase hun-

dreds of things; rather, they would use coarse-grained

or fine-grained time sharing (Meyer and Seawright,

1970) that guarantees exclusive access and, in the case

of on-site teaching and coarse-grained time sharing,

would be implied by the course schedules. In case stu-

dents are prevented from participating on-site, there

are multiple options - students share things amongst

each other, educators parcel things to students, or an

online system is used. The first two options are im-

practical, expensive and, in the case of a pandemic,

even impossible, leaving the need for an online sup-

port structure.

When no direct access is possible, the unsuper-

vised learning might be constrained. For instance,

an educator hosting equipment in the home office

could assign time slots for students to use but might

not want to be disturbed outside of these slots, given

the movement, noise and sensing by programmable

’things’. Furthermore, moving objects typically op-

erate on battery, requiring to be placed on a charger

occasionally. While more advanced robots can return

for charging autonomously, the budget systems typ-

ically available for education require manual place-

ment. Finally, things may crash or get stuck, requiring

the manual intervention of the educator.

2.3 Support Structure

To achieve the desired educational quality, a cyber-

physical education support system following ideas

of virtual labs, but lifting those ideas to the cyber-

physical level including virtual/digital and physical

elements, shall have the following features:

1. Support for both direct and indirect (distance-

proxied) programming of things.

2. Support for partial simulation and human-in-the-

loop models to allow for complementary pro-

gramming and gap filling exercises.

3. Support for data-driven autoprogramming, i.e. the

controlled generation of instructions based on ex-

ternal open data sources that represent real sys-

tems.

4. Support for observing the effects of the program-

ming or autoprogramming, such as movement of

things, through multiple senses - visual, auditive -

also across distance if necessary.

5. Safety barriers to avoid damage on things that

results from continuous driving against a wall

and other non-intentional programming instruc-

tions. These barriers are enforced automatically

and thus also enable a certain level of self-study

without the constant interference of an educator

in the presence of mistakes.

The resulting interaction between all structural

parts of the education support system, as well as the

system interfaces to the student, are shown in Fig. 2.

Figure 2: Cyber-physical education support structures from
a student perspective

3 RELATED WORKS

Blending various forms of interacting with phys-

ical devices is a recurring topic in education. Sim-

ulation, virtual reality (VR) and digital twinning

are among the promising concepts. Some educa-

tors propose to incorporate simulations for conceptual

grounding, for instance in fluid mechanics (Altuger-

Genc et al., 2018). Others propose to combine

VR and simulation to bypass physical setups while

still conveying a realistic environment (Bolano et al.,

2020). Despite being helpful for online learning,

many educators consider it mandatory to involve ac-

tual physical behaviour due to the absence of afford-

able precise simulations, due to the higher attractive-

ness of tangible objects for students, and due to better

alignment between learning modalities (Hodges et al.,

2020). Such a concept was already proposed and im-

plemented previously in Brazil (Almeida et al., 2017)

involving multi-agent systems, schedules and integra-

tion into a Learning Management System (LMS). One

difference to our work is that in that system, pro-

gramming commands would be necessarily submitted



through the LMS, whereas the proposed EPOSS aims

at a seamless integration, not requiring any forms of

programming interaction that differs from the physi-

cal ones. A further difference is that the study was

conducted with school children in the age bracket

of 12–17 years, whereas the EPOSS is designed for

teaching to undergraduates and graduates with differ-

ent curricular interests, not necessarily focusing on

robots but all relating to programming, without a par-

ticular age bracket but generally being adults.

Remote, hybrid and on-site physical programming

through virtual laboratories has been proposed for in-

dustrial automation in Mexico and Spain (Vázquez-

González et al., 2018). It is a promising proposal but

lacks a concrete implementation. Another approach is

the modelling of cyber-physical system applications

in web browsers using high-level abstractions (Peter

et al., 2015). This approach was validated with stu-

dents attending embedded systems courses and led to

positive feedback by students. Among these related

works, none exploit network transparency to seam-

lessly combine the various presence and online teach-

ing modes.

4 SYSTEM ARCHITECTURE

AND IMPLEMENTATION

4.1 Design and Architecture

EPOSS is designed as a software system to support

all processes around physical objects programming

education. Its architecture is adapting to the modal-

ities of teaching, including on-site classrooms, hybrid

settings with reduced classroom presence, and pure

online teaching. Furthermore, it is adapting to the

level of guidance from educators, ranging from fully

guided labs and demonstrations to self-study assign-

ments.

The EPOSS architecture foresees three domains

of authority: student, lecturer/educator, and net-

work/cloud. In on-site courses, these authorities can

be combined, whereas in remote teaching they are

typically disjoint. In the cloud domain, administered

by the educator or the IT department of the respon-

sible institution, network and proxy services are op-

erated to facilitate the connection between students

and educators. Students perform requests containing

programming instructions to the proxy service which

are then executed in the educator domain that also en-

compasses the physical ’things’. Fig. 3 compares the

teaching settings.

The architecture takes security and privacy con-

Figure 3: EPOSS teaching settings

cerns into account by forwarding all service requests

through a message queue. Hence, the educator does

not need to expose any network ports directly to the

outside world in hybrid and online teaching settings.

Furthermore, devices can be configured to register at

the proxy upon booting with a randomly generated

secret number that is spoken via voice synthesis for

two-factor authentication. This feature can be used

not only to authorise access across sites, but also to

avoid accidental or malicious takeover across class-

rooms. Only students who are nearby and listen to the

voice are thus able to control the device. Moreover, as

all interactions traverse the proxy, all programming

instructions can be recorded and later be inspected or

replayed.

4.2 Implementation

The implementation makes assumptions about the

programming language and the interfaces to ’things’

as well as the operating environment and the cov-

ered programming domains. While the implementa-

tion technologies are generally exchangeable, the fol-

lowing describes the implemented EPOSS architec-

ture that assumes the use of Python with RPC inter-

faces and the network protocols HTTP and AMQP.

The proxy-connected Python module RPyCloud is at

the centre of the solution along with the correspond-

ing RPyCloud service. It is a drop-in replacement for

the standard module RPyC used for local device pro-

gramming, making it possible to re-use programming



instructions without modification. The RPyCloud de-

vice code is optional; for ’things’ that do not permit

any modification, it does not have to be used at the ex-

pense of not being able to isolate the devices between

students.

Figure 4: RPyCloud architecture and implementation

Fig. 4 shows the implementation-level architec-

ture with components spread across the three domains

of authority. The invocations that are channeled to the

service are executed on the device. Hence, for devices

requiring other forms of interactions, such as HTTP

or ROS messages, the module and the execution part

within the service need to be adjusted to maintains

the seamless substitution of standard interfaces. This

way, the education setup does not deviate significantly

from the interfaces that students will use in their ca-

reers after graduation.

An EPOSS should furthermore contain hands-on

lab examples that can be used in supervised/guided or

unsupervised/self-study settings. The implementation

therefore contains specific examples for vehicle pro-

gramming for traffic systems that are described below.

4.3 Interaction

Using the support structure for direct access to en-

force exclusive interaction with the programmable

things does not involve any special effort other than

using the RPyCloud module by students and operat-

ing the corresponding server-side infrastructure. In

contrast, remote access requires a proper setup with

cameras, microphones and other sensors so that the

senses of students get activated. Fig. 5 shows a typ-

ical physical setup using an external camera so that

students can interact with both the things and the ed-

ucator side-by-side.

As feedback about the consequences of a pro-

gramming instruction is crucial, a web-based com-

Figure 5: Physical setup in classroom or educator home

mand and control interface is furthermore operated

and made accessible through the cloud domain. It al-

lows for connecting to a specific device and submis-

sion of individual abstractions, but can also be used in

parallel to a running program to visibly and audibly

verify the correctness and behaviour. While it enables

self-study, it can also be used interactively to perform

a discussion between student and educator. This re-

duces the need for a separate chat and video call tool

and thus reduces the cognitive load on students.

Fig. 6 shows a typical remote programming ses-

sion in which a lab instructor explains to a student

how to correct a mistake.

Figure 6: RPyCloud Web user interface



5 USE CASE: CYBER-PHYSICAL

VEHICLE PROGRAMMING

Intelligent transport systems are a cornerstone of

smart cities and regions. Students of traffic systems

and traffic engineering learn about transport modal-

ities and associated concerns like logistics and inte-

grated mobility. The EPOSS is suitable for teaching

the programming of vehicle movements and transport

schedules in on-site, hybrid and remote settings. At

the author’s institution, these students learn imper-

ative, procedural and object-oriented programming

concepts over a period of two semesters in cohorts

of up to 40 students. The competences are conveyed

with the Python programming language and its di-

verse modules for interacting with the computer as

well as external systems. Hands-on programming

labs are conducted individually or in pairs and are

geared towards the students’ future work domains,

for instance intelligent and data-supported traffic sys-

tems development. While the first two weeks are re-

served for foundational theory (introducing program-

ming, language syntax), the programming of robotic

vehicles starts as early as in the third week, and in

the second semester extends to smart city scenarios

including avoidance of accidents in intermodal traffic

situations. The use of physical ’things’ aids in a more

plastic and realistic representation of these scenarios.

5.1 Vehicle Scenario Installation

Fig. 7 shows a physical model of a crossing of two

roads, deployed in the classroom in on-site or hy-

brid settings, or in the homes of students or educa-

tors in pure online teaching settings. Two model ve-

hicles with different characteristics, primarily speed

and offensive-defensive driving styles, along with

three measurement points and a number of additional

sensors and light indicators are connected to form

a crossing scenario. All vehicles and measurement

points are represented by Mindstorms EV3 robots that

fit the RPC programming model assumed by EPOSS.

5.2 Manoeuvre Programming

To foster the mastering of algorithms involving pre-

cise temporal and spatial aspects, students can use the

EPOSS to implement traffic manoeuvres typical for

cars on roads. Educators have access to reference im-

plementations which the students can also replay on

their own account to compare their own solutions.

Fig. 8 shows the implemented scenarios involving

either one or two vehicles.

Figure 7: Traffic counting scenario with moving vehicles
and stationary sensors

Figure 8: Vehicle manoeuvres

The programming is non-trivial as can be exem-

plified with the overtaking manoeuvre. Overtaking

requires a stateful multi-step process. In the first step,

upon detecting a slow vehicle in front, the decision

to overtake is made by turning to the left or, in case

the vehicle robots do not permit rotations as is the

case with EV3 robots, increasing the acceleration of

the right wheel. In the second step, the sides are re-

versed to achieve a right turn. In the third step, both

sides are accelerated equally. By programming ac-

tual ’things’, limited sensor information must be con-

sidered and mistakes may lead to actual crashes that

stress the importance of safe algorithms in spite of

their complexity.



5.3 Open Data and Autoprogramming

In order to achieve realistic scenarios, real-time traffic

data can be injected into the physical model. For this

use case, the EPOSS has been extended with access to

two systems, OTD and VDP from Switzerland. OTD

delivers planning and actual data with minute granu-

larity on public transport, whereas VDP delivers ac-

tual data with second and even subsecond granularity

on road vehicles. Both systems intersect when public

transport is using the road, in particular buses.

Fig. 9 shows the general concept of injecting

and replaying open data in the physical model. It is

not only increasing the attractiveness for students due

to the stronger link between model and real system.

Rather, it also allows for reasoning about the precision

of all system components ranging from real system

sensing over physical movement and sensing in the

physical model to digital data processing of all sen-

sor data and programming instructions. This exposes

students to the open research problem of achieving

absolute synchrony, represented by the same deltas

between measurements in both systems, and can lead

to follow-up engagement in project works on tackling

parts of this problem.

Figure 9: Replaying data captured from real systems in
model systems

Fig. 10 shows how the movement of a sched-

uled train visible in the background is projected in

seemingly perfect synchrony to the movement of a

model train. This aspect is particularly intriguing and

attractive for students who understand the complex-

ities of traffic planning. In this case, as OTD only

delivers minute granularity, the students have to per-

form statistical measurements to calculate movement

drifts and reason about increasing the precision and

predictability in mobility.

5.4 Student Feedback

EPOSS is work in progress and was only used in a

pilot setting in the first of two semesters with traf-

fic engineers. It was not yet evaluated in other engi-

neering domains. Hence, only basic vehicle manoeu-

vres such as drawing a circle or a square with ap-

propriate movement sequences were taught with the

support structure. The flexibility in settings proved

Figure 10: Autoprogramming of a model train with OTD
from a real train

to be an advantage, as the teaching started in hybrid

mode (with on-site and remote groups taking turns)

and later switched to pure online mode. Accordingly,

the physical installation was migrated from the class-

room to the educator home office, without any work

difference for those students who were previously in

the remote groups. The general perception of the sys-

tem was positive and the interaction worked well, al-

though the participants look forward to enhancements

such as self-reservation for unsupervised program-

ming. Compared to a classroom, the supervised 1:1

sessions were considered especially helpful in case

of problems like stuck cars that could quickly be re-

solved by the intervention of the educator.

6 CONCLUSIONS

EPOSS is a digital support system for educational

needs related to programming and observing physi-

cal objects or ’things’. It is implemented based on

a distributed computing architecture and proven to

work in on-site, hybrid and remote teaching of traf-

fic engineering students. The focus of the work was

on the technical enablement. Therefore, it lacks em-

pirical validation over multiple semesters. This task

is left for future work from a scientific work angle.

To extend EPOSS to other study courses, the phys-

ical scenery could be extended to support multiple

cameras and ground materials (useful for machine

technology students) as well as cranes and other lo-

gistics equipment (useful for business process stu-

dents). Specifically for traffic engineering students,

intermodal logistics scenarios including handover of

goods and enhancement with simulation to learn the

behaviour of complex systems and scale could be re-

alised. These extensions are left as further future work



from an applied education angle.

EPOSS AVAILABILITY

EPOSS is made available as open source software

package, consisting of the central RPyCloud system,

traffic demonstration scenarios and other necessary

parts to replicate it in other education institutions. A

snapshot is published on Zenodo1 while further de-

velopment is encouraged on GitHub2.

ACKNOWLEDGEMENTS

This work is supported by a DIZH Fellowship

under grant Smart Cities and Regions Services En-

ablement (SCReSE). The material is further based

upon work supported by Google Cloud, with GCP Re-

search Credits for Serverless Data Integration.

REFERENCES
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