Performance Evaluation of Crystal

Nicolas Ganz, Prof. Jiirgen Spielberger
ZHAW Zurich University of Applied Sciences

July 2021

Abstract

Crystal is a new programming language, which tries to combine the
simplicity to write software of Ruby with the performance of C. This
study aims to compare the performance of Crystal with the programming
languages Ruby, C and Go.

This is done by using different example programs that use specific
parts used in real world applications. Those include iterative and recur-
sive implementations of the Fibonacci sequence, reading and writing files,
listening to sockets, as well as calling a method written in C.

The results show that Crystal can be considered a fast programming
language. While C with all optimisations of gcc is still faster, the per-
formance of Crystal is comparable with Go. As expected is Ruby, with
just-in-time (JIT) compilation or without, by a factor of 8 respectively 9
slower than Crystal.

Contents

1 Introduction 4
1.1 Comparing Performance 4

2 Method 4
2.1 TestSetup. 4
2.2 Performance Tests 5
2.2.1 Startup Time o 5

2.2.2 Recursive Fibonacci 6

2.2.3 Recursive Fibonacci Without Optimisations 6

2.2.4 Tterative Fibonacci L. 7

2.2.5 Writing Lines to Files 7

2.2.6 Writing Longer Lines to Files 8

2.2.7 Reading Lines from Files 8

2.2.8 CBindings e 9

229 TCP Sockets o 10

2.3 Parallelism 10
2.4 Measuring Performance 11
2.5 Language Options 12
251 Ruby 12

252 Ruby (JIT) 12

253 C. o 12

254 GO 12

25.5 Crystal 12

3 Results 12
3.1 Performance. 12
3.1.1 Startup Time, 12

3.1.2 Recursive Fibonacci 13

3.1.3 Recursive Fibonacci Without Optimisations 13

3.1.4 Tterative Fibonacci 14

3.1.5 Writing Lines to Files 14

3.1.6 Writing Longer Lines to Files 14

3.1.7 Reading Lines from Files 15

3.1.8 CBindings o 15

3.1.9 TCP Sockets oo 15

3.1.10 Comparison Lo 16

4 Discussion 17
4.1 Limitations L 17
4.2 Further Research 18

List of Tables

1 The system setup used for the performance measurements 4
2 Version numbers of the compilers and interpreters 5
3 Difference between the internal and external real time 12
4 Measurements of the simple Fibonacci algorithm 13
5 Measurements of the simple Fibonacci algorithm without optimi-
Ssations 13
6 Total CPU time for the iterative Fibonacci implementation . . . 14
7 Total CPU time for writing lines to files 14
8 Total CPU time for writing longer lines to files 14
9 Total CPU time for reading files 15
10 Total CPU time for calling C methods 15
11 Measurements of listening to sockets 15
12 Comparison of all measurements relative to Crystal 17

List of Figures

1 Comparison of all measurements 16

1 Introduction

Crystal is a new programming language. It has the goal of combining Ruby’s
efficiency for writing code and C’s efficiency for running code [1]. The goal of
this report is to compare the performance of Crystal with different programming
languages.

1.1 Comparing Performance

For comparing performance of programming languages benchmarks are often
used. There exist lists of different programs that are implemented in different
languages to compare them. The Computer Language Benchmarks Game [2] is
one of them and is implemented in different languages. It shows that measuring
performance of programming languages using real world programs would be
ideal but requires a lot of work. Additionally it also requires in depth knowledge
of all languages to not accidentally implement a part of the program inefficiently.
While there is no official implementation of the Computer Language Benchmarks
Game in Crystal there exists an unofficial one [3]. Other languages are compared
in many different benchmarks as well [4, 5, 6].

Comparing real world applications is too complex, but the issue with the
simplified applications is that it mostly uses different algorithms and only mea-
suring those entirely using the programming language itself. Real world appli-
cations on the other hand also interact with things outside of the programming
language, like files, sockets and libraries written in other languages like C. What
this report tries to achieve is to measure the performance of specific parts of
programs used in real world applications. These parts include recursive and it-
erative functionalities, reading and writing files, using sockets, as well as calling
methods written in C.

2 Method

2.1 Test Setup

The general system information used to measure the performance of the pro-
gramming languages is described in table 1. The version numbers of all compilers
and interpreters are shown in table 2 on the next page.

OS Linux-5.10.36-2-MANJARO-x86_64-with-glibc2.33
CPU Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
RAM 154 GiB

Disk NVMe disk - HFS512GD9TNG-62A0A

Table 1: The system setup used for the performance measurements

Crystal 1.0.0 (LLVM: 10.0.1)

Ruby 3.0.1p64
GCC 10.2.0
Go 1.16.4

GNU time 1.9-3

Table 2: Version numbers of the compilers and interpreters

2.2 Performance Tests

To measure the performance of the programming languages multiple methods
were chosen. The Crystal code is shown in this report as an example of the
exact implementation.

2.2.1 Startup Time

To get a better understanding of how much time the basic setup — for example
interpreting the source code — of the program requires the algorithm 1 is used.
It takes the real time at the beginning of the program, sleeps for one second
and calculates the time spent sleeping.

If this internal time is subtracted from the duration of the entire program
the result will be the time it takes for the basic setup and one second. This
second is added because the call to sleep is not measured by the CPU time.

Algorithm 1: Measuring the startup time

1 start_time = Time.utc
2 sleep 1
3 end_time = Time.utc

5 puts (end_time - start_time).total_seconds

2.2.2 Recursive Fibonacci

To measure how efficient method calls are a recursive Fibonacci algorithm, as
described in algorithm 2, is used to calculate Fys. Fjo is used, because it runs
in a reasonable time in Ruby but all other programming languages still take a
measurable amount of time.

Algorithm 2: Recursive Fibonacci implementation

1 def fibonacci(n)

2 return n if =0 || n ==
3 fibonacci(n - 1) + fibonacci(n - 2)
4 end

¢ puts fibonacci(42)

2.2.3 Recursive Fibonacci Without Optimisations

The problem with algorithm 2 is that some compilers can detect and eliminate
tail-recursion [7]. LLVM, used in Crystal, for example uses this [8]. The algo-
rithm 3 is introduced to see if this tail-recursion optimisation was used by any
compiler.

Just assigning the recursive calls to variables does not necessarily remove the
possibility of this optimisation. It is necessary to actually use those variables.
This is done by comparing the variables if n # 3. If n = 3 then a and b are both
1 and would therefore fail.

Algorithm 3: Recursive Fibonacci implementation without optimisa-
tions

1 def fibonacci(n)

2 return n if n == || n ==1

3 a = fibonacci(n - 1)

4 b = fibonacci(n - 2)

5 raise "should not happen" if n != 3 && a ==
6 a+b

7 end

9 puts fibonacci(42)

2.2.4 Iterative Fibonacci

Algorithm 4 calculates the Fibonacci number Fy3. Fys is chosen, because it
is the largest Fibonacci number that can be contained in a 64 bit unsigned
integer. But since this implementation is extremely fast in comparison with the
recursive implementation it is run 10 000 000 times and one additional time that
gets printed. Otherwise it would not be measurable. The result is compared
with the expected result to make sure that the result is actually used and the
calls are not skipped by the optimiser.

Algorithm 4: Iterative Fibonacci implementation

1 def fibonacci(n)
2 a = 0_u6b4d
3 b = 1_u64d

4 (n - 1).times do
5 a, b=>b, a+b
6 end

7 b

s end

10 10_000_000.times do

11 raise "invalid number" if fibonacci(93) != 12200160415121876738
12 end

13 puts fibonacci(93)

2.2.5 Writing Lines to Files

To measure how efficiently the programming language can write to files algo-
rithm 5 creates a file with 100 000 000 lines one at at time containing “0123456789”.
This leads to a file with a size of 1.1 GiB.

Algorithm 5: Writing lines to a file

1 CONTENT = "0123456789\n"

3 def write_file
4 File.open("../tmp/crystal_file.tmp", "w") do [filel
5 100_000_000.times do

6 file.print CONTENT
7 end

8 end

9 end

10

11 write_file

2.2.6 Writing Longer Lines to Files

To verify that write buffers are used algorithm 6 writes ten lines at a time and
only runs 10000 000 times. This creates the exact same file as in algorithm 5 on
the previous page, but it will write it in larger chunks.

Algorithm 6: Writing longer lines to a file

CONTENT = 10.times.map { "0123456789\n" }.join

def write_file
File.open("../tmp/crystal_file.tmp", "w") do [file]
10_000_000.times do
file.print CONTENT
end
end
end

write_file

2.2.7 Reading Lines from Files

To measure the speed at which files can be read algorithm 7 reads one line at a
time of a file and verifies that each line is correct. A file created with algorithm 5
on the previous page is used.

Algorithm 7: Reading lines from a file

CONTENT = "0123456789"

def read_file
File.read("../example.txt") .each_line do |line|
raise "invalid line: #{line}" if line != CONTENT
end
end

read_file

2.2.8 C Bindings

Interact with code written in C is useful to get access to many important libraries
and frameworks. Algorithm 8 measures how efficient it is to call a method in C.
For that the cos function from math.h is used. To prevent the compiler from
optimising away any calls the result is compared with the previous result. This
is repeated for all numbers from 0 up to but excluding 100 000 000.

Algorithm 8: Calling C methods

1 1lib C
2 fun cos(value : Float64) : Float64
3 end

5 def calculate_cos(n)

6 C.cos n

7 end

8

9 prev = -1

10 100_000_000.times do [i]

11 value = calculate_cos i

12 raise "stayed the same" if value == prev
13 prev = value

14 end

15 puts prev

2.2.9 TCP Sockets

Another important aspect of programming languages is how efficient TCP sock-
ets can be used. To measure this a simple web server is implemented in al-
gorithm 9. Every time a request is received it returns a predefined plain text
HTTP response.

Algorithm 9: Listening to TCP sockets

1 require "socket"

3 MESSAGE = "HTTP/1.1 200 OK\r\n" +

4 "Content-Type: text/plain\r\n" +
5 "Content-Length: 12\r\n" +

6 "Connection: close\r\n\r\n" +

7 "Test Message"

9 TCPServer.open 2000 do |server|

10 puts "ready"

11 while client = server.accept?
12 client.gets

13 client.print MESSAGE

14 client.close

15 end

16 end

2.3 Parallelism

Parallelism is also important to compare, but parallelism is not supported by
all languages.

Crystal does not yet fully support parallelism [9]. There is a preview option
where you can pass the number of parallel workers as an environment variable,
which will enable running Fibers in parallel [10].

Before version 3 of Ruby it did not support parallelism either, since there
was a Global Interpreter Lock (GIL) for the entire runtime environment. With
version 3, released on 25 December 2020, they have introduced a more complex
abstraction where there is a GIL per Ractor and is therefore able to run multiple
Ractors in parallel [11].

Go has yet another approach to parallelism using Goroutines and Chan-
nels [12].

Since every language has different concepts, all with their advantages and
limitations, it is nearly impossible to get significant and comparable results.
This is therefore not further looked at in this report.

10

2.4 Measuring Performance

For measuring the running time of the programs there are multiple options.
Using the well known GNU time command [13] there are the following five
options concerning the running time of a program.

Time

%E Elapsed real time (in [hours:]minutes:seconds) .

%e (Not in tcsh(1).) Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in

— kernel mode.

%U Total number of CPU-seconds that the process spent in

< user mode.

%P Percentage of the CPU that this job got, computed as (%U
- + %S) / JE.

— man page of the GNU time command [14]

Using the real time, as in option %E, %e or %P, would not be helpful to
measure the performance of the programming languages, because it depends on
what other programs are running on the computer at the time. This would lead
to fluctuating results.

What is interesting for comparing the performance of programming lan-
guages are the two CPU-seconds measures. Those measure the amount of CPU
time the process got and ignore the time where the CPU is processing other
applications. The kernel mode is the privileged mode used to access hardware
resources and the user mode for the rest of the application [15]. Therefore the
most relevant measure for this project is the combination of CPU-seconds spent
in kernel mode and the CPU-seconds in user mode.

To ensure that the result is stable enough and fewer external factors play
a role the programs will be run ten times each and the mean is calculated
from all runs. To flatten out performance spikes and falloffs between languages
each programming language will run one after another and this in turn will be
repeated ten times. The combination of those two factors leads to stable test
results.

Special Case Measuring the time it takes to listen to TCP sockets cannot
be measured as the running time of the program since it is a simple server that
responds to requests and keeps running. In this case the measurement is taken
using siege [16]. This tool is used because it is simple to use, yet configurable.
The following options are used to measure the performance.

—--concurrent=1 Use 1 concurrent user since the servers are single-threaded.
--reps=1000 Complete 1000 requests how ever long it takes.

--benchmark Do not add delays in between the iterations.

The duration the siege command takes to complete 1000 requests is used
as the result for each language.

11

2.5 Language Options

2.5.1 Ruby

To run the Ruby scripts the command ruby $test_name.rb is used. Since it
is a scripting language there are no optimisation options to be used.

2.5.2 Ruby (JIT)

One option in ruby is to enable just-in-time (JIT) compilation. This is done
by using the command ruby --jit $test_name.rb. To see if JIT compilation
improves the performance all results are also generated with this option.

2.5.3 C

For compiling C code the well known gcc [17] is used. This compiler allows for
a lot of optimisations [18]. The most improvements can be achieved with the
command gcc -03 $test_name.c.

2.5.4 Go

Go is compiled using the default gc compiler flag. [19] This will in turn call the
go tool compile compiler, which already runs optimisations on the code. The
command to compile the Go files is go build $test_name.go.

2.5.5 Crystal

Crystal builds the programs by default in a non-optimised version of a binary
used for development. To optimise the binary a release mode can be used with
the following command crystal build $test_name.cr --release.

3 Results

3.1 Performance

3.1.1 Startup Time

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.001 0.001 0.002 0.000
Crystal 0.006 0.006 0.007 0.001
Go 0.005 0.002 0.005 0.001
Ruby 0.064 0.052 0.068 0.004
Ruby (JIT) 0.070 0.068 0.074 0.002

Table 3: Difference between the internal and external real time

The “difference” column in table 3 shows that Ruby takes a lot of time
to run this script. The usage of JIT compilation improves the performance
significantly, but is still about a factor of 10 slower as precompiled languages.
The precompiled languages all take a similar amount of time. Of those the

12

biggest difference is between Crystal and C, where Crystal takes approximately
twice as long as C.

3.1.2 Recursive Fibonacci

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.490 0.480 0.500 0.005
Crystal 1.127 1.110 1.160 0.013
Go 1.483 1.470 1.530 0.018
Ruby 29.763 29.170 31.060 0.607
Ruby (JIT) 8.630 8.220 9.460 0.341

Table 4: Measurements of the simple Fibonacci algorithm

Table 4 shows that there is a huge difference between Ruby running with
JIT compilation or without. Crystal and Go have similar performance, where
Crystal is a little bit faster. C on the other hand is by a factor of 2 faster than
Crystal and Go.

3.1.3 Recursive Fibonacci Without Optimisations

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.630 0.630 0.630 0.000
Crystal 1.264 1.260 1.270 0.005
Go 1.644 1.640 1.650 0.005
Ruby 38.026 36.820 41.460 1.349
Ruby (JIT) 16.453 16.190 16.760 0.242

Table 5: Measurements of the simple Fibonacci algorithm without optimisations

Table 5 shows a minor increase of time compared to table 4 in each pro-
gramming language which is around the same for all languages.

13

3.1.4 Iterative Fibonacci

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.475 0.470 0.500 0.011
Crystal 0.357 0.350 0.360 0.005
Go 0.300 0.300 0.300 0.000
Ruby 75.357 73.260 80.030 2.402
Ruby (JIT) 73.593 70.050 76.370 2.208

Table 6: Total CPU time for the iterative Fibonacci implementation
Table 6 shows that by using an iterative approach Go has the best perfor-
mance followed by Crystal and than C. Ruby, with or without JIT compilation,

takes a lot more time.

3.1.5 Writing Lines to Files

Language Mean (s) Min (s) Max (s) Stddev (o)

C 2.457 2.370 2.520 0.060
Crystal 1.186 1.160 1.230 0.022
Go 1.202 1.170 1.240 0.027
Ruby 12.968 12.550 13.540 0.323
Ruby (JIT) 13.640 13.300 14.050 0.298

Table 7: Total CPU time for writing lines to files
As shown in table 7, Go and Crystal are very fast at writing short lines to
files. C takes twice the amount of time, while Ruby is 10 times slower than

Crystal.

3.1.6 Writing Longer Lines to Files

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.773 0.770 0.780 0.005
Crystal 0.657 0.650 0.660 0.005
Go 0.667 0.660 0.680 0.007
Ruby 2.085 2.050 2.220 0.053
Ruby (JIT) 2.520 2.480 2.570 0.031

Table 8: Total CPU time for writing longer lines to files

With the change of writing longer lines to the files all languages got faster
as shown in table 8. Most improvements are found in Ruby and C.

14

3.1.7 Reading Lines from Files

Language Mean (s) Min (s) Max (s) Stddev (o)

C 1.866 1.830 1.920 0.037
Crystal 3.026 2.970 3.090 0.040
Go 2.239 2.150 2.310 0.060
Ruby 12.909 12.440 13.180 0.241
Ruby (JIT) 13.372 12.970 13.740 0.321

Table 9: Total CPU time for reading files

When reading files C and Go are the fastest as shown in table 9, closely
followed by Crystal. Ruby takes a lot more time.

3.1.8 C Bindings

Language Mean (s) Min (s) Max (s) Stddev (o)

C 1.163 1.140 1.320 0.055
Crystal 1.173 1.170 1.180 0.005
Co 6.330 6.290 6.430 0.044
Ruby 10.913 10.620 11.480 0.264
Ruby (JIT) 12.060 11.850 12.420 0.197

Table 10: Total CPU time for calling C methods

Table 10 shows that calling C methods uses almost the same time in C as
in Crystal. Both Go and Ruby take a lot more time.

3.1.9 TCP Sockets

Language Mean (s) Min (s) Max (s) Stddev (o)

C 0.835 0.810 0.870 0.018
Crystal 0.936 0.920 0.980 0.018
Go 0.906 0.880 0.940 0.017
Ruby 0.935 0.910 0.970 0.021
Ruby (JIT) 0.957 0.920 1.000 0.029

Table 11: Measurements of listening to sockets

As shown in table 11 the differences in performance for calling TCP sockets
are tiny and insignificant.

15

3.1.10 Comparison

Figure 1 shows that the largest difference in performance compared to Crystal
can be found in Ruby, with or without JIT compilation. C is mostly faster than
Crystal. Go and Crystal have a similar performance, where both languages have
benchmarks where they stand out.

Recursive Fibonacci

Recursive Fibonacci Without
Optimisations

Iterative Fibonacci
Writing Lines to Files
Writing Longer Lines to Files

Reading Lines from Files

C Bindings Language

Crystal

C

Go

Ruby
Ruby (JIT)

Startup Time

TCP Sockets

o
=
o
N
o

30 40 50 6
Time [s]

o

70

Figure 1: Comparison of all measurements

16

4 Discussion

The goal of this report was to compare the performance of Crystal with C,
Go and Ruby. Overall this report shows that Crystal can be considered a fast
language. As described in table 12 its performance is very close to Go, where
it is, depending on the benchmark, sometimes slower and sometimes faster. C,
especially with all optimisations of gcc, is still about 10 % faster than Crystal.

Measurement C Go Ruby Ruby (JIT)
Recursive Fibonacci 0.435 1.316 26.409 7.657
Recursive Fibonacci Without 0.498 1.301 30.084 13.017
Optimisations

Tterative Fibonacci 1.331 0.840 211.084 206.143
Writing Lines to Files 2.072 1.013 10.934 11.501
Writing Longer Lines to Files 1.177 1.015 3.174 3.836
Reading Lines from Files 0.617 0.740 4.266 4.419
C Bindings 0.991 5.396 9.303 10.281
Startup Time 0.224 0.726 9.948 10.850
TCP Sockets 0.892 0.968 0.999 1.022
Mean 0.915 1.480 34.022 29.859
Median 0.892 1.013 9.948 10.281

Table 12: Comparison of all measurements relative to Crystal

One benchmark that stood out is the execution of C code. In this C itself was
only 3.2% faster than Crystal and both Go and Ruby were noticeably slower
with a factor of 5, respectively 8. This is most likely due to the fact that Crystal
is using the LLVM which can also be used for compiling C code with the Clang
project [20].

Another interesting finding is, that the buffered writers used to write files
in Crystal and Go have a big impact on the performance. Writing the same file
in lines that are 10 times longer reduced the speed of C from 2.457s to 0.773s.
Crystal and Go also showed improvements, but it was not as much as C.

Something unexpected was that the performance of TCP Sockets were al-
most the same for all languages, even Ruby. This shows, that when using sockets
the bottleneck is the operating system itself. Of course when running a complex
web server where each request generates multiple objects and text gets parsed
then there will be differences between the programming languages, but listening
to TCP sockets themselves takes a comparable time.

Ensuring that the tail-recursion could not be optimised lead to slower per-
formance in all languages. This is expected, because more comparisons are
introduced. This reduction in performance is for all languages the same, which
shows that all optimisers are not able to optimise tail-recursion in this case.

4.1 Limitations

The performance of the code is immensely dependent on the implementation.
Due to that fact, the comparisons need to be interpreted with caution. It is

17

possible that in one language the implementation is written more efficiently
than in another. Another possibility is that an implementation could also be
optimised by one compiler but not another. This can lead to unrepresentative
results.

The time command only has a precision of 0.01s. When averaging the 10
test runs the precision can be a little bit bigger, but this needs to be interpreted
with caution.

It is also possible that context switches between processes or invalidated
CPU caches could lead to different environments for the languages. Using an
average of 10 test runs reduces the chances that this is possible, but it is still
worth keeping in mind when interpreting the results.

4.2 Further Research

There are still unanswered questions after this report. Those are described in
this section.

Memory Usage When comparing programming languages it is also interest-
ing to look at the memory usage. Especially with Ruby and Crystal treating
everything as objects it would be interesting to see if it is still as memory efficient
as C with its primitive types.

Other Tests To verify if the tests in this report did not by accident measure
something unexpected similar tests could be run. For example another recursive
algorithm could be used to verify that the results are significant.

Completely different tests could be used as well, measuring other aspects of
the programming languages. For example measuring objects could be interesting
as well, but for this a switch from C to C++ would be necessary.

Other Compilers Another interesting aspect would be to build the C code
with the Clang compiler, which also uses the LLVM. It would be interesting
to see if the performance of C compared to Crystal would increase, decrease or
stay the same.

Build Times One thing that was noticed during writing the test programs
and measuring the performance was that the compilation time required in the
different languages had noticeable differences. Crystal took significantly more
time to compile than Go and C, even with these small programs. It would be
interesting to see how much slower it is and what the implications for large
software would be.

18

References

[1] “Crystal README.” GitHub. https://github.com/crystal-lang/
crystal/blob/d9b757adecca4a8a33fb86813cef39e3426d8006/README.
md. (accessed September 26, 2020).

[2] Gouy, Isaac, “The Computer Language Benchmarks Game.” Debian Salsa.
https://benchmarksgame-team.pages.debian.net/benchmarksgame/.
(accessed October 23, 2020).

[3] kostya, “Crystal implementations for The Computer Language
Benchmarks Game.” GitHub. https://github.com/kostya/
crystal-benchmarks-game. (accessed November 9, 2020).

[4] L. Prechelt, “An empirical comparison of seven programming languages,”
Computer, vol. 33, no. 10, pp. 23-29, 2000.

[5] M. S. Bhat, D. G. Nair, D. Bansal, and J. Vaishnavi, “Data structure based
performance evaluation of emerging technologies — a comparison of scala,
ruby, groovy, and python,” in 2012 CSI Sizth International Conference on
Software Engineering (CONSEG), pp. 1-5, 2012.

[6] S. Nanz and C. A. Furia, “A comparative study of programming languages
in rosetta code,” in 2015 IEEE/ACM 87th IEEE International Conference
on Software Engineering, vol. 1, pp. 778-788, 2015.

[7] H. Abelson and G. J. Sussman, Structure and Interpretation of Computer
Programs. Cambridge: The MIT Press, 1996.

[8] “The LLVM Target-Independent Code Generator — LLVM 12 doc-
umentation.” LLVM. https://11lvm.org/docs/CodeGenerator.html#
tail-call-optimization. (accessed November 10, 2020).

[9] “Concurrency.” Crystal. https://crystal-lang.org/reference/
guides/concurrency.html. (accessed December 29, 2020).

[10] “Parallelism in Crystal.” Crystal. https://crystal-lang.org/2019/09/
06/parallelism-in-crystal.html. (accessed December 29, 2020).

[11] “Ractor - Ruby’s Actor-like concurrent abstraction.” GitHub. https:
//github.com/ruby/ruby/blob/master/doc/ractor.md. (accessed De-
cember 29, 2020).

[12] “Effective Go.” Go. https://golang.org/doc/effective_go.html. (ac-
cessed December 29, 2020).

[13] “GNU Time — GNU Project.” GNU. https://www.gnu.org/software/
time/. (accessed October 26, 2020).

[14] “¢time(1) — Linux manual page.” man(7). https://man7.org/linux/
man-pages/manl/time.1.html. (accessed October 26, 2020).

[15] E. Glatz, “Privilegierte Programmausfithrung (Benutzer-/Kernmodus),” in
Betriebssysteme, ch. 2.3.6, pp. 55-57, dpunkt, 2015.

19

https://github.com/crystal-lang/crystal/blob/d9b757adecca4a8a33fb86813cef39e3426d8006/README.md
https://github.com/crystal-lang/crystal/blob/d9b757adecca4a8a33fb86813cef39e3426d8006/README.md
https://github.com/crystal-lang/crystal/blob/d9b757adecca4a8a33fb86813cef39e3426d8006/README.md
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://github.com/kostya/crystal-benchmarks-game
https://github.com/kostya/crystal-benchmarks-game
https://llvm.org/docs/CodeGenerator.html#tail-call-optimization
https://llvm.org/docs/CodeGenerator.html#tail-call-optimization
https://crystal-lang.org/reference/guides/concurrency.html
https://crystal-lang.org/reference/guides/concurrency.html
https://crystal-lang.org/2019/09/06/parallelism-in-crystal.html
https://crystal-lang.org/2019/09/06/parallelism-in-crystal.html
https://github.com/ruby/ruby/blob/master/doc/ractor.md
https://github.com/ruby/ruby/blob/master/doc/ractor.md
https://golang.org/doc/effective_go.html
https://www.gnu.org/software/time/
https://www.gnu.org/software/time/
https://man7.org/linux/man-pages/man1/time.1.html
https://man7.org/linux/man-pages/man1/time.1.html

[16] J. Fulmer, “Siege.” GitHub. https://github.com/JoeDog/siege. (ac-
cessed November 23, 2020).

[17] “GCC, the GNU Compiler Collection.” GNU Project. https://gcc.gnu.
org/. (accessed December 16, 2020).

[18] “gee(1) — Linux manual page.” man(7). https://www.man7.org/linux/
man-pages/manl/gcc.1.html. (accessed December 16, 2020).

[19] “go.” The Go Programming Language. https://golang.org/cmd/go/.
(accessed December 16, 2020).

[20] “Clang: a C language family frontend for LLVM.” LLVM. https://clang.
1lvm.org/. (accessed December 30, 2020).

20

https://github.com/JoeDog/siege
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.man7.org/linux/man-pages/man1/gcc.1.html
https://www.man7.org/linux/man-pages/man1/gcc.1.html
https://golang.org/cmd/go/
https://clang.llvm.org/
https://clang.llvm.org/

	Introduction
	Comparing Performance

	Method
	Test Setup
	Performance Tests
	internaltime
	010fibonacci
	011fibonaccinonoptimizable
	012fibonacciiterative
	020writefiles
	021writelongerlines
	030readfiles
	040cbindings
	sockets

	Parallelism
	Measuring Performance
	Language Options
	Ruby
	Ruby (JIT)
	C
	Go
	Crystal

	Results
	Performance
	internaltime
	010fibonacci
	011fibonaccinonoptimizable
	012fibonacciiterative
	020writefiles
	021writelongerlines
	030readfiles
	040cbindings
	sockets
	Comparison

	Discussion
	Limitations
	Further Research

