
Vol.:(0123456789)

Empirical Software Engineering
https://doi.org/10.1007/s10664-021-09981-5

1 3

What do class comments tell us? An investigation
of comment evolution and practices in Pharo Smalltalk

Pooja Rani1 · Sebastiano Panichella2 · Manuel Leuenberger1 · Mohammad Ghafari3 ·
Oscar Nierstrasz1

Accepted: 25 May 2021
© The Author(s) 2021

Abstract
Context Previous studies have characterized code comments in various programming lan-
guages, showing how high quality of code comments is crucial to support program com-
prehension activities, and to improve the effectiveness of maintenance tasks. However, very
few studies have focused on understanding developer practices to write comments. None of
them has compared such developer practices to the standard comment guidelines to study
the extent to which developers follow the guidelines.
Objective Therefore, our goal is to investigate developer commenting practices and com-
pare them to the comment guidelines.
Method This paper reports the first empirical study investigating commenting practices
in Pharo Smalltalk. First, we analyze class comment evolution over seven Pharo versions.
Then, we quantitatively and qualitatively investigate the information types embedded in
class comments. Finally, we study the adherence of developer commenting practices to the
official class comment template over Pharo versions.
Results Our results show that there is a rapid increase in class comments in the initial three
Pharo versions, while in subsequent versions developers added comments to both new
and old classes, thus maintaining a similar code to comment ratio. We furthermore found
three times as many information types in class comments as those suggested by the tem-
plate. However, the information types suggested by the template tend to be present more
often than other types of information. Additionally, we find that a substantial proportion of
comments follow the writing style of the template in writing these information types, but
they are written and formatted in a non-uniform way.
Conclusion The results suggest the need to standardize the commenting guidelines for for-
matting the text, and to provide headers for the different information types to ensure a con-
sistent style and to identify the information easily. Given the importance of high-quality
code comments, we draw numerous implications for developers and researchers to improve
the support for comment quality assessment tools.

Keywords Commenting practices · Class comment analysis · Comment evolution ·
Template analysis · Pharo · Program comprehension

Communicated by Andrian Marcus

 * Pooja Rani
 pooja.rani@inf.unibe.ch

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5127-4042
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09981-5&domain=pdf

 Empirical Software Engineering

1 3

1 Introduction

Software understanding is an integral and required activity across multiple tasks in the soft-
ware development life-cycle, and is critical to any software maintenance task (Siegmund
and Schumann 2015; Haiduc et al. 2010). To understand a software system, developers
usually refer to both the software documentation and the code itself (Bavota et al. 2013),
with code comments representing one of the most-used forms of documentation artifact for
code comprehension (de Souza et al. 2005). A study by Maalej et al. (Maalej et al. 2014)
shows that developers trust source code and code comments more than other forms of doc-
umentation for sharing program knowledge, and they consult comments when they try to
answer their questions.

Given the relevance of code comments for program comprehension and maintenance
activities (Woodfield et al. 1981; Tenny 1985; Tenny 1988; Hartzman and Austin 1993;
de Souza et al. 2006; Lidwell et al. 2010; Cornelissen et al. 2009), researchers have ana-
lyzed comments to detect low-quality comments (Steidl et al. 2013; Liu et al. 2015), iden-
tify existing inconsistency between comments and their related code elements (Ratol and
Robillard 2017; Wen et al. 2019; Stylos et al. 2009; Petrosyan et al. 2015; Zhou et al. 2017),
and they have examined the co-evolution of comments and code (Jiang and Hassan 2006;
Fluri et al. 2007; Fluri et al. 2009; Ibrahim et al. , 2012). However, very few studies have
focused on analyzing the information embedded in the source code comments (Padioleau
et al. 2009; Haouari et al. 2011; Steidl et al. 2013; Pascarella and Bacchelli 2017; Zhang
et al. 2018), and none of them specifically analyzed class comments, or to what extent these
class commenting practices adhere to the coding style guidelines.

Class comments in object-oriented programming play an important role in obtaining a
high-level overview of classes (Cline 2015) and are helpful for understanding complex pro-
grams (Nurvitadhi et al. 2003). However, different programming languages provide different
notations and guidelines for writing comments in their code (Farooq et al. 2015), and embed
different kinds of information into the comments (Ying et al. 2005; Padioleau et al. 2009;
Pascarella and Bacchelli 2017; Zhang et al. 2018). For instance in Java, a statically-typed
language, a class comment provides an overview of high-level design of a class e.g., the
purpose of the class, what the class does, and other classes it interacts with (Nurvitadhi
et al. 2003). On the other hand, in Pharo Smalltalk, a dynamically-typed live language and
environment, a class comment contains high-level design information as well as low-level
implementation details, e.g., the application programming interfaces (APIs) the class pro-
vides, the instance variables it has, and its key implementation features. To write these class
comments in an informative and consistent manner, different programming languages pro-
vide various coding style guidelines, such as the Oracle style guideline, PEP257. However,
to what extent Pharo class commenting practices vary from other systems and to what extent
developers follow its style guidelines in their comments is not known.

In this paper, we conjecture that code commenting practices (e.g., comment content and
style) in different programming languages tend to evolve over time, as a result of the natu-
ral program language development and ecosystem evolution. Thus, the goal of our work is
to investigate this conjecture, observing the way developers adapt to commenting practices
over time, focusing on Pharo, a modern Smalltalk environment. First, we discuss the key
characteristics that make Pharo ideal for our investigation of class commenting practices in
object-oriented programming languages:

– Class comments are a primary source of documentation in Pharo.

Empirical Software Engineering

1 3

– As a descendant of Smalltalk-80, Pharo has a long history of class comments being
separated from the source code (Goldberg and Robson 1983), and is thus appropriate to
analyze the evolution aspect of class comments.

– Smalltalk supports liveness since more than three decades; therefore, it can present
interesting insights into code documentation in live programming environments.

– Class comments in Pharo neither use any annotations nor the same writing style as used
in Javadocs or Pydocs, thus presenting a rather different aspect on commenting prac-
tices, and challenges for existing information identification approaches (Pascarella and
Bacchelli 2017; Zhang et al. 2018).

– Pharo traditionally offers a concise template, consisting of commenting guidelines for
class comments, to enter a class comment for newly-created classes, and this template
has evolved over the years. Consequently, Pharo is appropriate as a case study to inves-
tigate to what extent developers follow the template in writing comments, and what
additional information developers embed in them.

More details regarding the Pharo environment are discussed in Sect. 2.

Research questions To better understand class commenting practices in Pharo, we formu-
late the following research questions:

– RQ1: What is the class commenting trend of developers over the Pharo versions, and in
particular, do developers change comments of old classes?

– RQ2: What types of information are present in Pharo class comments?
– RQ3: To what extent do developer commenting practices adhere to the class comment

template over Pharo versions?

In this paper, we first study the class commenting practice trends of major Pharo releases
over 11 years from 2008 to 2019, assessing whether developers do or do not change com-
ments of old classes. In addition, we quantitatively and qualitatively analyze the class
comments of the latest version of Pharo to characterize the various types of information
embedded in class comments, and we build a comment taxonomy, called Pharo-CTM
(Pharo Comment Type Model). Finally, we evaluate how comments adhere to the template
in terms of content and writing style. For the content aspect, we observe how many infor-
mation types in Pharo-CTM match the information types constituting the standard Pharo
comment template (i.e. a guideline template to write a class comment), and how many are
not part of it. For the writing style aspect, we compare the writing style of comments to the
writing style guidelines suggested by the template.

Our work shows that the trend of writing class comments increased rapidly in the initial
three Pharo versions and then was maintained over subsequent versions, and that develop-
ers tend to add comments to old classes in Pharo with or without code changes. We observe
that the current comment template substantially diverges from contemporary practices of
developers, with 23 information types occurring in class comments by developers, while
only seven of them are present in the Pharo class comment template. Measuring the fre-
quency of different information types, we find that the seven information types proposed
by the template are present more often than others. Additionally, while writing these infor-
mation types, developers follow the writing style guidelines from the template, e.g., using
first-person pronouns in describing various information types, and mentioning the headers
of different information types. We find this behavior of comments adhering to the template

 Empirical Software Engineering

1 3

throughout all Pharo versions. Based on these insights we suggest adding commenting
guidelines to the template to ensure consistent formatting of text, and enable highlighting
of certain details, thus improving the quality of the template.

We argue that this work not only encourages stakeholders to revisit their comment-
ing guidelines, but it also informs developers to comment on the essential details of a
class in a more structured and complete way, and opens the way for research aimed at
proposing tools for ensuring a high quality of code comments. A direct implication of our
work is that, in different programming languages, using the contemporary code comment
template or guidelines is not always ideal when actual practices strongly diverge from it.
Thus, future research effort is needed to (i) develop tools that are able to determine the
extent to which the code comment template or guidelines diverge from actual practice,
(ii) establish language-independent approaches to automatically identify the information
type from the comments, given the increasing usage of multi-programming languages in
open source projects, and (iii) automatically assess code comment quality in terms of both
content and style.

In summary, this paper offers the following contributions:

1. an overview of the Pharo commenting trends over all seven major releases till 2019,
2. an empirically validated taxonomy, called Pharo-CTM, characterizing the information

types embedded in class comments written by developers,
3. a discussion of taxonomies available from the related work, and a mapping and discus-

sion of these taxonomies compare to our taxonomy,
4. an assessment of the extent to which developer commenting practices adhere to the

standard Pharo template, and
5. a publicly available dataset of manually dissected and categorized Pharo comments,

including all versions of the data used for trend analysis in the replication pack-
age (RPackage 2019).

Paper structure The rest of the paper is organized as follows. In Sect. 3 we analyze
the trends in commenting activities for both old and new classes over the seven major
Pharo releases (RQ1). In Sect. 4 we report on our study of Pharo commenting prac-
tices, in particular the types of information developers include in class comments
(RQ2). In Sect. 5 we compare the commenting practices of developers to the standard
template, focusing on the types of information developers include in class comments,
and the writing style they follow (RQ3). We highlight the possible threats to validity
of our study in Sect. 6. Then Sect. 7 summarizes the related work, in relation to the
formulated research questions. Finally, Sect. 9 concludes our study, outlining future
directions.

2 Background

The Pharo environment Pharo is a reflective programming language environment incor-
porating a Smalltalk dialect. Smalltalk is one of the oldest object-oriented, dynamically-
typed programming languages, still used extensively in various systems (Pharo, Squeak),

Empirical Software Engineering

1 3

and scored second place for most loved programming language in the Stack Overflow
survey of 2017.1 Pharo is a fully open-source and live development environment with a
large library integrating external packages. The Pharo ecosystem has a significant number
of projects used in research and industry (Pharo 2020), and code comments are a primary
source of documentation in Pharo. We computed the ratio of comment sentences to lines
of code in the most recent Pharo release (i.e. Pharo 7) and found that 15% of the total lines
are comments.

According to our initial investigation into Pharo code comments, referred to as the pilot
study later in this paper, a class comment in Pharo represents the main source of documen-
tation for developers, as it provides detailed information about a class. For instance, the
class comment example of the class MorphicAlarm in Fig. 1 shows the intent of the class
mentioned in the first line (“I represent a message to be scheduled by the WorldState”), a
code example to instantiate the class in the following two paragraphs, a note with the head-
ing “* Note *” to explain the corresponding comparison, and the features of the alarm sys-
tem in the last paragraph. The class comment appears in a separate pane instead of being
woven into the source code of the class. Within a class comment, complete sentences are
used, but not annotations like @param, @see to mark the type of information, as opposed
to class comments in other languages. However, the commenting patterns and practices in
Pharo have not yet been studied or analyzed.

To guide developers in writing a class comment, Pharo offers a semi-structured default
template, as shown in the Pharo 7 template in Fig. 2. The template encourages developers
to write different types of information like Intent, Responsibilities, Collaborators, and Pub-
lic API to document important properties and implementation details of the class, but it is
still unclear how frequently developers follow the template while writing class comments,
and what additional information they actually add to the comments.

3 RQ1: Comment Trend Analysis

Classes are commented more frequently than other code entities, such as methods, varia-
bles, and control structures (Fluri et al. 2007). As software evolves, changes to the source
code of classes may invalidate the class comments (Wen et al. 2019). It is therefore
important to understand how and when developers update classes and their comments.
This knowledge may be useful to inform developers when to update class comments to
keep them in sync with the code. Fluri et al. reported that developers rarely comment
newly added classes in Java projects (Fluri et al. 2007), but whether developers have the
same behavior in other programming languages or not, is unexplored. With this inves-
tigation, our main aim is to understand developer class commenting behavior in Pharo,
and how class documentation is updated over the years. We therefore perform a trend
analysis on developer class commenting practices. In the commenting trend of class
comments, we specifically look at two main aspects: whether the number of commented
classes increases or decreases over time, and whether developers change class comments
of old classes over time.

1 https:// insig hts. stack overfl ow. com/ survey/ 2017/ verified on 4 Feb 2020

https://insights.stackoverflow.com/survey/2017/

 Empirical Software Engineering

1 3

3.1 Study Setup

To better understand class commenting practices of Pharo and achieve reliable results, we
analyzed the core libraries of Pharo. We extracted the most recent revision of each major
release of Pharo, from Pharo 1 to Pharo 7 (2008 to 2019), using a software analysis plat-
form named Moose (Ducasse et al. 2005). For each version we used Moose (Moose 2020)
to extract the class comments and meta details of the classes in the standard image, known
as the Pharo core.2 This includes classes to work with files, collections, sockets, streams,
exceptions, graphical interfaces, unit tests, etc.

Table 1 shows the details of each version with version number, release date, the total
number of classes and the total number of classes with comments.

3.2 Methodology

Using this dataset,3 we measured the trend of commenting by calculating the ratio of com-
mented classes to uncommented classes in each version. To investigate whether developers
change comments of old classes, we tracked comment changes in already existing classes
(old classes). For comment changes, we compared each class in a given version to its previ-
ous version to assess added comments, removed comments and changed content. Addition-
ally, we tracked code changes of a class in comparison to the previous version to get an
overall summary of the historical changes. To compute code changes we extracted the class
definition (instance side and class side), all methods of the class, and source code of all
methods of each class for each version.4

3.3 Result

The result in Fig. 3 shows that the trend of commenting classes increases rapidly for initial
Pharo versions, and is then maintained in subsequent versions. Indeed, in the figure, we
can see that the percentage of commented classes, in light and dark blue (for old and new
classes), increased in initial versions, and then remained constant from the fourth version.

Finding 1: The trend of commenting classes increases rapidly over the first three Pharo
versions, from 50% of commented classes in Pharo 1, to 80% commented classes in Pharo
3 and subsequent versions.

Figure 3 also portrays the detailed aspect of classes that have survived from old
versions and classes added in the current version. For instance, in version 3, we can
see that the number of old classes without comments has decreased (height of the light
orange bar segment decreased), and the number of old classes with comments has
increased (height of light blue bar segment increased) implying that several old classes
are commented in version 3, in addition to commenting new classes. In version 7, we
can see a major effort being put into commenting new classes (77% of the new classes
were commented) compared to old classes (12% of old classes were commented). In

2 For Pharo 1 and Pharo 6, we only extracted Pharo 1.4 and 6.1 because we could not run Pharo 1 and 6
using Moose, due to the backward compatibility issues of Moose.
3 Folder “RP/ Datas et- for- Repli cation/ Data/ RQ1/ Source- files” in the Replication package
4 Folder “RP/ Datas et- for- Repli cation/ Data/ RQ1/ Code- chang es” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ1/Source-files
https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ1/Code-changes

Empirical Software Engineering

1 3

particular, 89% of the old classes from Pharo 6 survived to Pharo 7, of which 20% were
uncommented classes and only 12% of the uncommented classes were commented in
Pharo 7.

Finding 2: In later versions of Pharo, developers put effort into maintaining the code
comment ratio, commenting new classes, and adding comments to old classes.

In addition, we find that developers change comments of old classes as shown in Fig. 4.
Changing a class comment includes adding comments to an uncommented class, removing
the comment, and updating the content of the comment.

Fig. 1 A class comment in Pharo

Fig. 2 Class comment template in Pharo 7

 Empirical Software Engineering

1 3

Differentiating this change behavior in Fig. 4 highlights that in versions 2 and 3, devel-
opers focused more on adding comments to old classes compared to updating or removing
the comment content. Since version 4, the focus of changing comments shifted to updating
the content of class comments compared to adding comments to old classes. For example,
in Pharo 7, more class comments are changed compared to comments added to old classes.
To find the reason behind this behavior, we examine the code changes in old classes, and
measure the extent to which developers update comments of old classes when changing
their code.

From Fig. 5, we find that in Pharo 7, 52% of the old classes are changed either by chang-
ing code, comments, or both, indicating a major refactoring of the old classes. Nearly 44%
of old classes are changed without updating their class comment. Specifically, 75% of these
changes were related to adding, removing, or updating methods, but we found no corre-
sponding changes in the class comments. We expected these changes to affect the class
comments, due to the dedicated section in the class comment template for instance vari-
ables and key messages. In contrast, the changes such as renaming a package or changing
a method category carry a lower tendency to affect the class comment. Only 7.9% of the
old class comments are changed together with the code in Pharo 7, as shown by the dark

Table 1 Overview of Pharo
versions with the release dates
and number of classes

Version Release date # Classes # Classes with comments

1.4 Apr, 2012 2 950 1 486
2.0 Mar, 2013 3 248 1 983
3.0 Apr, 2014 4 025 3 264
4.0 Apr, 2015 4 923 3 768
5.0 May, 2016 5 670 4 493
6.1 Jun, 2017 6 484 5 181
7.0 Jan, 2019 7 863 6 324

Fig. 3 The trend of classes with and without comments in Pharo versions

Empirical Software Engineering

1 3

red bar segment at the bottom of version 7 in Fig. 5. We further explored this segment by
analyzing a sample of 15% of the 327 classes where both comments and code changed. We
find that 50% of the changes in class comments are related to code changes, confirming
the finding from earlier work (Fluri et al. 2009). In our analysis, the most specific types
of code changes that triggered comment changes were the deprecation of a class and the
addition of new methods. The rest of the code changes e.g., updating a method or class
definition changes, triggered comment changes less frequently. In one particular case of
code changes where a method is removed from the class, the method code is added to the
class comment as an example. In contrast, in another similar case, the method comment
is added to the class comment as implementation details. The reason for such a behav-
ior can be the intent to keep the information about the removed method in the system for
future tasks even though it is deleted. The remaining 50% of the comment changes are
not related to code changes, even though 73% of the code changes in these classes are
adding new methods, updating methods, or removing existing methods which can poten-
tially trigger the comment changes, according to previous work (Fluri et al. 2009). These
unrelated comment changes are about clarifying details of the class by changing the infor-
mation types or formatting, improving the grammar, or changing the writing style from
third person to first person or vice versa.5 We further analyzed which information types are
frequently changed in comment changes irrespective of the code changes to find out the
importance of specific information types. We found that most specific information changes
in the class comments were about adding and updating the intent of the class, warnings,
usage examples, and implementation details of the class, thus indicating the importance of
these information types. On the other hand, in test classes (10% of the classes where code
and class comments changed) the most specific information changes were about removing
the bug-related details from the class comments in the next version. Analyzing what factors

Fig. 4 The trend of comment changes in old classes

5 File “RP/ Resul ts/ RQ1/ trend- analy sis/ class- comme nt- code- chang es- analy sis. xlsx” in the Replication
package

https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ1/trend-analysis/class-comment-code-changes-analysis.xlsx

 Empirical Software Engineering

1 3

motivate developers to make such comment changes and at what stages of the project they
change is the subject of future work.

Finding 3: In 50% of the cases, the code and class comments of old classes change
together, with developers updating comments of the classes to keep them synchronized with
the implementation.

Until now we separated the old classes from the new classes, but did not distin-
guish between the originating versions of old classes and those that survived from a
specific version. For example, in Pharo 7, what portion of the classes survived from
Pharo 1 or Pharo 2? This information is crucial to gain insight into comment coverage
of a particular version in each version, and which class comments developers consid-
ered important to refactor in the current version. Furthermore, it helped us to analyze
what happened to the old classes in the current version. For example, if the system
went through a major refactoring, then which old version’s classes were deleted, re-
introduced or modified? We therefore need to keep track of the history of a class, from
Pharo 1 to latest version, to get an overall view of the evolution of the system. To
answer all these questions, we track the origins of old classes and their survival history
to the current version in Fig. 6.

In Fig. 6, each Pharo version is assigned a unique color. The shading indicates the
distribution of classes with and without comments. The height of a bar segment in one
color represents the classes surviving from a previous version to the new version. The
original versions of each class are ordered by age with the oldest version at the bottom
and the newest version at the top. Tracking the color of a version allows us to know how
long classes are kept in the system. For example, in Pharo 1 the dark shade of green
shows the classes with comments and a lighter shade of green shows the classes without
comments. We find that until Pharo 6 the classes originating in version 1 still constitute
the largest group of all older classes. In Pharo 3, major efforts were devoted to refactor-
ing and re-documenting classes from older versions, 1 and 2. In Pharo 4, we observe
that the ratio of adding comments to the new classes is less compared to preceding
and succeeding versions except Pharo 1. Pharo 7 shows the effort of documenting old
classes and new classes, thus achieving maximum coverage i.e. 80% of classes with
comments among past versions.

In addition to showing the overview of a version, we also summarized the major projects
that were added, removed and re-documented in each version in Table 2. We observed that
the documentation of few projects such as Zinc, and Refactoring were actively updated,
but whether it was due to their importance, or discipline of their developers, or both, is the
subject of future work. We summarized the projects by grouping the added, removed and
recommented classes by their package in each version. To verify our calculated list, we
compare our project list to Pharo change logs.6 From the aforementioned analysis we col-
lected several observations about Pharo commenting patterns:

– In Pharo 2, significant effort has been put into refactoring and removing classes from the
old version, Pharo 1. The old system browser, OmniBrowser, is replaced with Nautilus.

– In Pharo 3, a major effort is put into commenting old classes, as shown in Fig. 4.
– In Pharo 4, developers focus less on commenting old classes but more on adding new

classes. New projects added in the version are shown in 2.

6 https:// github. com/ pharo- proje ct/ pharo- chang elogs

https://github.com/pharo-project/pharo-changelogs

Empirical Software Engineering

1 3

– In Pharo 5, the focus seems more on refactoring classes from old versions, specifically
Pharo 1, 2 and 3 but not Pharo 4, as shown in Fig. 6. The ratio of classes with com-
ments to classes without comments is also higher compared to the previous Pharo 4.

– In Pharo 6, the effort is put into adding new classes and making sure that comments are
also added to new classes. One of the main projects added in this version is for git support.

– In Pharo 7, we find that many new classes are added. After investigating further we
found that new versions of Refactoring and Traits, and a new system browser Calypso
are added. Refactoring old projects is the primary focus of this version. A substantial
number of old class comments are updated, in particular, the projects UFFI, Tool, and
System tests.

– Analyzing Fig. 6, we observe that Pharo 4 classes were rarely refactored in succeed-
ing versions except Pharo 7 as the height of the Pharo 4 magenta bar remains the same
through Pharo 6. We believe this is due to the importance of the project GLM (Glamor-
ous toolkit), and the general interest of developers to keep this project in the current,
already stable, status.

Finding 4: In Pharo 3, a major effort is put into adding comments to old classes whereas
in subsequent versions, more effort is put into updating comments of old classes. Both
cases show developers adding and updating comments of old classes.

3.4 Implications

The investigation performed on commenting trends presents important insights into the
commenting habits of Pharo developers. These insights can assist developers and research-
ers in the following aspects:

– Tool support to analyze the co-evolution of code and comments: Understanding soft-
ware evolution is crucial to ease various software development tasks such as under-
standing a program, its software elements, finding the actual change that introduced a
bug, or detecting change propagation patterns among software artifacts. Our comment
evolution results show that developers tend to add class comments to old classes, how-
ever, once the ratio of class comments to the total classes reached a particular level (at

Fig. 5 The trend of changing old classes in Pharo versions

 Empirical Software Engineering

1 3

least 75%), developers do not allocate the same effort, thus indicating the stability of
the system. Also, we observe that developers put considerable effort into adding com-
ments to classes newly added to the Pharo core, which is in contrast to previous results
involving commenting practices of Java external systems (Fluri et al. 2009). Whether
such commenting behaviour is due to the expectation of better commenting practices
from core systems compared to the external systems or due to Pharo developer habits
requires further analysis. Fluri et al. showed that the Eclipse core system has a bet-
ter commenting ratio compared to non-core systems such as Eclipse JDT and Eclipse
PDE (Fluri et al. 2009). We observe similar behaviour in the Pharo core compared to
external projects. Still, these systems lack appropriate tools to analyze the co-evolution
of code and comments. We suggest that further research needs to be devoted to devel-
oping tools providing co-evolution views of code and comments to monitor better the
relative growth and quality of comments over time as well as the actual code comment
coverage (Zaidman et al. 2008).

– More accurate tools to automate the detection of comment changes: Soetens et al.
envision that future IDEs will use the notion of changes as first-class entities (AKA
change reification approaches). These change-based approaches can help in commu-
nicating changes between IDEs and their architectures, and to produce accurate rec-
ommendations to boost complex modular and dynamic systems (Soetens et al. 2017).
Analyzing and detecting change patterns of comments can enable the vision of Soetens
et al. of integrating code comments easily in such change-oriented IDEs. Addition-
ally, detecting which types of information in the comments tend to change more often
can help researchers in generating comments automatically. For example, we found a
code change due to a class deprecation which triggered a comment change by adding
the deprecation notice in the class comment to inform other developers. This effort of
updating the class comment whenever a class deprecation code change is detected can

Fig. 6 Survival analysis of Pharo versions

Empirical Software Engineering

1 3

be reduced by generating the notice information automatically in the class comment.
These comment change patterns are not only helpful for developers to reduce their
commenting effort but can also help researchers to improve their bug-prediction mod-
els. For instance, Ibrahim et al. showed statistically significant improvements in their
bug-prediction models using comment update patterns; similarly, our comment update
patterns can be used for future work (Ibrahim et al. 2012).

– Leveraging change data: Previous studies have leveraged the historical change data in
various ways, such as in designing new applications in the IDE (Soetens et al. 2017),
evaluating code completion algorithms (Robbes et al. 2010), and recommending
future changes in specific code parts (Fluri et al. 2009). In the context of comments,
Fluri et al. implemented a tool named ChangeCommander, which recommends com-
ment changes when a new method invocation is introduced in the system, based on
the collected code-comment change patterns (Fluri et al. 2009). However, the approach
of Fluri et al. to detect comment changes does not work entirely for the Pharo system
due to its dynamic nature, and its different comment structure and scope. Based on our
code-comment change analysis, we identified patterns of code changes in a class such
as deprecating a class, or adding a new method which triggers comment changes more
frequently than other code changes. Future tools can utilize these patterns for recom-
mending developers when to update class comments. From a technological point of
view, Epicea (a tool to log code changes in Pharo) supports source code changes on the
class level. Integrating the type of comment changes we identified in our study, such as
formatting changes, typo fixes, instance variable changes, and code-comment change
patterns, can help to answer particular developer questions such as “What specific type
of the code change led to this comment change? or “Which specific comment changes
does a commit consist of?” (Dias et al. 2014).

This investigation helped us to gather the general practices developers follow towards class
commenting but does not characterize the content of the comments, nor does it describe
how comments adhere to the commenting guidelines of Pharo. We cover these aspects in
the rest of this paper.

Table 2 Overview of major projects added, removed and re-documented in each version

Version Added Removed Re-documented

1 Ring metamodel Squeak classes Code simulator, Zinc, Refactoring,
Monticello

2 QA tools, Spec, Fuel,
Native Boost, Nautilius

OmniBrowser, Tru-
eType

Zinc, Refactoring, Monticello

3 Versioner, Opal, Athens,
Debugger

Kernel tests, Zinc, Monticello, Col-
lection tests

4 GLM, Rubric, TxText,
OSWindow, MetaLink

Slot tests Refactoring, AST, Athens, Zinc,
Delay scheduler

5 Spur VM, UFFI, Renraku,
STON

NativeBoost Rubric, Refactoring, TxText, Nau-
tilius, Komitter

6 Iceberg, Epicea, Tonel,
Ombu

Refactoring, AST, UFFI, Spec,
Renraku

7 Bootstrapping, Traits2,
Refactoring2, Calypso

TxText, Versioner,
Nautilius, Kommitter,
Traits

UFFI, System tests, Tool, Kernel,
STON, System, Iceberg

 Empirical Software Engineering

1 3

4 RQ2: Comment Information Types

With class comments being a primary source of detailed design and implementation docu-
mentation, developers add different types of information they deem important for the class.
The class comment in Pharo does not make use of any kind of annotation (e.g., @param,@
return) as in other languages, and no fixed structure is followed to place the information
in the class comment. A few comments we found are written using the Pillar markup lan-
guage,7 but the majority of comments do not adopt it, and instead are written in a free-text
style. The way of writing the same information thus varies among developers, so extracting
and analyzing a certain type of information from comments is non-trivial. Consequently, to
answer RQ2 (What types of information are present in Pharo class comments?), we inves-
tigated the class comments manually. We performed a pilot study and formed an initial
taxonomy of comment information types. We then conducted a three-iteration-based analy-
sis on a sample set of 363 comments to finalize the taxonomy. Following the same meth-
odology, we analyzed 351 comments from external projects (not part of the Pharo core) to
verify the commenting practices of other developers.

4.1 Study Setup

To investigate the commenting practices, we studied the latest stable version of Pharo,
namely Pharo 7. Since each class has one class comment, all the classes with class com-
ments participated in the analysis dataset, resulting in a dataset of 6 324 classes. However,
due to the semi-structured nature of comments and the lack of content headers or annota-
tions, a content-wise investigation of comments requires manual effort, making the investi-
gation of the whole dataset a non-trivial task.

We therefore selected a representative subset of comments for manual analysis by defining
the required minimum sample size n with the following standard formula (Triola 2006):

N is the size of the dataset, e is the margin of error, p is the percentage of picking a com-
ment and the z is selected according to the desired confidence level. We calculated the
required sample size from the finite population of 6 324 to reach a confidence level of 95%
and error e of 5%. The z-score is 1.96 according to the confidence level and p is 0.5 used
for the sample size needed. The resulting dataset should therefore contain a subset of 363
class comments in total. In order to choose 363 representative comments from the dataset,
we investigated the distribution of comments based on the number of sentences present
in a comment shown in Fig. 7. The sentences were separated using a custom-built Pharo
sentence splitter. We found that the number of sentences in the comments varies from 1 to
272. Therefore, we used stratified random sampling approach to ensure that all kinds (or
size) of comments are represented in the manual analysis dataset in case of skewed popu-
lation. This approach divides the whole dataset into smaller strata based on the comment
distribution, and allows random samples to be drawn from each stratum.

samplesize(n) =

z2×p(1−p)

e2

1 + (
z2×p(1−p)

e2N
)

7 https:// github. com/ pillar- markup/ pillar

https://github.com/pillar-markup/pillar

Empirical Software Engineering

1 3

In order to select the 363 sample comments according to the approach, we used quintiles
from the logarithmic distribution based on the number of sentences in each class comment
shown in Fig. 7b. Accordingly, we obtained five quintiles as follows 1, 1, 2, 6, and 272.
Based on the quintile values, we obtained comment strata, and calculated the comment
proportion of each stratum shown in Table 3. We selected from each stratum a number of
comments that correspond to the proportion of such comments in the entire dataset, follow-
ing a random sampling approach without replacement. For example, from a total of 3 040
comments of comment stratum “1-1”, we selected 175 comments i.e. 48% of 363 com-
ments using a random sampling approach without replacement. As the approach facilitates
the selection of a random sample from a stratum and not all strata are entirely homogene-
ous (such as ‘3-6’ compared to ‘1-1’), we observed that the margin of error varies from 7%
to 9% within strata (measured using the formula samplesize(n) for each stratum). On the
other hand, this approach is known to increase the overall precision instead of that of the
individual strata, thus helping us to better select representative comments.

To verify the practices of Smalltalk developers in other projects than the Pharo core, we
analyzed the selected comments from seven external projects. We filtered the external pro-
jects from GitHub8 based on several criteria: (i) the project is not part of the Pharo core, (ii)
it has an active project activity since 2019, and the project history spans at least two years
with at least 600 commits, (iii) it is not a repository for books, an article, or documentation,
(iv) it has more than five contributors, (v) the project does not contain more than 20% code
from other programming languages to avoid polyglot projects, e.g., opensmalltalk-vm con-
tains 89% code from C, and SmalltalkCI contains 35% shell scripts,9 and (vi) it contains
more than 20 000 lines of Smalltalk code, to remove small projects thus the projects Mate-
rialDesignLite,10 Kendrick,11 and PharoLauncher12 were removed.

Fig. 7 Frequency of comments w.r.t comment length

8 https:// github. com/ topics/ pharo?o= desc&s= stars
9 https:// github. com/ OpenS mallt alk/ opens mallt alk- vm
10 https:// github. com/ DuneSt/ Mater ialDe signL ite
11 https:// github. com/ UNU- Macau/ kendr ick
12 https:// github. com/ pharo- proje ct/ pharo- launc her

https://github.com/topics/pharo?o=desc&s=stars
https://github.com/OpenSmalltalk/opensmalltalk-vm
https://github.com/DuneSt/MaterialDesignLite
https://github.com/UNU-Macau/kendrick
https://github.com/pharo-project/pharo-launcher

 Empirical Software Engineering

1 3

We sorted the projects based on commits and size (based on lines of code), and
selected the top seven projects. The projects consequently vary in size, domain, and con-
tributors. For each project we followed the same methodology used for selecting rep-
resentative Pharo core comments. Depending on the proportion of each project’s com-
ments with respect to the comments of all projects, we selected the sample comments.
We extracted 351 comments in total from the selected external projects and analyzed
their information types.13

4.2 Methodology

We conducted a pilot study to construct initial categories of the content of comments.
We selected a sample of 100 classes from Pharo 7 classes with comments (6 324) using
a random sampling approach. We used an open card-sorting approach and established
the categorization procedure for the next larger-scale study. The study was performed by
the first author, and the classification granularity was set to sentence-level. She manually
analyzed the selected 100 classes, constructed new categories, and placed the comment
sentences into appropriate categories according to the intent of the sentence. Thus, she
formed 21 categories, among them seven categories being inspired by the recent Pharo
template.

She constructed the category names by looking at the intent of the sentence and type of
information, resulting in an initial draft of the Pharo-CTM.14 Once an initial taxonomy was
elicited from the pilot study, we started the taxonomy study on 363 further comments to
verify the completeness of the initial taxonomy, and to mitigate the chances of bias due to
analysis by a single evaluator.

4.2.1 Taxonomy Study

In this study, three evaluators (two Ph.D. candidates, one of whom was involved in the
pilot study, and one faculty member, all authors of this paper) having at least four years
of programming experience, participated in the study. We divided our sample dataset
(363 comments) equally among the three evaluators so that each subset (of size 121)
had an equal number of comments selected randomly from each of the groups identi-
fied (see column selected for study of Table 3 according to the distribution shown in
Fig. 7b). This ensured that each evaluator’s dataset included comments of all lengths
and projects. Then, we used a two-step validation approach to validate the content clas-
sification of the comment and the category name assigned to the content type. This way,
all the categories were discussed by all the evaluators for the better naming conven-
tion, and whenever required, unnecessary categories were removed and duplicates were
merged.

Execution: The evaluators analyzed the assigned comments by applying a hybrid card-
sorting technique i.e. assigning class comments to the initial taxonomy, and adding new
categories whenever existing categories were found to be unsuitable for classifying the
content. This step was performed to verify if the taxonomy was exhaustive, or if potential
categories were missing.

13 File “RP/ Datas et- for- Repli cation/ Data/ RQ2/ exter nal- proje cts” in the Replication package
14 File “RP/ Resul ts/ RQ2/ pilot- study/ Pilot- study- result. xlsx” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/tree/master/Dataset-for-Replication/Data/RQ2/external-projects
https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ2/pilot-study/Pilot-study-result.xlsx

Empirical Software Engineering

1 3

Once we finished the assigned individual evaluation of the comments, we started the
collaborative validation explained next.

Validation: After analyzing all the comments, we validated the content classification of
the comments over three iterations. In the first iteration, each evaluator reviewed a random
50% of the comments categorized by the other two evaluators. This way, each comment
categorization was reviewed by at least one of the other evaluators. The reviewer (the eval-
uator who reviewed the comment’s classification) marked his or her opinion by agreeing or
disagreeing with each comment. In case of disagreement, the reviewer highlighted the dis-
puted categories and suggested changes. In the second iteration, the evaluator studied the
changes suggested by the reviewers and marked his or her agreement or disagreement for
the changes. In case of agreement, the classification was simply confirmed, otherwise the
disagreements were carried to the next (third) iteration where the third evaluator who had
not yet seen the comment reviewed it, and a decision was made based on majority voting.
In case all evaluators disagreed about a categorization, a discussion was started, and all
three then discussed it to agree on a final classification. Thus, only the marked discrepan-
cies were resolved by reviewing each case with the involvement of all three evaluators. The
evaluators used pair-sorting (Guzzi et al. 2013) to discuss discrepancies in their thoughts
for each card during the card sorting itself.

Levels of agreement and disagreement among the evaluators are reported in Fig. 8. Spe-
cifically, in the first iteration, the reviewers reviewed the classification by the first evalu-
ator, (E1) and agreed on the classifications of 72 comments and disagreed with 47 ones,
suggesting changes for the disputed categories of 47 comments. In the second iteration, the
evaluator E1 agreed with suggested changes on 41 comments and disagreed with six. In the
third iteration, the cases where the reviewer and the evaluator disagreed were reviewed by
the third reviewer who had not yet seen the comment. The third reviewer agreed with the
classification of five comments, but disagreed with one suggesting a different classifica-
tion. Finally, for such a case, we discussed the conflict among all the evaluators and used a
majority voting mechanism to finalize the classification.

Table 3 Comment proportion
per stratum for the whole dataset,
and the resulting sample dataset

stratum #comments comment rate #selected for study

1-1 3 040 48% 175
2-2 945 15% 54
3-6 1 224 19% 69
7-272 1 115 18% 65
Total 6 324 100% 363

Fig. 8 The status of comment classification discrepancies by reviewers in each iteration per evaluator

 Empirical Software Engineering

1 3

After reaching a final agreement on the comment classification, we validated the cate-
gory names. We gathered all categories, and merged some redundant categories or renamed
them using a majority voting mechanism, thus generating a final version of the taxonomy
i.e. Pharo-CTM.

4.3 Results

Our taxonomy study led to the finalization of Pharo-CTM, identifying 23 types of infor-
mation (categories) present in the class comments The majority of these types, i.e. 21
categories, are taken from the pilot study even though several categories of the pilot
study underwent the refinement process (renaming, merging) for the final Pharo-CTM.
From these 21 categories, seven belong to the Pharo template while six categories were
merged to three categories in the taxonomy study.15 The rest of the types, such as Sub-
classes Explanation, TODO comments, and Others, were added during the taxonomy
study.

Table 4 presents an overview of this taxonomy. The list of 23 identified informa-
tion types, with full details and examples is available online.16 The column Descrip-
tion describes the category, Implicitness level defines the degree to which information
is hidden in the text, and keywords lists the keywords and patterns observed during
manual analysis for each category. The implicitness level is taken from a five-level
Likert scale with items Implicit, Often Implicit, Sometimes Implicit, Often Explicit, and
Explicit. A category is marked Implicit when it is either in the same line or paragraph
with other categories or without a header in the comment, making it difficult to iden-
tify. For example, the category todo is always mentioned in a separate paragraph with
a header Todo, which makes it Explicit. On the other hand, a majority of the time the
category Intent is combined with Responsibility in one line thus making them Often
Implicit, but Collaborator is always combined with other categories in the same para-
graph without a header. Based on the formulated criteria, one author evaluated the
Implicitness level of each category, and other authors reviewed them and possibly pro-
posed changes. All authors resolved the disagreements by the majority voting mecha-
nism and refined the measurement criteria by mutual discussions. The examples for the
categories are present in the respective category of classified comments.17 We found
that in one-line comments developers usually describe the Intent of the class, and a
very few times Responsibilities. A substantial number of comments contain warning
information of some type (e.g., a note about the code, or behavior of the class, an
important point to keep in mind while extending the class). In Others, we observed a
few comments having the source code from other languages and following the com-
menting style of other languages, such as C and Java.

Figure 9 presents the distribution of the comments across all 23 categories. There are
seven template-inspired categories, which are colored in blue and the remaining categories
are colored in orange. The template-inspired categories contain the details proposed by
the recent template. Other categories, composed of 16 definitions, contain comment details
that developers deem important to understand their class and therefore mention in the class
documentation.

15 File “RP/ Resul ts/ RQ2/ pilot- study/ pilot- study- categ ories. pdf” in the Replication package
16 File “RP/ Resul ts/ RQ2/ taxon omy- study/ All- categ ories- with- examp les. pdf” in the Replication package
17 File “RP/ Resul ts/ RQ2/ taxon omy- study/ Taxon omy- study- resul ts. xlsx” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ2/pilot-study/pilot-study-categories.pdf
https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ2/taxonomy-study/All-categories-with-examples.pdf
https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ2/taxonomy-study/Taxonomy-study-results.xlsx

Empirical Software Engineering

1 3

Ta
bl

e
4

 T
he

 2
3

id
en

tifi
ed

 in
fo

rm
at

io
n

ty
pe

s

C
at

eg
or

y
D

es
cr

ip
tio

n
Im

pl
ic

itn
es

s l
ev

el
K

ey
w

or
ds

In
te

nt
D

es
cr

ib
e

pu
rp

os
e

of
 th

e
cl

as
s

O
fte

n
Im

pl
ic

it
I r

ep
re

se
nt

, I
 a

m
, I

’m
, T

hi
s c

la
ss

 is
, A

 *
C

la
ss

*
is

Re
sp

on
si

bi
lit

y
 L

ist
 re

sp
on

si
bi

lit
ie

s o
f t

he
 c

la
ss

O
fte

n
Im

pl
ic

it
 p

ro
vi

de
, i

m
pl

em
en

t,
I d

o,
 I

kn
ow

, r
es

po
ns

ib
le

C
ol

la
bo

ra
to

r
 L

ist
 in

te
ra

ct
io

ns
 o

f t
he

 c
la

ss
 w

ith
 o

th
er

 c
la

ss
es

 Im
pl

ic
it

us
e,

 in
te

ra
ct

, p
ro

vi
de

, c
ol

la
bo

ra
te

Pu
bl

ic
 A

PI
 L

ist
 k

ey
 m

et
ho

ds
 a

nd
 p

ub
lic

 A
PI

s o
f t

he
 c

la
ss

So
m

et
im

es
 Im

pl
ic

it
K

ey
 M

es
sa

ge
s,

Pu
bl

ic
 A

PI
Ex

am
pl

e
Pr

ov
id

e
co

de
 e

xa
m

pl
es

 to
 in

st
an

tia
te

 th
e

cl
as

s a
nd

 to
 u

se
 A

PI
 o

f t
he

cl

as
s

O
fte

n
Ex

pl
ic

it
U

sa
ge

, E
xa

m
pl

e,
 F

or
 e

xa
m

pl
e,

 c
od

e
ex

am
pl

es

Im
pl

em
en

ta
tio

n
Po

in
ts

Pr
ov

id
e

in
te

rn
al

 d
et

ai
ls

 re
fe

rr
in

g
to

 th
e

in
te

rn
al

 re
pr

es
en

ta
tio

n
of

 th
e

ob
je

ct
s,

pa
rti

cu
la

r i
m

pl
em

en
ta

tio
n

lo
gi

c,
 c

on
di

tio
ns

 a
bo

ut
 th

e
ob

je
ct

st

at
e,

 a
nd

 se
tti

ng
s i

m
po

rta
nt

 to
 u

nd
er

st
an

d
th

e
cl

as
s

O
fte

n
Im

pl
ic

it
In

te
rn

al
 re

pr
es

en
ta

tio
ns

, I
m

pl
em

en
ta

tio
n

po
in

ts
:

In
st

an
ce

 V
ar

ia
bl

es
Li

st
st

at
e

va
ria

bl
es

 o
f t

he
 o

bj
ec

t
O

fte
n

Ex
pl

ic
it

in
st

an
ce

 v
ar

ia
bl

es
:

C
la

ss
 re

fe
re

nc
es

O
ve

rla
ps

 w
ith

 C
ol

la
bo

ra
to

r c
at

eg
or

y
bu

t i
nc

lu
de

s e
xt

ra
 c

as
es

 w
he

n
de

ve
lo

pe
rs

 re
fe

r t
o

ot
he

r c
la

ss
es

 in
 th

e
cl

as
s c

om
m

en
t t

o
ex

pl
ai

n
th

e
co

nt
ex

t o
f t

he
 c

la
ss

Im
pl

ic
it

W
ar

ni
ng

s
W

ar
n

re
ad

er
s a

bo
ut

 u
si

ng
 v

ar
io

us
 im

pl
em

en
ta

tio
n

de
ta

ils
 o

f t
he

 c
la

ss
O

fte
n

Im
pl

ic
it

N
ot

e,
 d

o
no

t,
re

m
ar

ks
, s

ho
ul

d
C

on
tra

ct
s

In
fo

rm
 re

ad
er

s a
bo

ut
 p

ot
en

tia
l c

on
di

tio
ns

 b
ef

or
e

or
 a

fte
r u

si
ng

 a
 c

la
ss

/
m

et
ho

d/
co

m
po

ne
nt

 o
f t

he
 c

la
ss

O
fte

n
Im

pl
ic

it
Pr

ec
on

di
tio

n:
, d

o.
.w

he
n.

.

D
ep

en
de

nc
ie

s
D

es
cr

ib
e

th
e

de
pe

nd
en

cy
 o

f t
he

 c
la

ss
 o

n
ot

he
r c

la
ss

es
/m

et
ho

ds
/c

om
po

-
ne

nt
s

 Im
pl

ic
it

us
ed

 b
y

Re
fe

re
nc

e
to

 o
th

er
 re

so
ur

ce
s

Re
fe

r r
ea

de
r t

o
ex

tra
 in

te
rn

al
 o

r e
xt

er
na

l r
es

ou
rc

es
O

fte
n

Ex
pl

ic
it

 S
ee

, L
oo

k
D

is
co

ur
se

In
fo

rm
 th

e
re

ad
er

s a
bo

ut
 a

 fe
w

 c
la

ss
 d

et
ai

ls
 in

 a
n

in
fo

rm
al

 m
an

ne
r

 Im
pl

ic
it

de
ve

lo
pe

rs
 u

se
 c

on
ve

rs
at

io
na

l l
an

gu
ag

e
Re

co
m

m
en

da
tio

n
Re

co
m

m
en

d
th

e
w

ay
s t

o
im

pr
ov

e
th

e
cl

as
s i

m
pl

em
en

ta
tio

n
 Im

pl
ic

it
re

co
m

m
en

de
d,

 se
e,

 sh
ou

ld
 b

e
Su

bc
la

ss
es

 e
xp

la
na

tio
n

D
es

cr
ib

e
de

ta
ils

 a
bo

ut
 it

s s
ub

cl
as

se
s,

th
e

in
te

nt
 o

f c
re

at
in

g
th

e
su

b-
cl

as
se

s,
an

d
w

he
n

to
 u

se
 w

hi
ch

 su
bc

la
ss

Im
pl

ic
it

M
y

su
bc

la
ss

es

O
bs

er
va

tio
ns

Re
co

rd
 d

ev
el

op
er

 o
bs

er
va

tio
ns

 w
hi

le
 w

or
ki

ng
 w

ith
 th

e
cl

as
s

O
fte

n
Im

pl
ic

it
Li

ce
ns

e
St

or
e

lic
en

se
 in

fo
rm

at
io

n
of

 th
e

co
de

O
fte

n
Im

pl
ic

it
Ex

te
ns

io
n

D
es

cr
ib

e
ho

w
 to

 e
xt

en
d

th
e

cl
as

s
O

fte
n

Im
pl

ic
it

ex
te

nd
, e

xt
en

si
on

 Empirical Software Engineering

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

C
at

eg
or

y
D

es
cr

ip
tio

n
Im

pl
ic

itn
es

s l
ev

el
K

ey
w

or
ds

N
am

in
g

co
nv

en
tio

ns
Re

co
rd

 th
e

di
ffe

re
nt

 n
am

in
g

co
nv

en
tio

n
su

ch
 a

s a
cr

on
ym

s u
se

d
in

 th
e

co
de

 Im
pl

ic
it

C
od

in
g

G
ui

de
lin

e
D

es
cr

ib
e

ru
le

s t
o

be
 fo

llo
w

ed
 fo

r c
od

in
g

by
 th

e
de

ve
lo

pe
r w

hi
le

 w
rit

in
g

th
e

cl
as

s
O

fte
n

Im
pl

ic
it

Li
nk

Re
fe

r t
o

a
w

eb
 li

nk
 fo

r e
xt

ra
 o

r d
et

ai
le

d
in

fo
rm

at
io

n
So

m
et

im
es

 Im
pl

ic
it

TO
D

O
 c

om
m

en
ts

Re
co

rd
 a

ct
io

ns
 to

 b
e

do
ne

 o
r r

em
ar

ks
 fo

r d
ev

el
op

er
s

Ex
pl

ic
it

to
do

O
th

er
In

cl
ud

e
th

e
co

m
m

en
ts

 fr
om

 o
th

er
 p

ro
gr

am
m

in
g

la
ng

ua
ge

s
Ex

pl
ic

it
Ja

va
D

oc
 c

om
m

en
ts

Empirical Software Engineering

1 3

Finding 5: The most recent Pharo class comment template suggests writing seven dif-
ferent types of details, namely Intent, Responsibility, Public API, Example, Instance Vari-
able, Collaborators, and Internal details. Interestingly, developers frequently add other
types of details such as Warnings, References to other classes and external docs, Depend-
encies, and Contracts in the class comments.

In external projects, we found all 23 types of information embedded by developers as
shown in Fig. 10, though the frequency of some information types in comments is not as high
as in Pharo core comments. For example, Collaborators, Implementation Points, Contracts,

Fig. 9 Information categories of
class comments formed during
manual analysis of the Pharo
core (internal projects)

Fig. 10 The trend of information types in external Pharo projects and comparison of total comments from
Pharo external projects with Pharo internal (core) projects

 Empirical Software Engineering

1 3

and Dependencies are not found so often in the external projects as in the Pharo core. Inter-
estingly, we found that the project domain plays an important role in having a particular type
of information. For instance, Roassal, a visualization engine project, contains a large number
of Examples in the comments. Most of the examples are small code snippets to create differ-
ent visualizations using the class. In contrast, we found detailed code examples (tutorials) in
GToolkit class comments to explain how the project works. Additionally, we found that tem-
plate-inspired categories are not used so often as in the Pharo core. On the other hand, some
additional information types (not inspired by the template) are used more often than in the
Pharo core. A few such information types are Links, Recommendation, Subclasses explana-
tion, and References to other resources. Specifically, we found Links in less than 1% of Pharo
core comments whereas nearly 6% of comments from external projects contain Links. This
suggests that the Pharo core and external projects contain similar information types (23) but
with different frequencies. Padioleau et al. analyzed operating system (OS) and non-OS pro-
jects and found similarities and differences in the kinds of details in project comments. How-
ever, whether these similarities are due to common developers or coding guidelines, if any,
is not investigated (Padioleau et al. 2009). On the other hand, our preliminary investigation
found few common developers from the external projects Moose, GToolkit who contributed
to the Pharo core projects as well. Whether developers change their commenting practices in
core and external projects would be an interesting topic to explore in the future. Additionally,
investigating the impact of the template on external projects in addition to Pharo core com-
ments can also highlight the differences in developer commenting practices across projects.
In the future, we plan to investigate the impact of the template on external projects.

Finding 6: External projects in Pharo also contain 23 types of information as found in the
Pharo core (internal projects). However, the frequencies of certain information types vary.

Discussion: A very few categories are explicit, such as Examples, and Instance vari-
ables, and they are generally indicated by a header, such as Usage, and Instance variables
respectively. Most of the categories we found are implicit in the text and thus pose a chal-
lenge for the automated identification and extraction. However, we observed various pat-
terns for them. Such patterns can help the researchers in designing approaches and heu-
ristics to extract the specific information automatically. For implicit categories mentioned
more frequently, we observed that developers mostly use common keywords to indicate the
specific types of information in their comments. For instance, developers use a keyword
Note while describing any kind of warning, sometimes as a header as shown in Listing 1,
or in the first line of the warning shown in Listing 2 whereas in some cases the information
is implicit in the text as shown in Listing 3. Similarly to the implicit warnings, instructions
for using a class as in Listing 4 are implicit, without any header or specific pattern.

For categories like Intent, we observed that developers mostly mention the intent of the
class in the first line of a comment. For Class references, we observed that class names
are broken into words and not capitalized, thus making it hard to recognize the class name
from the text. Pharo does not provide any language mechanism to support private or pub-
lic scope for APIs, therefore APIs used by other services are generally marked Public by
grouping such APIs in a protocol (interface) named Public, and documenting these in the
class comment as a recommended practice. Additionally, we found that not all classes
describe their public APIs in the class comments, and not all public APIs of the class
are mentioned. The APIs mentioned are those that are considered to be important by the
developer who is writing the comment e.g., the class “FTAllItemsStrategy” has eight meth-
ods, three of which are public APIs, but not all three are mentioned in the comment, and
only one API “realSearch” is mentioned in the comment under the Public API and Key

Empirical Software Engineering

1 3

Messages section. Similarly, for other information types, developers follow different com-
menting practices, and the writing style shown in Table 4.

Finding 7: The top three types of information found in comments are template-inspired
categories and these categories are implicitly present in the text, but developers mostly use
common patterns or keywords in mentioning them.

All of these information types answer different developer questions in understanding
the program, and assist them in various software development activities. LaToza et al.
surveyed 179 developers during coding activities and collected the questions perceived
as being hard-to-answer by developers (LaToza and Myers 2010). Questions about
rationale, intent, and implementation are the topmost categories of those marked hard-
to-answer by developers. In our study, we also found that developers mention intent,
rationale, and implementation information in their comments with high frequency, indi-
cating that developers find such pieces of information important. However, these infor-
mation types are implicit in the text, which makes them hard to extract and present to
the developers. Better tool support and more studies are needed to address the general
problem of identifying information types and highlighting them to assist developers.

Code commenting practices in other systems Several works in the past have explored the
idea of identifying the information embedded in code comments to leverage them in various
development tasks. We attempt to summarize these related works based on the development
systems, programming language, comment entity (e.g., class comments, inline comments),
and when possible, mapping their taxonomies to our taxonomy, as shown in Table 5.

Based on our comparison analysis, code commenting practices vary across pro-
gramming languages and systems. For common information types present in the com-
ments across systems such as summary, links, code examples, we observed that they
differ in the way they are located in the system and the way they are written. Hata et al.
investigated the Links embedded in the comments and found top three links github.
com, stackoverflow.com, and en.wikipedia.com (Hata et al. 2019). In our analysis, none
of the links from Pharo core comments or external project comments point to github.
com or stackoverflow.com. We did, however, find instances of Links pointing to en.
wikipedia.com in Pharo external projects.

Padioleau et al. explored comments in different programming languages by focus-
ing on Eclipse (IDE) written in Java, MySQL (a database server) and Firefox (a web
browser) written in C and C++. (Padioleau et al. 2009). We observed similar informa-
tion types with our taxonomy, such as code relationship, TODO, and deprecated code.
In our work, we also observed these information types in both internal and external
projects, though with lower frequency compared to Java, C and C++. Indeed, Padioleau
et al. found that several projects embed often these specific concerns, which can vary
among different domains. For example, OS-related projects contain a higher number of
memory management, and lock/synchronization related concerns. In contrast, Eclipse
comments include null references, error management, or links to issue tracker ser-
vices (e.g., Bugzilla). Similar results have been reported by Pascarella et al. and Zhang
et al. for code comments in Java and Python (Pascarella and Bacchelli 2017; Zhang
et al. 2018). In our study, we find that class comments of Roassal contain a large num-
ber of code examples, with PolyMath containing more implementation details compared
to other external projects. However, we did not find any error management related infor-
mation, or links to issue tracker services in Pharo class comments. Similarly to other

 Empirical Software Engineering

1 3

languages, Pharo class comments contain object-oriented programming guidelines or
design pattern details. Hence, our results show a high diversity in commenting practices
across various systems and languages. In future we plan to systematically and more pre-
cisely compare class commenting practices in other popular languages.

4.4 Implications

Finding different types of information embedded in class comment can assist develop-
ers to quickly find and access information required for various development tasks. In
this section, we discuss the need of identifying information types in code comments
of various application domains and languages. We then discuss language-independent
approaches to organize and identify such information type automatically:

– Need to analyze class commenting practices in other systems: Previous studies, as
shown in Table 5, have focused on classifying code comments, or specific types
of information on these comments (e.g., links and task comments). However, we
observed that such studies do not classify code comment information according to
specific comment types (e.g., package comments, class comments, function com-
ments). According to standard coding style guidelines, different comment types report
various kinds of information. For example, the Java Oracle style guideline suggests
adding author information to the class comments but not to the method comments. In
contrast, Python PEP8 suggest to place this information after the module docstring,
and before the relevant statement. On the other hand, in Pharo, the guidelines (and the
class comment template) do not mention author information but we found instances of
author information in the class comments. This shows that class commenting guide-
lines vary across languages but to what extent developer class commenting practices
vary is still unclear and it requires a systematic investigation.

– Identify information types automatically: The task of accessing the type of informa-
tion embedded in comments depends on the kind of information (warning, ration-
ale), level of detail (design level or implementation level) developers seek, the type of
development activities they are performing, and the type of audience (user or devel-
opers) accessing them. Tools to automatically identify these information types can
reduce the effort developers and other stakeholders invest in reading code comments
when gathering particular types of information. In addition, on top of these automated
tools, visualization strategies could be implemented to highlight and organize the con-
tent embedded in the comments, to further ease the process of obtaining the required
information. For example, identifying warnings from the comments can help turn them
into executable test cases, so developers can automatically check that the mentioned
warnings are respected. Similarly, automatically identifying code examples from the
comments and executing them can ensure that code examples are up to date. In recent
work by Pascarella et al. the authors build a machine learning-based tool to identify
information types for Java automatically (Pascarella and Bacchelli 2017). Similarly,
Wang et al. developed such an approach for Python (Zhang et al. 2018). However, given
the increasing trend of open-source systems written in multiple programming lan-
guages, these approaches can be of limited use for developers contributing to these pro-
jects (Tomassetti and Torchiano 2014). Our work has the aim to foster the building of
language-independent tools based on comprehensive taxonomies for comments analysis

Empirical Software Engineering

1 3

Ta
bl

e
5

 C
om

pa
ris

on
 o

f r
el

at
ed

 w
or

ks
 o

n
co

m
m

en
t i

nf
or

m
at

io
n

ca
te

go
riz

at
io

n

St
ud

y
C

om
m

en
t t

yp
es

 a
na

ly
ze

d
Sy

st
em

 a
na

ly
ze

d
C

at
eg

or
ie

s p
ro

po
se

d
M

ap
pi

ng
 to

 o
ur

 ta
xo

no
m

y
(M

)

Y
in

g
et

 a
l.

M
ay

 2
00

5
Ta

sk
 c

om
m

en
ts

[J
av

a]
: E

cl
ip

se
 A

rc
hi

te
ct

’s
 W

or
k-

be
nc

h
(A

W
B

) p
ro

je
ct

7
ca

te
go

ri
es

: c
om

m
un

ic
at

io
n,

po

in
te

r t
o

a
ch

an
ge

 re
qu

es
t,

bo
ok

m
ar

k,
 c

ur
re

nt
 ta

sk
, f

ut
ur

e
ta

sk
, l

oc
at

io
n

m
ar

ke
r,

co
nc

er
n

ta
g

1
ca

te
go

ry
: T

as
k

co
m

m
en

ts

Pa
di

ol
ea

u
et

 a
l.

20
09

So
ur

ce
 c

od
e

co
m

m
en

ts
[C

]:
Li

nu
x,

 F
re

eB
SD

, O
pe

nS
ol

a-
ris

 [J
av

a]
: E

cl
ip

se
, [

C
/C

+
+

]:
M

yS
Q

L
an

d
Fi

re
fo

x

6
ca

te
go

ri
es

 (c
om

m
en

t c
on

-
te

nt
):

ty
pe

, i
nt

er
fa

ce
, c

od
e

re
la

tio
ns

hi
p,

 p
as

t f
ut

ur
e,

 m
et

a,

ex
pl

an
at

io
n

5
ca

te
go

ri
es

: t
yp

e
(M

),
co

de
 re

la
-

tio
ns

hi
p

(M
),

pa
st

fu
tu

re
 (T

od
o)

,
m

et
a

(c
op

yr
ig

ht
),

ex
pl

an
at

io
n

(M
)

H
ao

ua
ri

et
 a

l.
20

11
So

ur
ce

 c
od

e
co

m
m

en
ts

[J
av

a]
: D

rJ
av

a,
 S

H
om

e3
D

,
jP

la
yM

an
3

ca
te

go
ri

es
 (c

om
m

en
t t

yp
e)

:
ex

pl
an

at
io

n
co

m
m

en
ts

, w
or

ki
ng

co

m
m

en
ts

, c
om

m
en

te
d

co
de

,
ot

he
r

3
ca

te
go

ri
es

: e
xp

la
na

tio
n

co
m

-
m

en
ts

 (M
),

w
or

ki
ng

 c
om

m
en

ts

(T
od

o)
, o

th
er

 (M
)

St
ei

dl
 e

t a
l.

20
13

So
ur

ce
 c

od
e

co
m

m
en

ts
[J

av
a]

: C
SL

es
so

ns
, E

M
F,

 Ju
ng

,
C

on
Q

A
T,

 jB
os

s,
vo

TU
M

,
m

yl
un

, p
df

sa
m

, j
M

ol
, j

Ed
it,

Ec

lip
se

, j
ab

re
f,

C
+

+

7
ca

te
go

ri
es

: C
op

yr
ig

ht
 c

om
-

m
en

ts
, h

ea
de

r c
om

m
en

ts
,

m
em

be
r c

om
m

en
ts

, i
nl

in
e

co
m

-
m

en
ts

, s
ec

tio
n

co
m

m
en

ts
, c

od
e

co
m

m
en

ts
 (c

om
m

en
te

d
co

de
),

ta
sk

 c
om

m
en

ts

5
ca

te
go

ri
es

: c
op

yr
ig

ht
 c

om
m

en
ts

(li

ce
ns

e)
, h

ea
de

r c
om

m
en

ts
,

m
em

be
r c

om
m

en
ts

 (M
),

se
ct

io
n

co
m

m
en

ts
 (M

),
an

d
ta

sk
 c

om
-

m
en

ts
 (T

od
o)

Pa
sc

ar
el

la
 a

nd
 B

ac
ch

el
li

20
17

So
ur

ce
 c

od
e

co
m

m
en

ts
[J

av
a]

: A
pa

ch
e

(S
pa

rk
, H

ad
oo

p)
,

G
oo

gl
e

(G
ua

va
, G

ui
ce

),
Va

ad
in

,
Ec

lip
se

16
 c

at
eg

or
ie

s:
su

m
m

ar
y,

 e
xp

an
d,

ra

tio
na

l (
in

te
nt

),
de

pr
ec

at
io

n
(w

ar
ni

ng
),

us
ag

e,
 e

xc
ep

-
tio

n,
 T

O
D

O
, i

nc
om

pl
et

e,

co
m

m
en

te
d

co
de

, d
ire

ct
iv

e,

fo
rm

at
te

r,
lic

en
se

, p
oi

nt
er

,
au

to
-g

en
er

at
ed

, n
oi

se

9
ca

te
go

ri
es

: s
um

m
ar

y
(M

),
ex

pa
nd

 (M
),

ra
tio

na
l,

de
pr

ec
a-

tio
n,

 u
sa

ge
 (M

),
TO

D
O

, l
ic

en
se

,
po

in
te

r (
M

),
no

is
e

 Empirical Software Engineering

1 3

M
 in

 th
e

co
lu

m
n

M
ap

pi
ng

 to
 o

ur
 ta

xo
no

m
y

re
pr

es
en

ts
 m

ap
pi

ng
 o

f o
ne

 c
at

eg
or

y
fro

m
 th

e
re

la
te

d
w

or
k’

s t
ax

on
om

y
to

 m
ul

tip
le

 c
at

eg
or

ie
s i

n
ou

r t
ax

on
om

y

Ta
bl

e
5

 (c
on

tin
ue

d)

St
ud

y
C

om
m

en
t t

yp
es

 a
na

ly
ze

d
Sy

st
em

 a
na

ly
ze

d
C

at
eg

or
ie

s p
ro

po
se

d
M

ap
pi

ng
 to

 o
ur

 ta
xo

no
m

y
(M

)

Zh
an

g
et

 a
l.

20
18

So
ur

ce
 c

od
e

co
m

m
en

ts
[P

yt
ho

n]
: P

an
da

s,
D

ja
ng

o,

Pi
pe

nv
, P

yt
or

ch
, I

py
th

on
,

M
ai

lp
ile

, R
eq

ue
sts

11
 c

at
eg

or
ie

s:
m

et
ad

at
a,

 su
m

-
m

ar
y,

 u
sa

ge
, p

ar
am

et
er

s,
ex

pa
nd

, v
er

si
on

, d
ev

el
op

m
en

t
no

te
s,

to
do

, e
xc

ep
tio

n,
 li

nk
s,

no
is

e

8
ca

te
go

ri
es

: m
et

ad
at

a
(M

),
su

m
m

ar
y

(M
),

us
ag

e,
 e

xp
an

d
(M

),
pa

ra
m

et
er

s,
de

ve
lo

pm
en

t
no

te
s(

M
),

to
do

, l
in

ks
 (M

),
no

is
e

(o
th

er
)

Sh
in

ya
m

a
et

 a
l.

20
18

Lo
ca

l c
om

m
en

ts
 (i

ns
id

e
m

et
h-

od
s)

[J
av

a]
: 1

 0
00

 p
ro

je
ct

s [
Py

th
on

]:
99

0
pr

oj
ec

ts
11

 c
at

eg
or

ie
s:

Pr
ec

on
di

tio
ns

,
po

st
co

nd
iti

on
s,

va
lu

e
de

sc
rip

-
tio

n,
 in

str
uc

tio
ns

, g
ui

de
,

in
te

rfa
ce

, m
et

a
in

fo
rm

at
io

n,

co
m

m
en

t o
ut

, d
ire

ct
iv

e,
 v

is
ua

l
cu

e,
 u

nc
at

eg
or

iz
ed

7
ca

te
go

ri
es

: p
re

 c
on

di
tio

ns

(c
on

tra
ct

s)
, p

os
t c

on
di

tio
ns

(c

on
tra

ct
s)

, v
al

ue
 d

es
cr

ip
tio

n
(in

st
an

ce
 v

ar
ia

bl
es

),
gu

id
e

(e
xa

m
pl

es
),

in
te

rfa
ce

 (k
ey

 m
es

-
sa

ge
),

m
et

a
(li

ce
ns

e)
, u

nc
at

eg
o-

riz
ed

 (o
th

er
)

H
at

a
et

 a
l.

20
19

Li
nk

s i
n

co
m

m
en

ts
[C

],
[C

+
+

],
[J

av
a]

, [
Ja

va
S-

cr
ip

t],
 [P

yt
ho

n]
, [

PH
P]

,
[R

ub
y]

: P
ro

je
ct

s f
ro

m
 G

itH
ub

-
Li

nk
s

Empirical Software Engineering

1 3

of multi-language projects. Future studies can leverage our labelled data as a starting
point to build language-independent tools, and verify the correctness of their tools.

– Designing an annotation language: Annotation languages have proven to improve
the reliability of software.18 They can help the community in labelling and organ-
izing a specific type of information, and to convert particular information types into
formal specification which can further help in synchronizing comments with the
code (Padioleau et al. 2009). Even though Pharo comments do not follow any anno-
tation, they do have hidden patterns for different information types such as instance
variables denoted by Instance variables or main methods of a class are indicated
by Key Messages. We identified various such patterns in constructing our taxonomy
highlighted in Keywords in Table 4. Pharo community can use such patterns in
developing an annotation language for Pharo comments. In our study, we find some
information types express properties (according to implicitness level in Table 4)
which can be described via annotations such as Examples, public APIs, Links. Tool/
language designers can utilize the identified patterns to design information headers
and annotations.

5 RQ3: Adherence of Commenting Practices to the Template

Programming languages and communities not only provide guidelines to maintain uniform
coding styles, they also provide documentation guidelines for writing comments to have a
uniform commenting style across projects. Java has JavaDoc,19 Python follows a standard
documentation style,20 and Google suggests style guidelines.21 JavaDoc provides certain
guidelines such as “Class descriptions can omit the subject, and simply state the object, use
third person rather than second person.”22 In Pharo, developers are guided by a template,
shown in Fig. 2, which recommends the use of first-person pronouns, writing complete
sentences, following CRC style, and providing extra information sections like Public API
and Key Message, Example, and Internal Representation. However, it is not known how
the template has evolved, what sections of the template are used more often than others,
and to what degree developer commenting practices conform to the template. We inves-
tigate these aspects in our third research question: RQ3:To what extent do developer com-
menting practices adhere to the class comment template over Pharo versions?

After expanding our understanding of the templates gathered from all versions, we
investigate the adherence of comments to the template. We define adherence by focusing
on two main aspects: adherence to the content type, and to the writing style. We elaborate
these two aspects as:

– Content adherence: If the comments contain information types as mentioned in the
respective template, then we say the comments adhere to the template in the content
aspect.

18 https:// docs. micro soft. com/ en- us/ cpp/c- runti me- libra ry/ sal- annot ations? redir ected from= MSDN& view=
vs- 2019
19 https:// www. oracle. com/ techn etwork/ java/ javase/ docum entat ion verified on 28 Jan 2020
20 https:// www. python. org/ doc/ verified on 28 Jan 2020
21 https:// devel opers. google. com/ style/ api- refer ence- comme nts verified on 28 Jan 2020
22 https:// www. oracle. com/ techn etwork/ java/ javase/ docum entat ion/ index- 137868. html

https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/sal-annotations?redirectedfrom=MSDN&view=vs-2019
https://www.oracle.com/technetwork/java/javase/documentation
https://www.python.org/doc/
https://developers.google.com/style/api-reference-comments
https://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

 Empirical Software Engineering

1 3

– Writing style adherence: If the comments follow the writing style conventions of
the template, then we say the comments adhere to the template in the writing style
aspect. The writing style conventions are composed of various constraints formu-
lated for each template information type. If the comments containing specific infor-
mation fulfill the corresponding constraints, we say the comments adhere to the
writing style.

We measure the content adherence of the comments in Sect. 4 by analyzing the content
of the selected comments manually.

To measure adherence to writing style, we first extract the guidelines from the
template regarding how a comment should be written. We convert the guidelines into
writing style constraints to identify the writing style influence of the template on the
comments. Then we manually analyze the 364 comments selected using stratified sam-
pling, according to the writing style constraints of corresponding template version.
With the manual analysis study, we verify our definition and uncover other patterns of
writing style. Once we calculate both aspects of comment adherence, we answer RQ3.

We argue that this analysis will help researchers in evaluating the usage and impor-
tance of a comment template, and highlighting potential aspects to improve it.

5.1 Study Setup

To study the evolution of the template, we extracted the template from each Pharo ver-
sion since Pharo 1 and compared all template versions to record the differences.

In order to measure the adherence of commenting practices to the template, we
extracted the class comment template and a sample of an equal number of classes from
each version, then identified the information types they contain. The classes chosen
for the study should be the newly added classes of each version, to make sure that the
developer got a chance to look at the default template. This is because, in Pharo, the
template appears only when developers add a class comment to the class for the first
time. For each comment in the sample set (363) used in the RQ2, we therefore identi-
fied the original Pharo version when the comment was first added to the class. We
then extracted the class comment of that version to compare the comment to the cor-
responding template in content and writing style aspects. For example, for a class com-
ment added in Pharo 2, we compared the comment to the Pharo 2 template.

This partitioning of 363 comments according to the original Pharo version led to an
unequal number of comments for each Pharo version e.g., out of 363 comments version
2 has fewer than 40 comments whereas version 7 has more than 60 comments. Further-
more, to compare the class commenting practices of all versions across each other, we
selected an equal number of comments from each version. To balance the equal sample
comments from each version, we set a lower threshold of 52 comments for each Pharo
version, summing to a total of 364 comments. We extracted more comments from the
Pharo versions where there were fewer than 52 comments, mainly Pharo 2 and Pharo 4.
For each such version, we selected the sample classes from newly added classes with
comments shown in the top dark blue segment of Fig. 3 according to the distribution
of comments based on the number of sentences present in a comment. Similarly, we
removed the classes from Pharo versions where there were more than 52 comments,
mainly Pharo 1, Pharo 6, and Pharo 7, based on the distribution of comments of each

Empirical Software Engineering

1 3

version. We followed the same approach to choose representative comments as used in
363 comments from the earlier study (taxonomy study).

5.2 Methodology

5.2.1 Template Evolution

We analyzed the template of each Pharo version and created a template meta-model for
each version. When a class is created, a default class comment template is added to the
class, e.g., the recent template is shown in Fig. 2. We created a class with one instance vari-
able and then observed the changes in the default class comment template. According to
the available details in the comment template, each author of the paper prepared their own
interpretation of the template model for each Pharo version. Once we prepared the template
models for all versions, we compared and discussed them to reconstruct and establish one
template model for each version. There were few intermediate Pharo versions where the
template had not changed; in such cases we used the same template model from the earlier
version. Thus each template model captures the differences from preceding and succeeding
versions and presents the evolution of the template (models of the various template ver-
sions are reported in Fig. 12).

5.2.2 Adherence of Comments to the Template

We grouped all 364 comments according to their original Pharo versions (when the com-
ment was first added to the class) so that we could differentiate the comments of one ver-
sion from another version, analyze their evolution, and compare them to the correspond-
ing template of that version. Then we identified the comment information types of 364
comments following the methodology used for the taxonomy study. Once we identified the
comment information types of all comments, we identified the information types and writ-
ing style guidelines from the templates by studying the content of each template corre-
sponding to the Pharo version. Three authors of the paper participated in the study and ana-
lyzed each version’s template independently. Then, we used a two-step validation approach,
thus validating the content classification of the template and the name assigned to the clas-
sified content. Specifically, the content classification was validated by an iterative evalua-
tion process where each evaluator reviewed the other’s content classification. This way, all
the information types were discussed by all the evaluators for the better naming convention
and classification.

Similarly, we extracted the writing style guidelines hinted by each information type
of each version’s template, discussed among ourselves and formulated several con-
straints for each information type. For instance, For the Class part section of the Pharo
7 template in Fig. 2 is identified as Intent information type. For this type, we extracted
the guidelines from the keywords State one line, I represent and converted them into
rules such as description should be one line, subject should be first person, and have
a pattern of < subject > , < verb > from I represent. The process of finalizing the con-
straints for all information types of the Pharo 7 template is shown in the replication
package.23

23 File “RP/ Resul ts/ RQ3/ Const raints- defin ition- for- templ ate- writi ng- style. xlsx” in the Replication package

https://github.com/poojaruhal/CommentAnalysisInPharo/blob/master/Results/RQ3/Constraints-definition-for-template-writing-style.xlsx

 Empirical Software Engineering

1 3

The final constraints for the Pharo 7 template are shown in Fig. 11. A complete list of all
constraints and their examples for each Pharo version can be found in Appendix 1. There
were few intermediate Pharo versions where the template had not changed; in such cases
we used the same information types and writing style guidelines from the earlier template
(See Figs. 16, 17, 18 and 19 in the appendix).

Content adherence After identifying all the information types from each template ver-
sion, we compared them to each version’s information types identified via Pharo-CTM. For
example, for a class comment added to the class in Pharo 2, we compared the information
types of the comment to the information types identified from the template that existed in
Pharo 2, thus comparing what developers typically write in their comments to the informa-
tion proposed by the template.

Writing style adherence Some of the constraints identified from a template can be veri-
fied automatically in the comments and do not require manual intervention but could
lead to less reliable results due to the freedom of writing free text in the class comments,
non-availability of formatting standards, and limited patterns available in the template.
Additionally, there are chances to miss the cases where selected patterns are not present,
and instead developers use synonyms to describe the same detail or do not describe the
detail under a specific section header, say Instance variables, and just write the instance
variable details without any header. We therefore manually analyzed the 364 comments
(52 comments from each version), using the same setup as that of our studies of manual
analysis performed in RQ2 and RQ3 for identifying the information types. We followed
the same iterative approach for evaluating the writing style constraints and the same vali-
dation approach as used in the taxonomy study. We used the pair sorting approach to
decide whether a sentence in the comment fulfills the constraints, and was influenced by
the template or not.

After collecting all the data, we used statistical tests to verify whether there is a statis-
tically significant difference between the scores (e.g., the number of classes that adhere
to the Pharo template style) when observing different Pharo versions. We employed non-
parametric tests since the Shapiro-Wilk test revealed that the numbers of commented
classes among Pharo versions do not follow a normal distribution (p ≪ 0.01). Hence,
we used the non-parametric Wilcoxon Rank Sum test with a p-value threshold of 0.05.
Significant p-values indicate that there is a statistically significant difference between the
scores. In addition, we computed the effect-size of the observed differences using the
Vargha-Delaney Â

12
 statistic (Vargha and Delaney 2000). The Vargha-Delaney Â

12
 sta-

tistic also classifies the obtained effect size values into four different levels (negligible,
small, medium and large) that are easier to interpret.

5.3 Results

5.3.1 Template Evolution

Analyzing the template meta-models in Fig. 12, we found that in the first Pharo template
version shown in Fig. 12a, the template includes class side and instance side variables, and
adds the class name and instance variable names by default. In later Pharo versions, class
side variable information is omitted, and is shifted to the class side template. In the second

Empirical Software Engineering

1 3

and third Pharo versions in Fig. 12b, the template adds a description line for each instance
variable to encourage developers to explain each instance variable. Additionally, the first
line of the template refers to the intent of the class. In Pharo version 4 in Fig. 12c, the tem-
plate underwent major changes and incorporated the CRC design to encourage the devel-
opers to describe the class intent, its responsibilities and its collaborators. The template
presents different types of details to include in the class comment, and also gives examples
to show developers how to write a comment. Since Pharo version 5 shown in Fig. 12d, the
template remains the same. Compared to the previous Pharo version 4, the template asks
developers to document “what I know” rather than “what services do I offer” in the respon-
sibility section.

We also observed that in Pharo version 1, there is a common template for the class side
and the instance side. Then in later versions (from version 2 to 6), different default tem-
plates exist for the class side and the instance side. In recent version (7), again a single
template is introduced for both the class side and the instance side. The reason for remov-
ing such a feature can be to simplify the template behavior, but this loses the facility of
documenting the class side instance variables automatically in the template.

5.3.2 Adherence of Comments to the Template

This section aims at understanding the template of each Pharo version, finding the dif-
ferences among templates, and comparing the commenting practices of developers with
the class comment template. For each part of the question, we present our results and
discussion.

Content adherence Analyzing the information embedded in the comments shows that
developers document different kinds of information in the class comments to make their
classes more understandable and maintainable. However, whether the practice of embed-
ding various information types in the class comments is recent or present from initial Pharo
versions, is unexplored and unknown.

Fig. 11 Writing style constraints formulated for Pharo 7 template

 Empirical Software Engineering

1 3

In Fig. 13, the x-axis lists the information types, and the y-axis shows the Pharo ver-
sions with a number of classes considered for each Pharo version. A darker shade of orange
indicates a large number of comments having a particular type of information, and a lighter
shade indicates a smaller number of comments falling into the information type. From our
analysis, we found that most of the information types are present in the comments since
Pharo 1 except Todo comments, Coding Guidelines, and Observations. A few information
types like Intent, Responsibility, Collaborators, and Examples are highly frequent in all
versions of Pharo.

Looking at Table 6, we see that the template suggests only a few information types
to write in the class comment, especially in the initial three Pharo versions. Later on,
the template suggested seven types of information. However, there are other information
types mentioned by developers than those suggested by the template. For example, the
Pharo 1 template mentions three types of information shown in Table 6, but developers
mention 20 other types of information shown in Fig. 13. In the most recent template,
among 23 types found in the comments only seven are present in the template. Analyzing
the developer practices of writing information seen in Fig. 9, we found that the informa-
tion types suggested by the template are mentioned more frequently in the comments
than other information types found in comments. For instance, Intent and Responsibility
are present in 65% of sample class comments, while Warnings is present in 12% of the
sample class comments, indicating the relevance of the template in terms of its informa-
tion types.

Finding 8: Most of the information types are available in the comments since Pharo
version 1. A few information types like To do comments, Coding guidelines, and Observa-
tions are not found in the initial version.

Finding 9: The template-suggested information types are mentioned more frequently in
the comments than other types of information.

Fig. 12 Template models for Pharo versions

Empirical Software Engineering

1 3

Writing style adherence Analyzing Fig. 14a, we observe that Pharo 1 comments follow
the rules 50% of the time whereas, since Pharo 4, the trend of comments adhering to the
style rules increased to 75%. To understand these differences between Pharo versions, we
grouped comments according to the changes in the template e.g., the template in Pharo 2
and Pharo 3 has been the same, therefore, we grouped the comments from Pharo 2 and
Pharo 3 and measured the percentage of comments adhering to the writing style rules.
After grouping the comments according to the version, we use the Wilcoxon test as well
as the Vargha-Delaney Â

12
 statistic to observe potential statistical significant differences

in the results achieved by classes of the grouped versions. The results of the Wilcoxon test
highlight a marginal significant difference (i.e. p-values of 0.0673) is observed between
Pharo 1 and the Pharo 4, 5, 6 groups. For these groups, the Vargha-Delaney statistic also
reveals that this difference is large.

Finding 10: Developer commenting practices adhere more to the writing style guide-
lines since Pharo 4 especially in describing the Intent, Responsibilities, and Instance Vari-
ables of the class.

We further explored the differences between Pharo versions by measuring the
adherence of comments to specific information types of each template version shown

Fig. 13 The trend of information types in Pharo versions

Table 6 The trend of information
types in Pharo Template versions

version categories

1 Intent, Collaborator, Instance Variables
2-3 Intent, Instance Variables
4-7 Intent, Responsibility, Collaborator, Instance Vari-

ables, Key Messages, Example, Implementation
Points

 Empirical Software Engineering

1 3

in Fig. 14b. We found that Example and KIP (Key Implementation Points) are always
inconsistent due to unavailability of strict guidelines to write them. The rule in the
Example section mostly checks the presence of an example in the comment written
either in natural language or a code snippet, but the templates do not suggest any guide-
lines to write and format it. Developers therefore follow various conventions to mention
examples, such as using dedicated headers Usage, Examples, Code examples. Similarly,
for KIP, one of the rules just checks the presence of the implementation details in the
comment. Another rule in KIP section suggests to write the header Internal representa-
tion and Implementation points while mentioning the implementation details, but this is
rarely followed by developers.

In our analysis, we found several comments where only the header is present, but no
further details are mentioned below the header. We believe this is due to a lack of atten-
tion from developers in deleting unused section headers. One of the cases we encoun-
tered is in the class “SycMethodCommand”, shown in Listing 5, where the developers
have not provided any details under Internal representation and Implementation points
section, but the header is still present. In the case of writing the Instance Variable infor-
mation, its header is mentioned in most of the cases with the instance variables. One
of the reasons for such a behavior can be the feature of Pharo of adding an instance
variables section automatically to the class comment template if the class is created with
instance variables.

We observe a high degree of inconsistency in using or not using headers to delimit dif-
ferent information types in class comments. In Fig. 15b (Header rule) we see that the use of
headers fluctuates significantly across all Pharo versions. We note a similar fluctuation in
the adherence to the rules to document instance variables and Key APIs as lists (Fig. 15b,
Listing rule). This indicates the need to have a better and consistent standard for formatting
and providing headers for different information types.

Finding 11: In the majority of Pharo versions, fewer than 40% of the comments make
use of the headers suggested by the comment template. Where headers are used, developers
often use different and inconsistent headers for the same information types.

(a) (b)

Fig. 14 Comments following the writing guidelines over Pharo versions

Empirical Software Engineering

1 3

On the other hand, for a few rules, we notice the consistent declining rate of following
them. For instance, in Pharo 1, the rules ask developers to write specific information types
in the third person. Instead, developers often write this information in the first person.
Since Pharo version 5, such rules are respected more than 50% of the time, showing the
increasing usage of first person. We confirm our observation by mining the rules related to
first person and third person from all information types in all versions as shown in Fig. 15a,
and find that the usage of third person started declining in the initial versions even though
the template proposed to use it. In later versions since Pharo 4 the usage of first person
and active-voice rules is increasing, however, it is still not entirely followed, showing the
inconsistency of the writing style in comments.

Finding 12: Developers use various verb forms to describe the top three information
types Intent, Responsibilities, and Collaborators of a class but mainly adhere to the tem-
plate’s use of the first-person pronouns.

Discussion. Examining the information types suggested in the template (seven cat-
egories), we found that a few information types like Intent, and Responsibility are found
more frequently in the comments than other details, indicating that developers follow the
template in writing the template information types. On the other hand, the availability of
extra information types mentioned in different writing styles without a consistent header,
like warnings, points out the need for adapting the template to the developer needs. We
believe that adding the commenting guidelines for other frequent information types in
the template will encourage developers to add such details uniformly to their class com-
ments whenever necessary. We specifically suggest to add headers and organization
guidelines about the extra frequent categories to the template, which are not currently
present: Reference to external resources, Warnings, Contracts, Dependencies, Observa-
tion, and Todo.

We additionally observed that Pharo class comments range from high-level design
details to low-level implementation details. This unique way of documenting can help
developers and users to get all the information about the class from one place, but poses
a challenge at the same time in identifying the specifically required information from such
an interwoven text. Not all developers need to know the low-level details of the class. A
study by Cioch et al. (Cioch et al. 1996) proposes different documents for each stage, e.g.,
interns require task-oriented documentation such as process description, examples, and

(a) (b)

Fig. 15 Comments following different guidelines over Pharo versions

 Empirical Software Engineering

1 3

step-by-step instructions, whereas experts require low-level documentation as well as a
design specification. In the current state of Pharo comments, developers seeking a specific
type of information have to go through the whole comment due to the lack of annotations,
the non-uniform way of placing information, and the relaxed style conventions. Similarly,
users looking for design details have to go through the implementation details. Building
tools to automatically identify and highlight information from the class comment, accord-
ing to the desired level of detail and the targeted users of the information, could help devel-
opers to search more efficiently within documentation. At the same time, such tools could
also be used to identify the parts of the code that are poorly documented, thus generating
documentation fixes.

Analyzing the writing style aspect, we find that developers follow a mix of the first
person and third person to express the same information about the class. Although
more than 75% of the comments of recent versions follow the writing style conven-
tions of the template, there is a substantial proportion of comments that are written
differently, creating an inconsistent style across projects. This suggests a need for bet-
ter structure conventions, as the template does not follow any strict structural guide-
lines to organize the content, thus making developers look through the whole comment
to find a piece of information. Encouraging developers to follow structural guidelines
in the text, and writing comments with standard headers will allow other develop-
ers to extract information from them more easily. We suggest that the Pharo com-
ment template should impose a formatting and markup style to structure the details in
comments.

5.4 Implications

Assessing the adherence of comments to the suggested guidelines provides important
directions on how to maintain comments and keep them consistent with such guidelines.
Based on our study insights, we provide implications for developers and researchers to
address the comment quality and consistency with commenting guidelines:

– Verifying comments adherence in other languages. To write useful and consistent
comments, numerous programming languages such as Java and Python, and com-
munities such as Google and Oracle, provide coding guidelines (Google Style
Guidelines 2020; Oracle Documentation Guidelines 2020). For example, Oracle’s
guidelines suggest “using third person (descriptive) style and second person (pre-
scriptive)” while writing documentation comments, but it is not known whether
developers actually follow this guideline in their comments or not. To ensure devel-
opers follow such guidelines, various automated style checkers or linters e.g., Check-
style,24 Pylint,25 ESLint26 turn such guidelines into rules and then evaluate the rules
against comments automatically. However, these style checkers are not available for
all programming languages, and for the supported ones, they provide limited rules
for addressing code commenting guidelines. The majority are limited to detecting
missing comments and verifying formatting guidelines, but not adherences to guide-

24 https:// check style. org/ checks. html, accessed on 10 Sep, 2020
25 https:// www. pylint. org/, accessed on 10 Sep, 2020
26 https:// eslint. org/, accessed on 10 Sep, 2020

https://checkstyle.org/checks.html
https://www.pylint.org/
https://eslint.org/

Empirical Software Engineering

1 3

lines concerning the content of comments . Our results for Pharo show that devel-
opers embed template-inspired information types in the class comments. Moreover,
they also follow various syntactic guidelines to add such information types. Whether
developers follow similar commenting guidelines (suggested by the coding guide-
lines) in other programming languages is not yet explored. Our dataset provides
relevant data in which one can observe which commenting guidelines developers
frequently follow in their comments and which they do not. Thus, it can help in con-
ducting similar studies for other languages.

– Comment quality tools: Researchers have provided various heuristics-based
approaches to evaluate comment quality (Khamis et al. 2010; Steidl et al. 2013;
Scalabrino et al. 2016). However, these approaches provide limited checks, they
focus on particular programming languages (mainly Java), and they are not designed
to be used for other domains and languages (Khamis et al. 2010; Steidl et al. 2013;
Scalabrino et al. 2016). In particular, most approaches are based on language-specific
heuristics such as comment syntax, common keywords used in the comments, and the
supported annotations for comments (Khamis et al. 2010; Steidl et al. 2013), which
cannot be directly applied to other languages. For instance, in Pharo code comments
follow a different comment structure and writing style, and do not rely on annotations,
which makes these approaches not suitable for this language. In addition, Tan et al.
also showed that previous approaches concerning the detection of inconsistencies in
the comments require adaptation to new domains and languages (Tan et al. 2007).
Hence, our study insights about Pharo commenting practices provide further data to
help researchers in designing tools for assessing comment quality across other lan-
guages and domains.

– Template-based comment generation and code summarization approaches: Comment
templates not only provide developers with concrete examples on how to write com-
ments, but can also employed by researchers to enable automated generation of code
comments for various code entities. In recent work, Moreno et al. proposed a template-
based approach to automatically generate comments for Java classes Moreno et al.
(2013). Their template includes certain types of information which they deem essential
for understanding a Java class. However, the information types included in the template
were not derived from class comments written by developers, which could make them
potentially out of date with current Java commenting practices. In Pharo, class com-
ments are guided by a default template which includes seven types of information con-
sidered important to document a class. We observed in our study that developers write
template-inspired information types more often compared to other information types
found in comments. We compared the information types included in the class comment
template by Moreno et al. and Pharo class comment template. We observed that their
template does not include information types such as related classes, algorithmic imple-
mentation details, or an example to show the usage of the class. In contrast, the Pharo
template includes these information types and Pharo developers frequently refer them
and with headers Collaborators, Implementation points, and Example respectively. On
the other hand, both templates suggest describing the intent of the class, responsibili-
ties of the class and the main important methods, which are again frequently reported
by Pharo developers. Thus, our study insights suggest that further information, typi-
cally embedded by developers in code comments developers, need to be included in
template-based comment generation or code summarization approaches.

 Empirical Software Engineering

1 3

6 Threats to Validity

We now outline potential threats to the validity of our study.
Threats to construct validity mainly concern the measurements used in the evaluation.

First, we are aware that, to answer research questions RQ2 and RQ3, we sampled only a
subset of the extracted class comments. However, (i) the sample size limits the estimation
imprecision to 5% of error for a confidence level of 95%, and (ii) to limit the subjectiveness
and the bias in the evaluation, three evaluators (three authors of this work) manually ana-
lyzed the resulting sample.

Another threat to construct validity concerns the definition of the taxonomy, information
types, and writing rules from the template, which are performed on data analyzed by three
subjects. Indeed, there is a level of subjectivity in deciding whether a Pharo comment type
belongs to a specific category of the taxonomy or not. To counteract this issue, we per-
formed a two-level validation step. This validation step involved further discussion among
the evaluators, whenever they had divergent opinions, until they reached a final decision.

Threats to internal validity concern confounding factors that could influence our results.
To analyze the commenting trend of old and new classes, we map the classes by their
name. This implies that a renamed class will be considered to be a new class, underestimat-
ing the tendency to comment old classes. The main threat to internal validity in our study
is that the assessment is performed on data provided by human subjects, hence it could be
biased. To counteract this issue, the evaluators of this work were two Ph.D. candidates and
one faculty member, each having at least four years of programming experience. To make
transparent all decisions drawn during the evaluation process, all results of the various vali-
dation steps are shared in the replication package (to provide evidence of the non-biased
evaluation) and described in detail in the paper.

A second threat involves the taxonomy definition since some of the categories could
overlap or be missing in the Pharo-CTM. To alleviate these issues one of the authors per-
formed a pilot study involving a validation task on a smaller set of Pharo comments. Then
a wider validation was performed involving three authors of this work. A final threat to
the internal validity is represented by the possibility that the chosen sample comments are
not representative of the whole population. To handle this problem we used a stratified
sampling approach to choose the sample comments from the dataset, thus considering the
quintiles of the comment distribution shown in Fig. 7b.

Threats to external validity concern the generalization of results. The main aim of this
paper is to investigate the class comments and commenting practice evolution character-
izing the Pharo core system. Programmers developing an end-user application might have
entirely different commenting practices. To alleviate this concern to some extent, we ana-
lyzed a sample set of comments from a combination of external projects from the Pharo eco-
system. The projects vary in terms of size, contributors and popularity. Thus, our empirical
investigation is limited to the Pharo ecosystem, and not generalizable to other programming
languages. On the other hand, our results highlight how previous findings on other program-
ming languages — such as Java (Steidl et al. 2013; Pascarella and Bacchelli 2017), showing
that comments contain information like exceptions, IDE directives, bug references, format-
ters to separate code into logical section, and author ownership — are not applicable to the
Pharo Smalltalk environment. However, it is important to point out that variables such as
developer experience (e.g., more experienced developers could be more prone or be more
aware of the actual Pharo commenting practices) could have influenced the results and find-
ings of this work.

Empirical Software Engineering

1 3

Finally, during the definition of our taxonomy (i.e. Pharo-CTM) we mainly rely on a quan-
titative analysis of class comments of Pharo, without directly involving the actual Pharo devel-
opers. Thus, for future work, we plan to involve developers in the loop, via surveys and (face-
to-face or conference call) interviews. This step is particularly important for proposing and
evaluating automated approaches that can help them achieve a high quality of comments.

Conclusion Threats. We support our findings by using appropriate statistical tests, such
as the Wilk-Shapiro normality test to verify whether the non-parametric test could be
applied to our data. Finally, we used the Vargha and Delaney Â

12
 statistical test to measure

the magnitude of the differences between the studied distributions.

7 Related Work

7.1 Comment Evolution

Considering the importance of code comments, several researchers have analyzed com-
ments quantitatively and qualitatively. Woodfield et al. study the usefulness of comments
quantitatively, and measure the effects of comments on program comprehension (Woodfield
et al. 1981). They find that the groups of programmers who were given a program with com-
ments were able to answer more questions about a program in a quiz than the programmers
who were given the program without comments. A few studies focus on the evolution of
comments. Schreck et al. qualitatively analyze the evolution of comments over time in the
Eclipse project (Schreck et al. 2007), whereas Jiang et al. (Jiang and Hassan 2006) quanti-
tatively examine the evolution of source code comments in PostgreSQL. Their focus is on
comments associated with functions while we study the comments associated with classes
in Pharo and focus on analyzing the comments quantitatively over Pharo versions.

Fluri et al. analyze the co-evolution of code and comments in Java and discover that
changes in comments are triggered by a change in source code (Fluri et al. 2007). They
find that newly-added code is rarely commented. Interestingly, in contrast to their results,
we find that the commenting behavior of developers in Pharo is different. Developers com-
ment newly-added code, as well as commenting old classes. In another study, Fluri et al.
claim that the investigation of commenting behavior of a software system is independent of
the object-oriented language under the assumption that common object-oriented languages
follow similar language constructs to add comments (Fluri et al. 2009). We investigate the
assumption with another object-oriented programming language and discover that Pharo
follows a different comment convention for class comments. Pharo separates the class com-
ment from the source code and supports different kinds of information like warnings, pre-
conditions, and examples in class comments.

7.2 Comment Information Categorization

Comments contain useful information to support various tasks in software development
cycle. Previous literature has explored this idea and analyzed various systems to find the
information contained in comments. We mapped taxonomies of other related work to our
work to establish which systems have been analyzed, which kinds of comments are fre-
quently analyzed, and which categories from these works are available in our taxonomy in
Table 5. Several categories from their taxonomy mapped to multiple information types in

 Empirical Software Engineering

1 3

our taxonomy. We highlighted such categories with the symbol (M) in Mapping to our tax-
onomy in Table 5. In the next paragraphs, we discuss all these related works.

Ying et al. categorize a specific type of comment, namely Eclipse task comments, to see
what information they contain. They categorize them on the basis of the various uses of the
task comments, such as for communication, or to bookmark current and future tasks (Ying et al.
2005). Similarly Hata (Hata et al. 2019) categorized the links found in comments. Padioleau
et al. use multiple dimensions to analyze comments and propose comment categories based
on the meaning of a comment. They use W questions such as “What is in a comment?”, “Who
can benefit?”, “Where is the comment located?”, and “When was the comment written?” Our
aim is to support developers to find important and different kinds of information from the class
comment so we choose one specific dimension, namely “What is in a comment?”, and classify
Pharo class comments accordingly (Padioleau et al. 2009). Haouari et al. categorized the com-
ments based on their position relative to code, comment type, style, and their quality (Haouari
et al. 2011) Similar to their work, we also categorized comments based on their content. They
proposed three subcategories of comment type, namely Explanation comments, Working com-
ments, and Other. However, due to the abstract nature of these categories, especially Explana-
tion comments, most of our categories can fit into it. We categorized the comments based on
what specific types of information developers provide.

Steidl et al. assess the quality of comments in Java and C/C++ programs based on dif-
ferent comment categories. They proposed seven high-level categories based on the posi-
tion and syntax of the comments, e.g., inline comments, block comments etc. (Steidl
et al. 2013). We focus particularly on class comments, which map to their Header com-
ments. Additionally in Pharo, four other categories (task comments, copyright comments,
member comments, and section comments) from their work are available inside Pharo class
comments, but are not annotated with any specific tags, and do not have a fixed position as
in Java and C/C++. Farooq et al. compared comments of popular programming languages
based on the types of symbols used to denote them, parsing rule, recursivity, and usage
of the comments for various purposes such as documentation, and debugging (Farooq
et al. 2015). In our case, the position of Pharo class comments is fixed and does not contain
commented code as Pharo class comments are presented in a separate region, therefore, the
categorization based on position does not apply to this case.

Pascarella et al. propose a taxonomy of code comments for Java projects (Pascarella
and Bacchelli 2017). Five of our categories, namely Intent, Examples, Warnings,
License, and References to external documentations, are close to their taxonomy cat-
egories Rationale, Usage, Notice, License, Pointer respectively. However, our categori-
zation is specific to class comments. We found a number of cases in which the catego-
ries from their work did not fit Pharo comments, such as Ownership, Commented code,
Directive, Formatter, Discarded, and Exception, due to unavailability of such informa-
tion in the Pharo class comments. We found other, different types of information that
developers write in Pharo class comments, such as warnings, observations, and con-
tracts, that are not reported in their work. Zhang et al. constructed a Python comment
taxonomy based on the work of Pascarella et al. (Zhang et al. 2018). Shinayam et al.
identified the information embedded in local comments, as shown in Table 5 (Shiny-
ama et al. 2018). Mapping to their work showed that Pharo class comments contain
low-level information also in addition to high-level information. Based on the mapping
analysis, several categories from related work did not map to our taxonomy. As the
scope of comments we analyzed is different from other works e.g., Pascarella et al. and
Zhang et al., it is still possible that other kinds of Pharo comments (method comments
or inline comments) contain other missing information types. Additionally, all of the

Empirical Software Engineering

1 3

previous classifications have been performed on external projects of a language rather
than internal core libraries such as String, or Collection. We categorized the comments
from Pharo internal (core) and external projects to identify if developers have differ-
ent commenting practices in internal and external projects. In future work, we plan to
investigate the class comments of other popular languages and compare them to Pharo
commenting practices.

7.3 Template Evolution and Adherence

Nurvitadhi studies the impact of class comments and method comments on program
comprehension in Java, and creates a template for class comments in Java (Nurvitadhi
et al. 2003). He suggests to include the purpose of the class, what the class does, and
the collaboration between classes. The Pharo class comment template covers similar
aspects with CRC style for the class comment. However, whether developers follow
these aspects or not in their comments is unstudied. We therefore evaluate the adher-
ence of the template to developer commenting practices. Jiang et al. study the source
code comments in PostgreSQL. Their focus is on the function comments i.e. comments
before the declaration of the function named header comments and comments within
function body and trailing the functions named non-header comments. They observe
that there is an initial fluctuation in the ratio of header and non-header comments due
to the introduction of a new commenting style, but they do not investigate further about
the commenting style (Jiang and Hassan 2006). Marin investigates the psychological
factors that drive developers to comment (Marin 2005). The study concludes that devel-
opers use different comment styles in their code depending on the programming lan-
guage they have used earlier. We also partially confirm this result as we find Java style
block comments present in Pharo class comments. To best of our knowledge, we are
first to conduct a study to evaluate the commenting style of developers, and measure the
extent of their adherence to the standard guidelines.

8 Summary

High-quality code comments facilitate developers in various development and main-
tenance tasks (de Souza et al. 2005). However, their semi-structured or unstructured
nature, freedom to adopt various conventions in writing comments, and lack of quality
assessment tools make their quality evaluation a non-trivial problem. Therefore, building
tools to ensure their quality requires a good understanding of the system, and the con-
tent and style-related aspects that developers follow. As not all OOP languages support
the same commenting conventions and not all types of comments (class, method, inline)
are expected to provide information at the same abstraction level, the quality assessment
tools need to be tailored by considering the comment type and practices associated with
it. In this study, we explored Pharo class comments that neither have similar annotations
nor the same writing style of Javadocs and Pydocs, thus can provide insights into differ-
ent code comment characteristics. To understand Pharo developer commenting practices,
we analyzed comments from various prescriptive in terms of when do developers add or
change comments, what they write in comments, and whether they follow the comment-
ing guidelines or not in their comments.

 Empirical Software Engineering

1 3

In the context of RQ
1
 (when do developers add or change comments), we investigated

the practices of adding or changing comments in Sect. 3 and identified various patterns that
trigger comment changes. Such patterns are relevant to help developers in building tools
to prevent inconsistent comments. Our results highlighted that developers are motivated
to comment on new classes as well as old classes to maintain the overall code-comment
ratio (at least 75% in Pharo). Once a particular level is achieved, developers do not put in
the same effort, thus indicating the stability of the system. As discussed in detail in the
implications of RQ

1
 (Sect. 3.4), we demonstrated the need for tools that are able to support

co-evolution analyses of code and comments, by determining specific code changes that
(should) trigger comment changes and then updating such comments.

In the context of RQ
2
 (what do developers write in comments), we qualitatively identi-

fied various kinds of information embedded in class comments, as reported in Sect. 4. We
found that developers embed 23 types of information in comments, ranging from high-
level design details to implementation-specific details, showing class comments to be a
rich source of documentation. We observed that these information types are present also
in Pharo external projects, indicating the Pharo community practice are not limited only
to core libraries. We compared our taxonomy to other similar works in Java, C/C++, and
Python Table 5. In contrast to Java or Python commenting conventions, we found instances
of specific information types that are not reported in earlier studies. Based on our insights,
we discussed various implications in Sect. 4.4, in which we highlighted the need for
approaches that systematically analyze and compare class commenting practices across
languages. In our comment content investigation, we found several frequent information
types that are only implicitly present in the text. As a consequence, identifying such infor-
mation types from comments automatically is not straightforward due to the unavailability
of standard headers or annotations, the inconsistent use of headers, and the lack of a fixed
order of writing these information types. However, our manual analysis highlighted vari-
ous keywords and patterns to identify certain types of information. Such patterns represent
an important starting point for researchers interested in designing machine-learning-based
approaches and heuristics to identify comment information type automatically.

To investigate RQ3
 (whether developers follow the commenting guidelines or not in

their comments), we compared comments to the guidelines extracted from the default com-
ment template in Sect. 5. We observed that developers write information types mentioned
by the comment template more frequently than other information types, but there are some
other information types not included in the template that are frequently adopted in practice
by developers. We found that developers follow different conventions to write such infor-
mation types, thus resulting in the same kinds of information being scattered throughout
the comments in different styles. However, in the majority of comments, developers do
follow the writing style of the template in writing such information types. Hence, while
our findings in Pharo suggested that developers follow commenting guidelines, it is yet
unknown if this is also the case in other languages. This motivates the need to explore this
aspect in other languages in Sect. 5.4, which is a critical aspect to integrate into comment
quality techniques.

Our results shed not only some light about the extent to which developers use com-
ment templates, but suggested to leverage such information to improve the template-based
approaches behind various automated comment generation and code summarization
techniques. In essence, our study presented important insights about Pharo comment-
ing practices such as what do comments contain, what is their writing style, and how do
they change over time. We provided further data to help researchers in designing tools for
assessing comment quality across other languages and domains.

Empirical Software Engineering

1 3

9 Conclusion

Class comments can provide a high-level understanding of the program, and help one to
understand a complex program. We analyze the class comments of Pharo releases over 11
years (from 2008 to 2019), characterizing the evolution of commenting practices, identify-
ing the information types from class comments across versions and projects, and assessing
the adherence of comments to the commenting guidelines. This study highlights, from a
quantitative and qualitative point of view, important patterns concerning class comment-
ing practices of developers. A direct implication of our work is that, in different program-
ming languages, using the contemporary code comment template is not always ideal when
actual practices strongly diverge from it. This suggests a need to standardize guidelines for
formatting and writing headers of the new emerging information types, with the goal of
better supporting developer information needs, and ensuring a consistent and higher qual-
ity of class comments. For future work, we are interested in conducting further studies
on other programming languages, to investigate potentially different commenting practices,
program comprehension, and code documentation patterns. Additionally, we want to use
the identified patterns concerning the implicit information types for building efficient tools
to extract the information automatically and (possibly) present the specific information to
the developers in a more exhaustive form (e.g., by auto-completion of missing comment
types). More in general, we envision as future work, further research effort into (i) devel-
oping tools able to determine the extent to which the code comment template is diverg-
ing from current practice; (ii) automatically identifying information types from comments;
(iii) automatically assessing code comment quality in terms of content, style, and consist-
ency with the source code; and (iv) automatically generating code comments for templates
designed from language guidelines and developer practices.

Fig. 16 Writing style constraints formulated for Pharo 1 template

Appendix

Template models

 Empirical Software Engineering

1 3

Fig. 17 Writing style constraints formulated for Pharo 2 and Pharo 3 template

Fig. 18 Writing style constraints formulated for Pharo 4 template

Fig. 19 Writing style constraints formulated for Pharo 5, 6, 7 template

Acknowledgements We gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Agile Software Assistance” (SNSF project No. 200020-181973, Feb 1, 2019 - Apr
30, 2022).

Funding Open Access funding provided by Universität Bern.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

Empirical Software Engineering

1 3

licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2013) An empirical investigation on documentation
usage patterns in maintenance tasks. In 2013 IEEE International Conference on Software Maintenance pp.
210–219

Cioch FA, Palazzolo M, Lohrer S (1996) A documentation suite for maintenance programmers. In Pro-
ceedings of the 1996 International Conference on Software Maintenance. Washington, DC, USA pp.
286–295

Cline A (2015) Testing thread. In Agile Development in the Real World. Springer pp. 221–252
Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A systematic survey of program

comprehension through dynamic analysis. IEEE Trans Softw Eng 35(5):684–702
de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software

maintenance. In Proceedings of the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information. SIGDOC ’05. New York, NY, USA, pp. 68–75

de Souza SCB, Anquetil N, de Oliveira KM (2006) Which documentation for software maintenance? J Braz
Comput Soc 12(3):31–44

Dias M, Peck MM, Ducasse S, Arévalo G (2014) Fuel: a fast general purpose object graph serializer. Software:
Practice and Experience 44(4):433–453

Ducasse S, Gîrba T, Nierstrasz O (2005) Moose: an agile reengineering environment. In Proceedings of
ESEC/FSE. pp. 99–102

Farooq M, Khan S, Abid K, Ahmad F, Naeem M, Shafiq M, Abid A (2015) Taxonomy and design con-
siderations for comments in programming languages: A quality perspective. Journal of Quality and
Technology Management 10(2)

Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? On the Relation between Source
Code and Comment Changes. In Reverse Engineering. 14th Working Conference on WCRE. pp. 70–79

Fluri B, Würsch M, Giger E, Gall HC (2009) Analyzing the co-evolution of comments and source code.
Softw Qual J 17(4):367–394

Goldberg A, Robson D (1983) Smalltalk 80: the Language and its Implementation. Mass, Addison Wesley,
Reading

Google Style Guidelines (2020) Verified on 10 Jan 2021
Guzzi A, Bacchelli A, Lanza M, Pinzger M, van Deursen A (2013). Communication in open source software

development mailing lists. In Proceedings of the 10th Working Conference on Mining Software Reposi-
tories. IEEE Press, pp. 277–286

Haiduc S, Aponte J, Moreno L, Marcus A (2010) On the use of automated text summarization techniques
for summarizing source code. In 2010 17th Working Conference on Reverse Engineering, pp. 35–44

Haouari D, Sahraoui HA, Langlais P (2011) How good is your comment? A study of comments in java
programs. In Proceedings of the 5th International Symposium on Empirical Software Engineering and
Measurement, ESEM 2011, Banff, AB, Canada. IEEE Computer Society pp. 137–146

Hartzman CS, Austin CF (1993) Maintenance productivity: Observations based on an experience in a large
system environment. In Proceedings of the 1993 conference of the Centre for Advanced Studies on
Collaborative research: software engineering-Volume 1. IBM Press, pp. 138–170

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source code comments: Purpose, evolution,
and decay. In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, pp.
1211–1221

Ibrahim WM, Bettenburg N, Adams B, Hassan AE (2012) On the relationship between comment update
practices and software bugs. J Syst Softw 85(10):2293–2304

Jiang ZM, Hassan AE (2006) Examining the evolution of code comments in PostgreSQL. In Proceedings of
the 2006 international workshop on Mining software repositories. ACM, pp. 179–180

Khamis N, Witte R, Rilling J (2010) Automatic quality assessment of source code comments: the JavadocMiner.
In International Conference on Application of Natural Language to Information Systems. Springer, pp.
68–79

http://creativecommons.org/licenses/by/4.0/

 Empirical Software Engineering

1 3

LaToza TD, Myers BA (2010) Hard-to-answer questions about code. In Evaluation and Usability of Pro-
gramming Languages and Tools, PLATEAU ’10. ACM, New York, NY, USA, pp. 8:1–8:6

Lidwell W, Holden K, Butler J (2010) Universal Principles of Design. Rockport Publishers
Liu Y, Sun X, Duan Y (2015) Analyzing program readability based on WordNet. In Proceedings of the 19th

International Conference on Evaluation and Assessment in Software Engineering. ACM, pp. 27
Maalej W, Tiarks R, Roehm T, Koschke R (2014) On the comprehension of program comprehension. ACM

TOSEM 23(4):31:1–31:37
Marin DP (2005) What motivates programmers to comment? Technical Report No. UCB/EECS-2005018,

University of California at Berkeley
Moose (2020) Verified on 10 Jan 2020
Moreno L, Aponte J, Sridhara G, Marcus A, Pollock LL, Vijay-Shanker K (2013) Automatic generation of

natural language summaries for Java classes. In IEEE 21st International Conference on Program Com-
prehension, ICPC 2013, San Francisco, CA, USA, pp. 23–32

Nurvitadhi E, Leung WW, Cook C (2003) Do class comments aid Java program understanding? In 33rd
Annual Frontiers in Education. FIE,1:T3C–T3C

Oracle Documentation Guidelines (2020) Verified on 10 Sep 2020. https:// www. oracle. com/ techn ical- resou rces/
artic les/ java/ javad oc- tool. html

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers — taxonomies and characteristics of com-
ments in operating system code. In Proceedings of the 31st International Conference on Software
Engineering. IEEE Computer Society, pp. 331–341

Pascarella L, Bacchelli A (2017) Classifying code comments in Java open-source software systems. In
Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17. IEEE
Press, pp. 227–237

Petrosyan G, Robillard MM, De Mori R (2015) Discovering information explaining API types using text
classification. In Proceedings of the 37th International Conference on Software Engineering. IEEE
Press, Piscataway, NJ, USA, 1:869–879

Pharo Consortium (2020) Verified on 10 Jan 2020
Ratol IK, Robillard MP (2017) Detecting fragile comments. In Proceedings of the 32Nd IEEE/ACM

International Conference on Automated Software Engineering. IEEE Press, pp. 112–122
Robbes R, Pollet D, Lanza M (2010) Replaying IDE interactions to evaluate and improve change prediction

approaches. In Proceedings of the 7th IEEE Working Conference on Mining Software Repositories,
MSR ’10. IEEE, pp. 161–170

Replication Package (2019) Verified on 20 Nov 2019
Scalabrino S, Linares-Vasquez M, Poshyvanyk D, Oliveto R (2016) Improving code readability models with

textual features. In 2016 IEEE 24th International Conference on Program Comprehension (ICPC).
IEEE, pp. 1–10

Schreck D, Dallmeier V, Zimmermann T (2007) How documentation evolves over time. In IWPSE ’07: Ninth
international workshop on Principles of software evolution. ACM, New York, NY, USA, pp. 4–10

Shinyama Y, Arahori Y, Gondow K (2018) Analyzing code comments to boost program comprehension.
In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, pp. 325–334

Siegmund J, Schumann J (2015) Confounding parameters on program comprehension: a literature survey.
Empir Softw Eng 20(4):1159–1192

Soetens QD, Robbes R, Demeyer S (2017) Changes as first-class citizens: A research perspective on
modern software tooling. ACM Comput Surv, 50(2):18:1–18:38

Steidl D, Hummel B, Juergens E (2013) Quality analysis of source code comments. In Program Compre-
hension (ICPC), 2013 IEEE 21st International Conference on, pp. 83–92

Stylos J, Myers BA, Yang Z (2009) Jadeite: Improving API documentation using usage information. In
CHI ’09 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’09, New York,
NY, USA, ACM pp. 4429–4434

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* iComment: Bugs or bad comments?*/. In Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, pp. 145–158

Tenny T (1985) Procedures and comments vs. the banker’s algorithm. ACM SIGCSE Bulletin, 17(3):44–53
Tenny T (1988) Program readability: Procedures versus comments. IEEE Trans Softw Eng 14(9):1271–1279
Tomassetti F, Torchiano M (2014) An empirical assessment of polyglot-ism in GitHub. In Proceedings of

the 18th International Conference on Evaluation and Assessment in Software Engineering, pp. 1–4
Triola M (2006) Elementary Statistics. Addison-Wesley
Vargha A, Delaney HD (2000) A critique and improvement of the CL common language effect size statistics

of McGraw and Wong. J Educ Behav Stat 25(2):101–132
Wen F, Nagy C, Bavota G, Lanza M (2019) A large-scale empirical study on code-comment inconsistencies.

In Proceedings of the 27th International Conference on Program Comprehension. IEEE Press, pp. 53–64

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html

Empirical Software Engineering

1 3

Woodfield SN, Dunsmore HE, Shen VY (1981) The effect of modularization and comments on program
comprehension. In Proceedings of the 5th international conference on Software engineering. IEEE
Press, pp.215–223

Ying ATT, Wright JL, Abrams S (2005) Source code that talks: An exploration of Eclipse task comments
and Their Implication to repository mining. SIGSOFT Softw Eng Notes 30(4):1–5

Zaidman A, Van Rompaey B, Demeyer S, van Deursen A (2008) Mining software repositories to study
co-evolution of production and test code. In Software Testing, Verification, and Validation, 2008 1st
International Conference on, pp. 220 –229

Zhang J, Xu L, Li Y (2018) Classifying python code comments based on supervised learning. In X. Meng,
R. Li, K. Wang, B. Niu, X. Wang, and G. Zhao, editors, Web Information Systems and Applications
- 15th International Conference, WISA 2018, Taiyuan, China, September 14-15, 2018, Proceedings,
volume 11242 of Lecture Notes in Computer Science. Springer, pp. 39–47

Zhou Y, Gu R, Chen T, Huang Z, Panichella S, Gall H (2017) Analyzing APIs documentation and code to
detect directive defects. In Proceedings of the 39th International Conference on Software Engineering.
IEEE Press, pp. 27–37

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Pooja Rani is a Ph.D. student at the University of Bern (Switzerland).
Her focus areas involve developing methodology and building tools to
support developers in understanding code. Specifically, she studies
code comments from various software systems and builds tool to
improve the quality of comments. She finished her masters at the
Birla Institute of Technology and Science-Pilani (India) in 2017.

Sebastiano Panichella is a Computer Science Researcher at Zurich
University of Applied Science (ZHAW). His main research goal is to
conduct industrial research, involving both industrial and academic
collaborations, to sustain the Internet of Things (IoT) vision. Cur-
rently he is technical coordinator of H2020and Innosuisse projects
concerning DevOps for Complex Cyber-physical Systems. He
authored (or co-authored) around seventy papers appeared in Interna-
tionalConferences and Journals. He was selected as one of the top-20
Most Active Early Stage Researchers Worldwide in Software
Engineering.

 Empirical Software Engineering

1 3

Manuel Leuenberger is a research visitor at the University of Bern
(Switzerland). He is interested in inter-project dependencies, the evolu-
tion of these relations, and the challenges arising from API changes. He
finished his masters at the University of Bern in 2017.

Mohammad Ghafari is a Senior Lecturer in the School of Computer
Science at the University of Auckland, New Zealand. Mohammad is
passionate about Empirical Software Engineering and works on tools
and techniques that streamline the production of a high-quality software
for developers.

Oscar Nierstrasz is Professor of Computer Science at the Institute of
Computer Science in the Faculty of Science of the University of Bern,
where he founded the Software Composition Group in 1994. He is co-
author of over 300 publications and co-author of the open-source
books Object-Oriented Reengineering Patterns and Pharo by
Example.

Empirical Software Engineering

1 3

Authors and Affiliations

Pooja Rani1 · Sebastiano Panichella2 · Manuel Leuenberger1 · Mohammad Ghafari3 ·
Oscar Nierstrasz1

 Sebastiano Panichella
 panc@zhaw.ch

 Mohammad Ghafari
 m.ghafari@auckland.ac.nz

1 Software Composition Group, University of Bern, 3012 Bern, Switzerland
2 Zurich University of Applied Science, Zürich, Switzerland
3 School of Computer Science, University of Auckland, Auckland, New Zealand

http://orcid.org/0000-0001-5127-4042

	What do class comments tell us? An investigation of comment evolution and practices in Pharo Smalltalk
	Abstract
	Context
	Objective
	Method
	Results
	Conclusion

	1 Introduction
	2 Background
	3 RQ1: Comment Trend Analysis
	3.1 Study Setup
	3.2 Methodology
	3.3 Result
	3.4 Implications

	4 RQ2: Comment Information Types
	4.1 Study Setup
	4.2 Methodology
	4.2.1 Taxonomy Study

	4.3 Results
	4.4 Implications

	5 RQ3: Adherence of Commenting Practices to the Template
	5.1 Study Setup
	5.2 Methodology
	5.2.1 Template Evolution
	5.2.2 Adherence of Comments to the Template

	5.3 Results
	5.3.1 Template Evolution
	5.3.2 Adherence of Comments to the Template

	5.4 Implications

	6 Threats to Validity
	7 Related Work
	7.1 Comment Evolution
	7.2 Comment Information Categorization
	7.3 Template Evolution and Adherence

	8 Summary
	9 Conclusion
	Acknowledgements
	References

