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Abstract—Studies over the past decade demonstrated that
developers contributing to open source software systems tend to
self-organize in “emerging” communities. This latent community
structure has a significant impact on software quality. While
several approaches address the analysis of developer interaction
networks, the question of whether these emerging communities
align with the developer teams working on various subsystems
remains unanswered. Work on socio-technical congruence implies
that people that work on the same task or artifact need to
coordinate and thus communicate, potentially forming stronger
interaction ties. QOur empirical study of 10 open source projects
revealed that developer communities change considerably across
a project’s lifetime (hence implying that relevant relations be-
tween developers change) and that their alignment with sub-
system developer teams is mostly low. However, subsystems
teams tend to remain more stable. These insights are useful
for practitioners and researchers to better understand developer
interaction structure of open source systems.

Index Terms—developer interaction network, system modular-
ity, subsystem coordination, developer communities.

I. INTRODUCTION

Global software development is carried out by developers
located in various parts of the globe. They face a number of
challenges in relation to communication and coordination due
to the distances involved in three dimensions — geographical,
temporal, and socio-cultural [1]. Open source software devel-
opment is considered as a successful example of large scale
global software development [2]. In open source development
environment, software systems do not have a pre-assigned
organizational structure as developers can contribute to any
part of the system. However, developer communities are self-
organized within development teams [3]. Studies have shown
that the developer communities organization has a significant
impact on software quality [4]-[7].

Motivated by the aforementioned insights, researchers have
built automated tools analyzing developers interaction data
from various sources, such as version control systems, mailing
lists, or issue trackers [3], [8]-[12], to investigate how “emerg-
ing development teams” are formed in open source projects.
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However, a few researchers observed how the emerging “com-
munity structure” aligns with “subsystem developer teams”.
Bird et al. [3], for example, hypothesized that files edited by
developers of the same community are placed “closer together”
than the files edited by randomly picked developers. Results,
however, were inconclusive.

We argue that observing the alignment of developer com-
munities with the system architecture can be more accurately
studied at the level of coarse-granular subsystems, i.e., the
components of a system, rather than analyzing these aspects
at the level of fine-grained artifacts. In this regard, the work of
Lenarduzzi et al. [13], for example, is important as they point
out the potential negative impact of team independence at the
subsystem (microservice) level. Additionally, Nagappan et al.
[4] have shown that organizational metrics are the top bug
proneness predictor in an industrial setting. Given the lack of
explicit organizational structures in open source systems, we
suggest to utilize implicit structures (i.e., communities)'.

Take the excerpt from a fictive project in Fig. 1 as an ex-
ample. The developer interaction network on the top exhibits
edges based on being involved in the same issue via activities
such as reviewing or commenting. A community detection
algorithm assigns developers to communities (blue borders)
based on the developers’ interaction intensity (indicated by
line thickness). Developers who interact often tend to form
communities. The lower part of Fig. 1 depicts files and issues
belonging to three subsystems A, B, and C. Subsystem team
members are then those developers that changed an artifact
belonging to that subsystem, respectively, are active in an
issue referring to this subsystem. Note that subsystem member
sets may overlap as in open source projects key developers
are often involved in multiple subsystems. In our example,
developer Dave is a member of all three subsystems, Carol
is a member of subsystem A only. In this example, when
comparing the members of subsystem B (i.e., Dave and John),

'We define a community as the set of developers that share responsibility
or interest such as working on the same subsystem(s) [12].



we notice that they are members of different communities and
there is no edge between them. This could be a warning signal
about poor communication and coordination between the two.

To shed light into how communities and subsystems are
aligned, we empirically investigate in this paper, in the context
of 10 open source projects, how communities emerge and
change over time — e.g., how developers join and leave sub-
communities — and the extent to which these community pat-
terns match the subsystems evolution. We find that developer
communities change considerably across a project’s lifetime
(hence implying that relevant relations between developers
change) while subsystem developer teams (SDTs) remain
comparatively stable. Overall, the community alignment with
SDTs is often low, which implies that developers maintain
significant communication ties with developers outside their
(subsystem) work scope. We hypothesise that such an inter-
action network independent from subsystems emerges from
the need to remain robust against the disruption of leaving
developers and quick onboarding of new members.

The primary contribution of this paper is an empirical
study investigating the evolution of developer communities
and their alignment with the subsystems developer teams
(Section 1V). The secondary contributions of this paper are:
i) a technique for measuring alignment (i.e., overlap) between
subsystems and developer communities (Section IV(C)), and
ii) a technique for determining developer communities evolu-
tion (Section IV(D)).

The paper is structured as follows. Section II introduces
the research questions. Section III describes the applied data
gathering method and the resulting evaluation data set. Section
IV explains our community-SDT alignment and evolution
measurement technique with Section V presenting the results.
We discuss the obtained results and their implications in
Section VI. Section VII compares this study to state of the
art approaches before Section VIII, which concludes the paper
with a summary and an outlook on the future work.
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Fig. 1. Example developer community to subsystem alignment.

II. STUDY DESIGN

Developers that work on the same task, artifact, or subsys-
tem need to coordinate and thus communicate in order to avoid
incomplete change propagation, rework, or duplicate work.
We therefore would expect them to form stronger interaction
ties [14] than developers working in different subsystems. We
hypothesize that these developer interactions give rise to a
community structure. Therefore, the goal of this study is to
obtain first insights into the alignment of sub communities
within open source projects with the systems’ structure.

The motivation behind this study is to determine the extent
to which emerging open source developer communities reflect
the subsystem structure, proposing mechanisms for studying
such communities aspects. The perspective is of practitioners
and researchers that could leverage such mechanisms to iden-
tify subsystems where developers coordinate insufficiently.

The context of this study comprises commits, issues, source
code (folder) structure, and the conceptual and structural links
among the data. The selected 10 open source projects are part
of our publicly available and published dataset [15].

Research Questions:

In this work, we investigate the following research questions:
RQ1: To what extent can we identify well defined developer
communities across the investigated projects’ lifetime? Our
goal is to propose a systematic approach able to detect
emerging communities by analyzing the developer interaction
network generated from issue involvement and commits linked
to those issues (see Fig. 1). We are then interested in knowing
how often and how many well defined communities we detect.
RQ2: Do the developers active in the same subsystem emerge
in the same development communities? In other words, mea-
suring the overlap of the SDTs with the detected communities
allows us to identify subsystems where the communication
among developers occurs mostly within the subsystem.

RQ3: How stable are the detected communities across time
compared to the SDTs? While RQ1 and RQ2 investigate
developer interaction network and its alignment with SDTs
at separate snapshots in time, here, we inspect the stability
of the detected communities and the SDTs across time. We
analyse whether a pair of developers that belong to the same
community in one time window also belong to it in the
subsequent time window. Likewise, we are interested to know
whether a pair of SDTs that emerge in the same developer
community does so in the subsequent time window.

Overall, answering these questions provides insights into
whether subsystems in open source projects represent de-
coupled work scopes that result only in limited coordination
overhead compared to work coordination within a subsystem
(as measured by interaction ties).

III. DATA GATHERING AND PREPROCESSING

A. Open Source Project Selection

The project selection (Fig. 2 (1)) is the first step of our
study approach. We select the candidate project according to
the following requirements:
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Fig. 2. Steps of the study approach.

Subsystem Structure We manually selected projects which
exhibit a non-trivial (i.e., at least 10 subsystems) and clear
subsystem structure to avoid introducing potential bias by
splitting the system into subsystems that do not reflect the
real underlying decomposition.

We manually inspected the projects on Apache’s Jira server?
that exhibited a significant number of issues with a component
property set and where the top level source code folders
(hosted on Github) closely (or identically) matched those
component names. We interpreted those components/folders
as subsystems.

We avoid selecting projects from a single mechanism for
structuring subsystems by also selecting Github projects that
manage code across multiple repositories (multi-repo), i.e.,
one repository per subsystem, as our selected Jira projects are
mono-repo, i.e., one folder per subsystem.

Developers Further selection criteria included a minimum
of 40 participating developers over the project’s life time to
guarantee that even with heavy fluctuation of developers, that
there are sufficiently many developers to form an interaction
network with sub-communities. Note that for our selected
projects the number of developers are well over 40.

Commits and Issues Furthermore, we filtered out projects
with less than 1500 commits or 200 issues. This ensures
that a relation between two developers based on being active
in the same issue or committing an artifact update linked
to the same issue may occur sufficiently often to signify a
meaningful relation between the developers and not just an
one-off occurrence.

This study focuses on 10 projects listed in Table I. The
projects are limited in number and size as (i) there is a
manual processing effort required in step 1 (Fig. 2) and (ii)
non-negligible manual effort is necessary to investigate folder
structure and confirm developer deduplication.

Zhttps://issues.apache.org/jira/

B. Data Extraction and Storing

Having identified 10 projects under investigation, we ex-
tracted commit and issue information (Fig. 2 (2)). We used
Perceval [16] to extract commit and issue information from
Github and the Jira python client (Perceval lacks to provide
our desired Jira issue information) for extracting data from
Apache Jira. Both these tools provide data in the JSON format.

Commits, the involved artifacts, and issue details make up
the core information of our data set. In our datamodel, an issue
may represent a Jira issue, a Github issue, or a Github pull
request, or even a combination thereof whenever, for example,
a pull request references a Jira issue.

A developer participates in a project in various ways: for
example, from committing code changes, to commenting on
issues, to reviewing pull requests. We introduce two Involve-
ment types to harmonize activities across Jira and GitHub.
Contributing is equal to committing artifacts (i.e., as indicated
by a commit linked to an issue); Informative describes input to
an issue such as having reported it, commented on it, or having
reviewed artifacts. We encode these two fypes of actions as
integers of value 3 and 2, respectively, to reflect the amount
of effort behind the activities. Before continuing with these
values we performed a value sensitivity analysis by assigning
them values (4,2) and (1,1) respectively. We observed little
change in the detected community structure with relatively less
quality. More details of community structure and its quality
metric are in the Section IV(A).

C. Developer De-Duplication

When recording a developer’s involvement across commits
and issues, we need to take care of situations where a
developer uses multiple accounts (email-ids) on Github. More
importantly, a developer’s id on Jira does not match the Github
account id of the same developer as Jira does not use email
addresses as a part of a user id while Github does. This
will result in inconsistencies as one developer will appear


https://issues.apache.org/jira/

TABLE I
OVERVIEW OF THE TEN ANALYSED PROJECTS.

‘ Project Type Progr i Time Period Commits | Devs | Subsys Arts | Issues Arts Linked to | Issues Linked To | Issues Linked To | Commits Linked To
I ) [Months] (From-To) Subsys [%] Subsys [%] Commits [%] Issues [%]
lagom Multi-Repo Scala, Java 44 (Mar 16-Nov 19) 6089 540 17 27490 3381 100 100 59 62
nameko Multi-Repo Python 85 (Sep 12-Nov 19) 3861 233 14 960 867 100 100 65 93
kumuluz Multi-Repo Java, JavaScript 54 (May 15-Nov 19) 2487 82 19 2083 274 100 100 45 22
jhipster Multi-Repo Java, JavaScript 71 (Nov 13-Nov 19) 10391 767 11 7146 3267 100 100 64 59
networknt ~ Multi-Repo Java, JavaScript 38 (Sep 16-Nov 19) 5369 110 12 16127 2005 100 100 74 36

2623
6953
2556
5848
7215

1199
149
190

1327
831

Java
Java
Java
Java
Java

flume
stanbol
falcon
tika
openjpa

115 (Jun 10- Jan 20)
107 (Nov 10-Nov 19)
87 (Nov 11- Mar 19)
154 (Mar 07-Jan 20)
164 (May 06- Jan 20)

Mono-Repo (Jira)
Mono-Repo (Jira)
Mono-Repo (Jira)
Mono-Repo (Jira)
Mono-Repo (Jira)

3403
17469
7362
6509
10696

3638
1490
2760
3335
2849

51
54
56
71
54

57
80
38
65
73

as multiple individuals in the data set, hence the need for
deduplication (Fig. 2 (3)). We used the Dedupe library [17],
which uses machine learning to perform deduplication. It has
an accuracy up to 95% [18]. More details of the training
process are available in our dataset [15].

D. Extraction of Commit-To-Issue Relations

Github commit messages often refer to issues to identify the
purpose of the changes. We manually inspected each project
to identify what patterns developers tend to apply for referring
to issue-id and applied that pattern when parsing the commit
messages (Fig. 2 (4)). The following are two sample commit
messages from our data referring to issue-id: FLUME-3311
and kumuluz#115 respectively.

o “FLUME-3311 Update User Guide In HDFS Sink”

o “Merge pull request #115 from Jamsek-m/master”

We applied the same mechanism to pull requests. Whenever
a pull request identifies a Github issue, we merge the pull
request and the Github issue into one dataset issue and link
all commits that are part of the pull request to it. This is
particularly helpful when commit messages lack a reference
to an issue.

For the Jira-backed projects, we regularly find pull requests
and commits without a reference to a Github issue but instead
a reference to a Jira issue. Whenever a pull request identifies
a Jira issue, we subsequently merged them into a single issue
in our dataset (we never encountered multiple pull requests
referencing the same issue) and link all involvements from the
pull request and Jira issue to that merged Issue. We proceed
likewise whenever we find a Github issue referencing (in the
comments or title) a Jira issue.

E. Mapping Subsystems

For those projects that utilize Apache Jira for issue manage-
ment, aside from mapping Jira to Github users, we also need to
map a Jira project’s components to the corresponding folders
on Github (Fig. 2 (5)). We manually mapped each component
of the five Jira projects to its corresponding Github folder or
multiple folders where necessary. We link all those folders,
which do not map to a component to the main system (we
store main system as a subsystem in our data model).

As briefly mentioned above, the mapping for Github multi-
repo projects is straight forward: each repository in the project
becomes a subsystem. Furthermore, we store the list of folders
that make up a subsystem. This allows us to relate all artifacts
to a unique subsystem.

F. Linking Issues to Subsystems

Linking issues to subsystems (Fig. 2 (6)) works similar to
relating artifacts to subsystems. Jira issues exhibit a Compo-
nent property that identifies all affected subsystems (poten-
tially multiple). Github multi-repo projects provide separate
issue lists for each repository, thus we link those to subsystems
unambiguously.

G. Dataset Overview

Table I provides an overview of the 10 chosen open source
projects. The columns Type and Programming Language(s)
report the repository structure and languages of the project,
respectively. The column Time Period describes the overall
time in months in which we extracted commits and issues.
All subsequent rows report values from this time period. The
Commits column reports how many commits are made in total
in a project. Recall that in multi-repo projects, commits per
subsystem belong to one repository, thus the reported numbers
are the sum of commits over all repositories in such a project.
In case of mono-repo projects, all commits come from a
single, main repository. The Devs column provides the total
number of developers in each project. We consider any person
a developer who is Contributing or Informative in at least
one subsystems. Subsys, Arts, and Issues columns report the
number of subsystems, total source code artifacts, and issues
in a project, respectively.

The Arts linked to Subsys column shows the percentage
of artifacts belonging to subsystems. In a Mono-Repo system
each folder has its link to a subsystem or to the main system.
So in this case, the column shows the percentage of artifact
which are linked to subsystems and not to the main system.
Each repository (subsystem) of a Multi-Repo system has its
own Issues, thus, the Issues Linked To Subsys column shows
their 100% link to subsystem. In a Mono-Repo system, we also
include issues from Jira, where they have specified mapping to
a subsystem. As mentioned in the data preprocessing section,
commit(s) are made against an issue and issue(s) are linked
against commits. The Columns Issues Linked To Commits and
Commits Linked To Issues specify the percentage of such
linkage, respectively. Note that as the linkage is not always
present e.g., commit messages not always refer to issues to
identify the purpose of the changes. Therefore, the linkage
percentage ranges between 22 to 93.



IV. A TECHNIQUE FOR MEASURING COMMUNITY-SDT
ALIGNMENT AND EVOLUTION

A. Developer Interaction Network Extraction

RQ1 requires building a developer interaction network. We
built such a network from developers’ involvement in issues
such as contributing code or commenting. We sliced the
project lifetime into time windows of 4 months, as done in
close-related works [10], [12]. We presume that such a time
window is sufficiently long to allow developers to repeatedly
interact to produce a reliable interaction network while being
short enough to capture changes of the interaction network as
developers join and leave.

Developer Interaction Network Model We model the de-
veloper interaction network (Fig. 2 (7)) as an undirected graph
with developers as nodes (d € V) and edges (e(d;,dy) € E)
between those developers that interact. We add an edge be-
tween two developers when the two developers are involved in
the same issue, for example, one developer adding a comment
to an issue, the other developer committing an artifact update
linked to the same issue. The edge’s issue involvement intensity
measures in how many issues the two developers are active in,
weighted by their involvement type.

Developer Involvement Recall that the developer involve-
ment types — Contributing and Informative — carry a weight of
3 and 2, respectively. We consider only the highest weighted
involvement per developer and issue inv,q.(d,7). The in-
tensity for a single issue ¢; and pair of developers d; and
d; (i.e., the per-issue score) is then the lowest of the two
scores mMin(inVmqgz (di, ih), iNUmasz (dj, in)). For example, the
per-issue score between a contributing developer and an in-
formative one is 2. The overall intensity for a pair of two
developers across all their common issues (i.e., the issue
involvement intensity edge property) is then the sum of per-
issue scores (>, min(invmaz(di, in), iNVmaz(dj,in))). The
issue involvement intensity serves as an edge weight.

Community Detection The subsequent step after forming
the developer interaction network is to discover communities
in it. The communities are the natural divisions of network
nodes into densely connected subgroups [19]. The developer
interaction graph serves as the input to the step of community
detection (Fig. 2 (8)). We first remove all developers who have
no edges to any other developer. We consider those as not
part of any community and retaining them in the graph would
negatively influence the community detection results.

For the purpose of community detection, we use the or-
der statistics local optimization method (OSLOM) [20]. This
method is also used in close-related work [12]. OSLOM finds
statistically significant communities and has distinct features
such as to handle weighted graphs, to form overlapping
communities, and to distinguish communities from pseudo-
communities.

Community Verification and Validation The OSLOM
algorithm identifies the best distribution of graph nodes as
communities after calculating the statistical significance (the
probability of finding the cluster in a random null model, i.e.

in a class of graphs without community structure) of each
community. It uses the significance as a fitness measure to
evaluate and include a community candidate in the resulting set
of communities. We additionally checked the resulting quality
of the community structure using conductance as follows.

Quantitative Community Quality Metric: We apply con-
ductance [21], which measures the probability of having an
edge leaving the community. A community with all edges
connecting only member nodes has conductance 0 (an isolated
community) while a community with no edges amongst its
members has conductance of 1 (arguably not really a commu-
nity at all).

Qualitative Detected Communities Inspection: In order to
validate that the detected communities accurately reflect real-
world developer collaboration, two of the co-authors manually
inspected OSLOM’s detected communities of one of our
projects, i.e., kumuluz. The project has 82 developers and
54 months of observed developers interactions. We inspected
the detected communities for 5 time windows (20 months).
We verified each detected community of every window by
matching the strength of its collaborative relations compared
to the other undetected communities. We also observed the
correctness of developers division into communities based on
edge weight.

The resulting communities consists of a subset of developers
(e, € V) where developers potentially are members of more
than one community (overlapping communities). This is an
important property as in developer interaction networks, the
most active developers are often connected to two or more
communities [22]. In the absence of overlapping communities,
a developer will be placed into a single community which will
skew the subsystem developer overlap calculations.

Observed Time Windows We apply the community de-
tection algorithm for each time window separately. We skip
time windows with less than ten developers as we do not
expect to find meaningful communities among such a small
number of developers. Manual inspection of sample windows
with less than 10 developers confirmed these expectations. For
all these windows the best community structures found by
OSLOM exhibited high conductance values (> 0.8).

B. SDT Extraction

Answering RQ2 requires identifying for each subsystem
(sy € S) who are the active developers: the SDT (SDT'(s) C
V) (Fig. 2 (9)). To this end, we simply consider a developer as
active if one has at least two Contributing or five Informative
involvements in that particular subsystem within the defined
time window. This ensures we select only developers that have
a longer-running interest in a subsystem and not just include
anyone with minimal involvement. We continued with these
values i.e., two and five after observing the trend of the number
of Contributing and Informative involvements in the chosen
projects.

In contrast to the interaction network community construc-
tion, a developer becomes member of an SDT purely based on
one’s contributions to source code and/or involvement in issues



regardless of interactions with other developers. For example,
two developers changing the same artifact within the same
time window that otherwise are not involved in any issue will
end up in the same SDT.

Similar to developer overlapping communities, multiple
SDTs may contain the same developer. Especially key devel-
opers are often involved in multiple subsystems. At the same
time, subsystems may be too small to give raise to a dedicated
SDT that focuses only on that single subsystem. Ultimately,
for each developer we define the community membership
em(d) € [1,k] and SDT membership SDT M (d) ¥V S.

C. Overlap Calculation

The second part for answering RQ2 is a metric for measur-
ing how well a SDT matches a developer community (Fig. 2
(10)). In a project where the community structure represents
subsystems, we would expect that members of the same SDT
are also members of the same community (low membership
heterogeneity). On the other side of the spectrum, we would
find a SDT where every member belongs to a different
community (high membership heterogeneity). We measure
each SDT’s membership heterogeneity using the normalized
Shannon entropy [23] mh(SDT(s)) = — >, (pxLnpy)/Lnk
where pj is the number of developers in SDT(s) being
member of community ¢ and Ln is the natural logarithm. The
normalized Shannon entropy provides a result in the interval
[0,1]: 1 when py is the identical for every k and O when p;, = 0
for all but one k. In other words, mh(SDT(s)) = 1 when
all SDT members are exactly equally distributed across all
communities, and mh(SDT(s)) = 0 when all SDT members
are member of the same community. In our fictive example in
Fig. 1 mhSDT for Subsystem A is 0 and mhSDT for Sub-
system B is 1. Ideally, we observe minimal/low membership
heterogeneity for all subsystems.

Having introduced the general concept of membership het-
erogeneity, we need to outline an adjustment to pj. Without
any adjustment each developer has equal impact. However,
this does not properly reflect the different developer types
in a typical open source project. There is a small number
of key developers that get involved in issues and source
code changes across the subsystems, subsequently being well
connected and informed. Giving them equal weight as a
developer who is focused only on one single subsystem would
skew the measure. We thus redefine p;, as the weighted sum of
developers in SDT'(s) being member of community ¢, where
the weight describes the developer’s focus f(d) € [0, 1] across
the subsystems (no other adjustment to mh(SDT(s) needs to
be made). The focus on a single subsystem is maximal when
the developer is active in a single subsystem, and minimal
when involved in every subsystem. To this end, developer
focus is calculated as 1 minus the normalized Shannon en-
tropy of the developer’s involvement in each subsystem (see
Subsection IV-B); hence f(d) =1+ >, (pyLnp,/Lny) with
Py = Ziey MUmaz(d, 7).

D. Membership Evolution

Regarding RQ3, we expect community structure as mea-
sured by conductance, and subsystem alignment as measured
by SDT membership heterogeneity to change over time. Fo-
cusing on community structure, we want to be able to interpret
community evolution not only through changes in conductance
but also by looking at the external stability of developers (join-
ing and leaving developers) and internal stability (shifting of
developers from one community to another in two consecutive
time windows w; and w;41) (Fig. 2 (11)). Measuring external
stability is simply a matter of tracking which developers appear
as nodes in the interaction network graph in one time window
but not in the next and vice versa. As the detected communities
have no meaningful, intrinsic identity (we just assign them a
number as identifier) internal stability requires tracking which
developers are in the same community in one time window and
remain in the same community (irrespective of the community
identifier) in the next window. To this end, we counted how
many pairs of developers were in the same community in w;
and are again in the same community in wg;q1 (#FsameC')
or were in different communities in w; and are in different
communities again in w1 (Fdif fC). The internal stability
metric is then iStab = (#sameC + #dif fC)/total Pairs
and yields 1 for full stable communities and 0 when all
communities become completely reshuffled.

Similar to developer community membership evolution, we
are interested to know whether the SDTs that overlap with the
same community in one time window will overlap with the
same community in the subsequent time window (Fig. 2 (11)).
We apply the same calculation as for internal stability above
but instead of comparing a pair of developers being in the same
or different community again, we measure in sdtStab whether
pairs of SDTs tend to overlap with the same community in the
subsequent time window again or whether they overlap with
different communities.

V. RESULTS

In this section, we present the detailed results for a single
example project flume only due to page limitation. We thus
provide aggregated numbers across all ten projects and refer
for per-project details to our supporting online material (SOM)
[24]. The SOM includes a database dump of the underlying
dataset, the source code used for extracting the raw data,
preprocessing, and metric calculation, as well as detailed
figures for each project.

A. Answering RQI

For answering [RQ1]: To what extent can we identify well
defined development communities [... ]? we analyse for each
project how many communities we find for each time window
and their conductance. Fig. 3 displays the count, size, and
average conductance of communities found for the example
flume project across the observed time windows (here twenty
six windows (window-20 has less than 10 active developers
therefore not included). The number of communities ranges
between one and eight communities. Note that as communities



are latent — they do not have an explicit identifier but can
be observed — community 4 in window 11 might be most
similar to community 5 in window 12 in terms of overlapping
members. The size of a community, i.e., number of developers
in it, varies as well. As shown in Fig. 3, often communities
exceed typical team sizes of ten members (as also previously
observed [12], [25]) as communities also include rarely and
non-contributing members. These rarely-contributing members
are significant for estimating software quality (e.g., defect
prediction) [25].
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For comparing the investigated projects, Fig. 4 provides a
boxplot for each project describing the range of conductance
over all time windows that have at least 10 active developers.
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Fig. 6. Range of average SDT membership heterogeneity per project.

We notice that the mean conductance for each project is below
0.4 except networknt and falcon, with no time window of any
project exceeding a conductance of 0.6, a range similar to
previous observations for such a developer count [12].

Fig. 5 reports the range of community count k. For all
projects the number of community count ranges between one
and eight.

Observation 1: There are far fewer communities that
emerge from the developer interaction network than subsys-
tems (e.g., flume has 16 subsystems).

Observation 2: Overall, communities tend to have medium
to low conductance, thus the observed developer interaction
networks exhibit a clear community structure.

B. Answering RQ2

For answering [RQ2]: Do the developers active in the same
subsystem emerge in the same development communities? we
calculate SDT membership heterogeneity for each subsystem
in each observed project for all time windows with at least
10 active project developers and at least two communities
(heterogeneity between a single community and SDT is 0).

Fig. 6 compares the range of average SDT membership
heterogeneity across all intervals per project, i.e., we averaged
the SDT membership heterogeneity metric over all subsystems
where that metric was calculated. The box plots in Fig. 6
then describe for each project the range of that heterogeneity
average when calculated for each time window.

We notice a wide range of heterogeneity behavior across the
projects. While nameko, networknt, flume, and falcon display
low average heterogeneity, jhipster, and stanbol yield rather
high average heterogeneity. The remaining projects yield a
medium range of mean average heterogeneity, yet have the
occasional time window where average heterogeneity reaches
high values, i.e., up to 0.7.

With significant spread of heterogeneity values across sub-
systems (in flume, for example, between 0.0 and 0.71), we
investigate whether high heterogeneity might be correlated
with large SDTs (i.e., the more members in a team, the more
likely they come from different communities). The data show
a weak correlation between SDT size and heterogeneity with
a Pearson’s correlation coefficient value of 0.46. We observe
this phenomenon also in the remaining projects.
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at least 2 communities.

We subsequently investigate whether SDTs form their own,
small communities that OSLOM did not detect. Such com-
munities may form when developers interact primarily with
other developers working on the same subsystem and not so
much with developers of other subsystems. To this end, we
treat each SDT as the members of a virtual community and
calculate its conductance.

Fig. 7 displays SDT size for each subsystem in the example
flume project. For easier interpretation, conductance values are
provided in Fig. 8 next to it. We observe that SDTs exhibit
high conductance values (close to 1 and darker in color), thus
they are tightly integrated in the developer interaction network
and hence do not represent well defined communities. Recall
that, a community with no edges amongst its members has
conductance of 1 (arguably not really a community at all).

Observation 3: Projects are diverse with respect to how
well SDTs typically overlap with a single community. All
projects exhibit intervals in which SDTs experience high
heterogeneity.

Observation 4: SDTs do not form subcommunities in the
developer interaction network but rather maintain considerable
interaction ties with developers not involved in the particular
subsystem.

C. Answering RQ3

For answering [RQ3]: How stable are the detected commu-
nities across time compared to the SDTs? we need to measure
internal stability of the communities between two subsequent
intervals to understand how much the developer interaction
network structure itself changes. We then compare the internal
stability with the SDT stability.

Fig. 9 reports the evolution of the example project flume
developer community membership as measured by external
and internal stability (interval t reports the change from
interval t to t+1). We notice a heavily fluctuating number
of unchanged developers (between O to 27) while an even
higher number of developers keep joining (between 5 and 58)

2 active developers) in the project flume.
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Fig. 9. Evolution of Developer Community Membership for example project
flume: number of developers leaving (dotted line), joining (dash dotted line),
and remaining (dashed line) as measured between subsequent intervals (right
y-axis), and internal stability as well as SDT stability (left y-axis).

and leaving (between 9 and 51). This comparatively large set
of fluctuating developers influences the community structure,
hence few stable key members substantially shift between
newly forming communities. This is reflected by the internal
stability metric drifting between 0.27 and 0.65. The SDT
stability remains above that between 0.65 and 0.91.

For every project we select the time windows with at least
10 active developers. We then determine the internal stability
of developers across communities (Fig. 10). We also determine
the stability of SDT overlap with communities (Fig. 11):
i.e., whether two SDTs mostly overlapping with the same
community in time window ¢ do so also in time window ¢+ 1.

Observation 5: In general, we find that internal stability
is not that strong, hence implying that communities change
considerably across time. In contrast, we find considerably
stronger SDT stability. This indicates that developers remain
in the same SDT but switch among communities (i.e., pre-
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dominately interact with different members across intervals).

VI. DISCUSSION AND IMPLICATIONS

The findings of our study are that well defined communities
emerge for time windows with >= 10 developers. We observe
that the alignment between these communities and SDTs
covers the complete spectrum from high to low overlap with
no discernible influence of the SDT size. Hence, we draw the
conclusion that there is no correlation between communities
and SDTs: working on a subsystem does not cause interaction
links to occur predominantly among SDT members.

We make the careful hypothesis that the low overlap is
to mitigate the high developer fluctuation. Interaction links
among members from multiple SDTs enable to better cope
with situations when developers leave. Then the burden to
take over or on-board new members is not placed only
with members of that SDT. Cross-SDT interaction may thus
be a mechanism to remain robust in the presence of high
fluctuation. The low community stability can then be explained
as the remaining developers rearrange (at least partially) their
interactions and coordination around newly joining members
(and the effect of leaving members).

The significant interactions across SDT boundaries also
raise the question whether a microservices-centric approach
may be suitable in the context of open source software
development. The perceived advantages of microservices,
among others, are a reduction of coordination needs across
microservice-centric teams (i.e., SDTs) [13]. Assuming our
hypothesis outlined above is correct, the open source commu-
nity might benefit, even need, such cross-SDT interaction and
hence might not be able to benefit fully from a microservice-
centric approach. We are not expecting such high overlap in
industrial settings — a subject of future studies.

Researchers and Practitioners Implications Our work
provides a mechanism to measure development communities
and their overlap with SDTs. We provide evidence of het-
erogeneity of development communities and where evolving
sub-communities do not overlap with the subsystems compo-
sitions. This approach is potentially useful for practitioners,
e.g., lead developers in open source projects, to assess the
interaction structure among developers and potentially identify
subsystems where teams are less well connected. Similarly,
practitioners in industrial setting may find the approach useful
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Fig. 11. Range of SDT stability per project.

to identify subsystems where teams are highly interacting, thus
perhaps identifying inadvertently strongly coupled subsystems.

A. Threats To Validity

Construct Validity We generated the developer interaction
network from issues and commits linked to those issues to
identify developers that coordinate their work. We did not
contact developers to verify the detected community structure
as we do not expect them to accurately recall differences
in community structure for fine-granular time windows of 4
months for several years into the past.

Besides issue trackers and commits, we did not consider
other possible developer communication channels, i.e., mailing
lists, IRC, and conference calls, which could impact the links
created among developers. We investigated that among our
analysed projects only Jira-backed projects use mailing lists.
Panichella et al. [11] investigated how developers collaboration
links vary when data is gathered from different sources. They
found, on the one hand, that communication links obtained
from mailing lists have high overlap with links obtained from
issue trackers and, on the other hand, that emails as the
primary communication channel is increasingly replaced by
chat and issue trackers. Other communication channels such
as IRC and conference call are also used in practice. Four of
the analysed projects use a chat platform (i.e., Gitter’ where
conversations often happen in private threads which cannot
be mined). However, research [11] has shown that mining
links from chat is less reliable as 1) this tends to produce
too many links, and 2) conversations are less easily associated
with issues. We therefore believe that we miss only negligible
information by leaving out mailing list and chats. We, however,
like to point out that co-located developer interactions are not
considered and hence restrict the applicability of our approach
to projects with completely distributed developers.

Internal Validity In order to address the internal validity
threat, we analyse data from multiple open source systems
rather than conducting controlled experiments. The analysis
focused on commits and issues in general and was not
specifically tailored to Java projects. We sampled the chosen
projects based on different subsystem structure mechanisms:
mono-repo and multi-repo based to avoid a single mechanism
influencing the SDT stability or evolution thereof.

3https://gitter.im/
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Some of the chosen projects show a low percentage of
linkage between commits and issues, thus a threat to the
validity of the study. However, we observed similar community
quality metric results of 10 additional projects with higher
linkage values (the results are a part of the SOM [24]). These
projects are not included in our study as they do not completely
fulfill other inclusion criteria mentioned in the Section III.

We cannot be absolutely certain that the mapping between
Jira issue components and Github folders is absolutely correct.
A few Github folders for the five Jira-backed projects that
could not be mapped to a component with high confidence
were excluded to avoid skewing the results.

External Validity Generalizability of our observations is
limited to open source projects that make significant use of
issues (incl. pull requests) as their primary coordination and
communication mechanism. We do not expect our insights to
apply to commercial projects where developer teams are top-
down defined rather bottom-up emerging. The developers in
commercial projects are typically (at least partially) collocated.
Even when a significant amount of communication happens
online, a significant amount of coordination is expected to
occur off-line, thus resulting in a less accurate dataset with
respect to communication.

VII. RELATED WORK

Several researchers have analyzed developer interaction
data from various sources, such as version control systems,
mailing lists, or issue trackers, to investigate how emerging
development teams are formed in open source projects.

Joblin et al. [12] provide an approach to identify the
community structure of a software project. They capture a
view on developer coordination, based on commit information
and source-code structure. We applied the same algorithm
for identifying communities, however, we applied developer
interactions based on their involvement in issues along with
commit information. Moreover, they capture a macro-level
view (once for the overall project) of coordination compared
to our approach which focuses on a more fine granular
level (developer interaction network alignment with SDTs at
separate snapshots in time).

Researchers also examined the effect of interaction between
developers on software quality. Tamburri et al. [26] [27]
explored the relation between community smells and code
smells in open source environments. They base the detection of
community smells on the micro-granular structural differences
(i.e., non/existence of edges between individual developers)
between the collaboration network generated from commits
and the network derived from developer interactions in issues
or mailing list. They also propose YOSHI [28], a tool to
monitor key community traits in open-source projects. In
contrast, our approach observes the community level but not
patterns of edges around individual developers.

Bird et al. [25] examined the effect of different ownership
measures on release failures in an industrial setting. They
found that social network metrics are useful predictors.

Leibzon [29] studied the organization of software devel-
opment teams and project communities at Github. Nzeko’o
et al. [30] made a social network analysis and comparison
of developers’ and users’ mailing lists of four open source
software projects. Similarly, Bird et al. [3] analysed the latent
social structure by forming a social network from the project’s
mailing list. They showed results that sub-communities arise
within a project as the project evolves.

Several efforts aim to exploit the information embedded
in the social structure. Canfora et al. [31] mined explicitly
mentioned cross-system bug resolutions and correlated these
activities with social attributes of developers who participated
in discussions, e.g., developer mailing lists and commits
in source code. Their study showed that cross-system bug
fixing mainly involves developers who engage the most in
mailing list interaction and developers who are among the top
committers. Mockus et al. [32] used email archives of source
code change history and issue reports to quantify aspects of
developer participation, core team size, code ownership, and
productivity for open source software projects.

Panichella et al. [33] studied how emerging teams evolve
over time and that these teams tend to work on more struc-
turally and semantically related set of files. Whether these files
belong to or represent a particular subsystem was not part of
the study. Hong et al. [34] also conducted a study to understand
developer social network and its evolution. They observed that
developers and their relationships change continually. Avelino
et al. [35] studied how authorship-related measures evolve in
open-source communities. While they focused only on one
huge system, i.e., the Linux kernel, we in contrast focused on
several comparatively smaller open source systems.

To the best of our knowledge, no approach studied how
emerging communities align with subsystems, nor how stable
SDTs are over time compared to developer communities.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the emergence of latent devel-
oper interaction communities and how they align with subsys-
tem developer teams (SDT). We observed that developer com-
munity membership is less stable than subsystem developer
teams. We noticed hardly any correlation between detected
communities and SDTs. One cause behind the observed low
overlap between communities and SDTs could be the need to
remain robust against high developer fluctuation in an open
source development environment.

As a future work, we are interested in comparing in more
detail those projects that experience different levels of devel-
oper fluctuation, respectively what other factors might bring
about the lack of correlation between communities and SDTs.
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