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a b s t r a c t 

The intravoxel incoherent motion (IVIM) model allows to map diffusion (D) and perfusion-related pa- 

rameters (F and D 
∗). Parameter estimation is, however, error-prone due to the non-linearity of the signal 

model, the limited signal-to-noise ratio (SNR) and the small volume fraction of perfusion in the in-vivo 

brain. In the present work, the performance of Bayesian inference was examined in the presence of brain 

pathologies characterized by hypo- and hyperperfusion. In particular, a hierarchical and a spatial prior 

were combined. Performance was compared relative to conventional segmented least squares regression, 

hierarchical prior only (non-segmented and segmented data likelihoods) and a deep learning approach. 

Realistic numerical brain IVIM simulations were conducted to assess errors relative to ground truth. In- 

vivo , data of 11 central nervous system cancer patients and 9 patients with acute stroke were acquired. 

The proposed method yielded reduced error in simulations for both the cancer and acute stroke scenarios 

compared to other methods across the whole investigated SNR range. The contrast-to-noise ratio of the 

proposed method was better or on par compared to the other techniques in-vivo . The proposed Bayesian 

approach hence improves IVIM parameter estimation in brain cancer and acute stroke. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In the presence of diffusion encoding gradients, perfusion of 

issue leads to a modulation of the MR signal. The influence of 

erfusion and water self-diffusion on the MR signal can be de- 

cribed by the intravoxel incoherent motion (IVIM) theory ( Le Bi- 

an et al., 1986; Le Bihan, 2019 ), which models perfusion as a 

seudo-diffusion process on the macroscopic scale. Similar to wa- 

er self-diffusion (coefficient D), perfusion is described to cause 

 mono-exponential MR signal decay with increasing diffusion 

eighting. The perfusion fraction F depends on the vascular vol- 

me fraction in a given voxel relative to the water contained in the 

xtravascular space. The pseudo-diffusion coefficient D 
∗ describes 

lood flow through arterioles and capillaries as a diffusion-like 

rocess and is proportional to blood flow velocity and mean vessel 

egment length. Considering both diffusion and perfusion, the IVIM 
∗ Corresponding author. 
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odel results, to first approximation, in a bi-exponential decay of 

he image magnitude as a function of diffusion weighting ( b -value). 

he model has frequently been used to fit data acquired in a vari- 

ty of anatomical regions ( Lemke et al., 2009; Luciani et al., 2008; 

otohamiprodjo et al., 2015; Wetscherek et al., 2015; Yamada et al., 

999 ), heart ( Moulin et al., 2016; Spinner et al., 2017 ) and brain

 Federau et al., 2012; Federau, 2017 ). 

In the brain, IVIM has been used to investigate cancer ( Bisdas 

t al., 2013; Federau et al., 2014a; 2014b; 2017; Togao et al., 2016 ).

ore specifically, IVIM was found to be a valuable technique to as- 

ess perfusion in central nervous cancer, where the perfusion frac- 

ion F ( Federau et al., 2017 ) and D 
∗ ( Puig et al., 2016 ) were prog-

ostic for survival. 

In acute stroke assessment ( Suo et al., 2016 ), IVIM benefits 

rom its endogenous contrast mechanism, which renders it inde- 

endent from the arterial input function or any dispersion effects 

f exogenous contrast-agent techniques. Accordingly, no vein punc- 

ure or contrast-agent administration is needed. It was shown that 

VIM perfusion fraction was significantly reduced in the visible in- 

arct ( Federau et al., 2014c ). Furthermore, IVIM was used to as- 

ess the quality of the collateral blood flow in hyper-acute stroke 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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 Federau et al., 2019 ). Hence, IVIM is a useful tool to assess diffu-

ion and perfusion in two frequent brain pathologies, namely can- 

er and acute stroke. 

Various improvements to brain IVIM data processing have been 

roposed to increase parameter estimation quality. It was noted 

hat a segmented approach of first determining the diffusion con- 

ribution prior to fitting the perfusion parameters was superior to 

 single-step fitting approach ( Pekar et al., 1992 ). Parameter esti- 

ation quality of segmented non-linear least squares (LSQ) regres- 

ion was assessed in simulations and in brains of healthy volun- 

eers ( Wu et al., 2015 ). The non-segmented approach was com- 

ared to the segmented model for non-linear LSQ fitting both 

n simulations and in brain cancer patients ( Meeus et al., 2017 ). 

on-linear segmented LSQ regression was further used to study 

yper-oxygenation-induced vasoconstriction in the human brain 

 Federau et al., 2012 ) and glioma patients ( Federau et al., 2014a ). In

ddition, non-negative LSQ fitting was investigated and compared 

o both the segmented and the non-segmented approaches in ma- 

ignant lesions (glioma, and metastasis), benign lesions (menin- 

ioma) and multiple sclerosis ( Keil et al., 2017 ). 

Besides the LSQ approaches, Bayesian inference of IVIM param- 

ters has been used in the rat brain ( Neil and Bretthorst, 1993 ),

uman brain ( Rydhög et al., 2014 ), the liver ( Dyvorne et al., 2013 )

nd other abdominal organs ( Barbieri et al., 2016 ). An analysis of 

arious prior distributions has been conducted in a tumor mouse 

odel ( Gustafsson et al., 2018 ). A hierarchical Bayesian network, 

hich imposes a global prior on all voxels of interest was pro- 

osed for data of the liver ( Orton et al., 2014 ) and later applied

o the heart ( Spinner et al., 2017 ). This method was compared to

at priors in pancreatic patients ( Gurney-Champion et al., 2018 ). 

n addition to these global approaches, which ignore spatial cor- 

elations, local spatial regularization has been exploited by using 

arkov random fields (MRF) in the liver ( Freiman et al., 2013 ). 

his approach was compared to the hierarchical Bayesian approach 

n simulations and in-vivo data of the liver ( While, 2017 ) and in

reast cancer ( Vidi ́c et al., 2019 ). Recently, a deep learning ap-

roach was presented by Barbieri et al. (2020) and later modified 

y ( Kaandorp et al., 2021 ). 

Alongside advances in IVIM parameter inference, b -value selec- 

ion ( Lemke et al., 2011 ) during data acquisition has been opti- 

ized using Monte Carlo simulations. Besides improvements to the 

R sequence design ( Spinner et al., 2018 ), cerebral blood volume 

ontrast and contrast-to-noise ratio (CNR) enhancements through 

 2 -preparation ( Federau and O’Brien, 2015 ) have been achieved. 

Despite all advances, reliable IVIM in the in-vivo brain remains 

hallenging due to the inherently small perfusion volume fraction 

 Pekar et al., 1992 ) and the low signal-to-noise ratio (SNR) achiev- 

ble in-vivo , due to time constraints of clinical workflows ( Federau 

t al., 2014a; 2014c ). The non-linearity of the IVIM model creates 

n ill-posed inversion problem of estimating the IVIM parameters. 

he resulting parameter estimation uncertainties frequently lead to 

rroneous IVIM parameter maps, where pathological lesions can be 

bscured by speckle-like noise and parameter contrast can be in- 

ufficient, especially for D 
∗ ( Federau et al., 2014a; 2014c ). 

The objective of the present work was to advance parame- 

er inference using an improved Bayesian method and evaluate it 

n the presence of frequent pathologies, namely brain cancer and 

cute stroke. To this end, a novel Bayesian inference approach is 

resented, which combines and leverages the following aforemen- 

ioned techniques together with a dedicated inference method: 

• Spatial prior in the form of an edge-preserving Markov random 

field 
• Hierarchical multivariate Normal prior for partial pooling of es- 

timates 
2 
• Hyper-parameters of the hierarchical prior are pre-learned from 

data using Jeffreys prior and a segmented data likelihood 
• Inference via Markov chain Monte Carlo using the Metropolis- 

Hastings algorithm for the combination of spatial and hierarchi- 

cal priors 

. Theory 

.1. IVIM model 

The IVIM model ( Le Bihan et al., 1986 ) is a scalar two- 

ompartment model of bi-exponential form with b -value (s/mm 
2 ) 

ependent magnitude S according to 

 ( b ) = S 0 [ F exp ( −bD 
∗) + ( 1 − F ) exp ( −bD ) ] (1) 

ith diffusion coefficient D (mm 
2 /s), perfusion fraction F (%) and 

seudo-diffusion coefficient D 
∗ (mm 

2 /s). The magnitude without 

iffusion weighting is denoted S 0 . Parameter estimation quality 

s typically improved by applying a segmented (segm.) approach 

 Federau et al., 2012; 2014a; Spinner et al., 2018 ), where only dif- 

usion is expected to influence the recorded signal for b ≥ b s and 

 s is the value which splits the b -value range such that: 

 ( b ) ≈ S Di f f 
int 

exp ( −bD ) (2) 

ielding D and the intercept S 
Di f f 
int 

= S 0 ( 1 − F ) . Subsequently, the 

ull IVIM model according to Eq. (1) is fitted to determine the re- 

aining parameters with the two previously determined parame- 

ers fixed. 

.2. Data likelihood 

For a SNR larger or equal 5, the noise distribution can 

e approximated by a Normal distribution ( Gudbjartsson and 

atz, 1995 ). Hence, a Normal data likelihood is used for the IVIM 

odel in Eq. (1) and the diffusion-only model in Eq. (2) in the ith

oxel ( m in total): 

p 

(
y y y i 

∣∣∣∣θi 
)

= 

n ∏ 

j=1 

N 

(
y i, j 

∣∣∣∣S (b j , θi ), σyi 
2 

)
(3) 

here y y y i is a vector of length n stacking b -value dependent magni- 

ude data per voxel. Unknown IVIM/diffusion parameters in voxel i 

re noted in shorthand here as θi . The local image noise standard 

eviation is denoted σyi . 

Nuisance parameters such as S 0 and σy can be marginalized out 

n a Bayesian fashion ( Orton et al., 2014 ). This can be achieved by

hoosing a prior distribution in the form of a product of a Normal 

nd an inverse Gamma distribution for each voxel i: 

p 
(
S 0 i , σyi 

2 
)

= N 

(
S 0 i 

∣∣∣∣0 , δ2 σyi 
2 / 

(
g g g T i g g g i 

))
· IG 

(
σyi 

2 

∣∣∣∣α, β

)
(4) 

ith constant δ2 as proposed in Zellners g-prior ( De Finetti et al., 
986 ), inverse Gamma shape parameter α, scale parameter β and 

   i being the vector modelling the fixed effects for all n b -values, i.e. 

he IVIM model in Eq. (1) or the diffusion-only signal described 

n Eq. (2) , both without proportionality constant S 0 . This conju- 

ate prior choice allows for an analytical evaluation. A lack of prior 

nowledge about the nuisance parameters can be addressed by 

aking the limits δ → ∞ and α, β → 0 , which correspond to in- 

nitely broad prior distributions. The marginalized data likelihood 

t these limits is then given for the ith voxel as: 

p 

(
y i y i y i 

∣∣∣∣θi 
)

∝ 

[ 
y y y T i y y y i −

(
y y y T i g g g i 

)2 
/ g g g T i g g g i 

] − n 
2 

(5) 
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or the segmented approach, the data likelihood can be decom- 

osed into a product 

p 

(
y i y i y i 

∣∣∣∣θi 
)

= 

s −1 ∏ 

j=1 

N 

(
y i, j 

∣∣∣∣S (b j , θi ), σyi 
2 

)
·

n ∏ 

k = s 
N 

(
y i,k 

∣∣∣∣S ( b k , θi ) , σyi 
2 

)
(6) 

or b < b s the IVIM model from Eq. (1) was considered for S 
(
b j , θi 

)
,

hile only diffusion was considered as fixed effect S ( b k , θi ) in 
oxel i as described in Eq. (2) for b ≥ b s . The marginalization pro-

edure to remove the nuisance parameters as described above can 

hen be performed in the same manner, but using the respective 

odels g i, j in the data likelihood in Eq. (5) : 

 i, j = 

{
F i exp 

(
−b j D 

∗
i 

)
+ ( 1 − F i ) exp 

(
−b j D i 

)
if b j < b s 

( 1 − F i ) exp 
(
−b j D i 

)
if b j ≥ b s 

(7) 

.3. Hierarchical Normal prior 

In order to leverage information of all m voxels of interest, a hi- 

rarchical Bayesian network was assumed as data generating pro- 

ess. A (multivariate) Normal prior ( Orton et al., 2014 ) was im- 

osed on the log (D and D 
∗) and logit (F) transformed IVIM pa-

ameters θi = 

[
d i , f i , d 

∗
i 

]
= 

[
log ( D i ) , logit(F i ) , log ( D 

∗
i 
) 
]
to allow for 

artial pooling of parameter estimates: 

p 

(
θi 

∣∣∣∣μ, �μ

)
= | 2 π�μ| − 1 

2 exp 

[ 
−1 

2 
( θi − μ) 

T 
�μ

−1 
( θi − μ) 

] 
(8) 

ith hyper-parameters mean μ and covariance matrix �μ. 

.4. Jeffreys hyper-prior 

A hyper-prior was imposed on the hyper-parameters in a hi- 

rarchical fashion, yielding the so-called Bayesian shrinkage prior 

BSP) method ( Orton et al., 2014 ). Here, a data-driven prior in the

orm of Jeffreys prior ( Jeffreys, 1946 ) was used, which is a so-called

eference prior ( Berger and Bernardo, 1992 ) and is defined for un- 

nown mean and covariance of a multivariate Normal distribution 

s: 

p 
(
μ, �μ

)
∝ 

√ ∣∣F I (μ, �μ

)∣∣ = | �μ| − 1 
2 (9) 

here F I is the Fisher information matrix. The posterior distribu- 

ion of the non-segmented BSP method as a product of data likeli- 

ood and prior(s) then reads: 

p 

(
θ1 ... m , μ, �μ

∣∣∣∣y y y 1 ... m 

)
∝ p 

(
y y y 1 ... m 

∣∣∣∣θ1 ... m , μ, �μ

)
· p 

(
θ1 ... m , μ, �μ

)
= 

m ∏ 

i =1 

[
p 

(
y y y i 

∣∣∣∣θi 
)

· p 
(

θi 

∣∣∣∣μ, �μ

)]
· p 

(
μ, �μ

)
(10) 

he posterior for a segmented data likelihood accordingly reads 

BSP segm.): 

p 

(
θ1 ... m , μ, �μ

∣∣∣∣y y y 1 ... m 

)
∝ 

m ∏ 

i =1 

[
p 

(
y y y 1 ... s −1 
i 

∣∣∣∣θi 
)

· p 
(
y y y s ... n i 

∣∣∣∣θi 
)

· p 
(

θi 

∣∣∣∣μ, �μ

)]
· p 

(
μ, �μ

)
(11) 

oth the model terms g g g and data vectors y y y are segmented in 

q. (11) : g g g is defined in Eq. (7) and y y y 1 ... s −1 
i 

contains the data cor- 

esponding to 0 ≤ b ≤ b s −1 and y y y 
s ... n 
i 

the remainder for every ith 
3 
oxel. For the original, non-segmented BSP method ( Orton et al., 

014 ) in Eq. (10) , no segmentation is used for the data y y y and only

he IVIM model is used in g g g . 

.5. Spatial prior: Markov random field 

In order to leverage local IVIM parameter similarity due to tis- 

ue homogeneity, a spatial prior in the form of a MRF was used 

 Freiman et al., 2013; Scannell et al., 2020 ). Accordingly, a gener- 

lised Gaussian MRF prior with zero mean was put on the differ- 

nces between parameters of neighboring voxels: 

p 
(
θi | θ j , νi, j 

)
∝ exp 

[ 
−νi, j 

2 
|| W (θi − θ j ) || a a 

] 
(12) 

here voxel j is a neighboring voxel of voxel i , νi, j is a rate param-

ter, W are weights and 1 ≤ a ≤ 2 . In order to preserve edges in

he parameter maps, a = 1 was chosen ( Bardsley, 2012 ). Also, νi, j 
as set to 1. The spatial prior then reads: 

p 
(
θi | θn (i ) 

)
∝ 

3 ∏ 

p=1 

exp 

[ 

−1 

2 

∑ 

j∈ n (i ) 
(W 

p · | θ p 
i 

− θ p 
j 
| ) 

] 

(13) 

here n (i ) are the neighboring voxels of voxel i , θ p 
i 

and W 

p 
i 

are

he p th IVIM parameter and the corresponding p th weight in voxel 

 , respectively. The neighborhood size used in this study was 5x5. 

oxels on the edge frequently had fewer neighboring voxels, be- 

ause only the ones in the region-of-interest (ROI) were consid- 

red. Conditioned on fixed, i.e. data-derived estimates of the hyper- 

aramters ˆ μ and ˆ �μ, the posterior including the spatial MRF prior 

eads: 

p 

(
θ1 ... m , 

∣∣∣∣y y y 1 ... m 

)
∝ 

m ∏ 

i =1 

p 

(
y y y i 

∣∣∣∣θi 
)

· p 
(

θi 

∣∣∣∣ ˆ μ, ˆ �μ

)
· p 

(
θi | θn (i ) 

)
(14) 

he posterior in Eq. (14) hence combines a non-segmented data 

ikelihood with a data-derived hierarchical prior as in the BSP 

ethod and a spatial MRF prior. Thus, this proposed method is 

ermed BSP & MRF. 

.6. Markov chain Monte Carlo 

In order to perform parameter inference under a given poste- 

ior, Markov chain Monte Carlo (MCMC) sampling can be used. 

ven though the integration to calculate expectation values un- 

er the posterior is analytically intractable, it is possible to draw 

amples and approximate the integrals with a sum in a Monte 

arlo approach. In particular, it is possible to construct a Markov 

hain with a stationary distribution equal to the posterior distri- 

ution. Frequently used algorithms to generate the samples are 

.g. the Metropolis-Hastings algorithm ( Metropolis et al., 1953 ) and 

ibbs sampling ( Geman and Geman, 1984 ). For the posterior in 

q. (14) (BSP & MRF), the p th log/logit transformed IVIM param- 

ter ˆ θ p 
i 

(i.e. estimates of d, f and d ∗) in voxel i can be inferred:

ˆ p 
i 

= 

∫ 
p 

(
θ1 ... m , 

∣∣∣∣y y y 1 ... m 

)
θ p 
i 
dθ1 ... m ≈ 1 

N 

N ∑ 

j=1 

θ p, j 
i 

(15) 

here θ p, j 
i 

is the j th sample of the p th log/logit transformed IVIM 

arameter and N is the amount of samples. An analogous approach 

or the posteriors in Eqs. (10) (BSP non-segm.) and (11) (BSP segm.) 

an be used, where also μ and �μ can be inferred besides the 

oxel-wise log/logit transformed IVIM estimates. In order to assess 

onvergence, multiple chains are used and the samples from all 

hains are combined. Note, that besides the mean as above, the 

edian of the samples can also be used. The standard deviation of 

he samples can be furthermore used to assess the posterior width 

nd hence estimation uncertainty, which is an intrinsic advantage 

f Bayesian methods. 
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. Materials and methods 

.1. Least squares fitting 

The non-linear LSQ estimation of all IVIM parameters in 

q. (1) was implemented using Matlab (R2017b, Mathworks, USA) 

nd the built-in function lsqcurvefit. Diffusivity larger than the 

elf-diffusion of free water and pseudo-diffusivity was limited sim- 

lar to Federau et al. (2012) , while the perfusion fraction was not 

estricted: 

 ≤ D ≤ 2 . 5 · 10 −3 mm 
2 / s 

 ≤ F ≤ 100% 

 ≤ D 
≤50 · 10 −3 mm 

2 / s (16) 

oth a non-segmented and a segmented fit were used according 

o Eqs. (1) and (2) . For the segmented LSQ approach, a frequently 

sed split b -value of b s = 200 s/mm 
2 was applied ( Federau et al.,

014a; 2014c ). 

.2. Deep neural networks 

IVIM fits using an optimized deep neural network 

 Kaandorp et al., 2021 ) were performed with publicly available 

ode from https://github.com/oliverchampion/IVIMNET commit 

6a9f08 using Python 3.6.12 and PyTorch 1.8.1. This method 

orresponded to the IVIM-NET optim 
technique as presented in 

aandorp et al. (2021) and was termed IVIMNET in this study for 

he sake of brevity. The public demo code was adapted to read-in 

rain data of this study and the parameter constraints were set 

o the ones in Eq. (16) . Due to the stretching of the sigmoid

ctivation functions beyond these constraints in IVIMNET, resulting 

egative parameter estimates were subsequently set to zero. The 

mount of data used for validation was reduced from 32 times 

he training batch size to 4 times the training batch size, because 

ewer voxels were available in this study compared to the data 

rovided together with the demo code in the repository. Data was 

ormalized by the b = 0 s/mm 
2 images and the default constraints 

ere used for S 0 (0.7 and 2.0, respectively). All other settings of 

VIMNET were left unchanged, apart from the modifications stated 

bove. As proposed in Barbieri et al. (2020) , Kaandorp et al. (2021) ,

he neural networks were trained on the individual datasets and 

arameters were inferred subsequently on the same datasets. 

.3. Bayesian inference 

For all Bayesian methods, 4 Markov chains were started 

n parallel to speed up computation and assess convergence. 

he Metropolis-Hastings rate of acceptance was set to 0.234 

 Gelman et al., 1997 ) and the proposal widths were adapted every 

0 samples during the burn-in phase. The effectively used samples 

after burn-in) from the Markov chains were pooled together and 

heir median was used for parameter estimates. Parameter estima- 

ion uncertainty was assessed using the coefficient of variation of 

he pooled samples, i.e. the ratio of sample standard deviation and 

ample mean value of the IVIM estimates D, F and D 
∗. The voxel-

ise starting values were 1 ·10 -3 mm 
2 /s, 10% and 10 ·10 -3 mm 

2 /s

ith 10% Gaussian noise for D, F and D 
∗ respectively. These start 

alues were used for all Bayesian inference procedures, apart from 

he proposed method (BSP & MRF), see below for details. If Jeffreys 

rior was used (BSP non-segm. & segm.), μ and �μ were initial- 

zed with the mean and co-variance of the start values. Conver- 

ence was assessed by the ˆ R statistic ( Andrew Gelman and Donald 

. Rubin, 1992 ) and a value of ˆ R ≤ 1 . 1 ( Kass et al., 1998 ) was con-

idered satisfactory. 

In order to assess LSQ estimation uncertainty, a non-segmented 

 Eq. (3) ) and a segmented ( Eq. (6) ) version of the marginalized data
4 
ikelihood in Eq. (5) was employed together with uniform priors 

orresponding to a maximum likelihood approach with constraints 

s specified in Eq. (16) . Parameters were hence not transformed 

log/logit) for modelling and sampling as in the other Bayesian ap- 

roaches. A burn-in phase of 10 0 0 discarded samples was followed 

y another 10 0 0 samples per Markov chain, yielding 40 0 0 usable 

amples in total. 

The hierarchical non-segmented BSP model was implemented 

s described originally ( Orton et al., 2014 ) using a combination of 

ibbs sampling and Metropolis-Hastings updates. IVIM parameters 

ere accordingly log/logit transformed and the data likelihood was 

ot segmented. A burn-in phase of 50 0 0 discarded samples was 

ollowed by 50 0 0 samples per Markov chain (in total 20,0 0 0 sam-

les used) to account for the relatively slow convergence of the 

yper-parameters μ and �μ. A modification (BSP segm.) with a 

egmented data likelihood and a split b -value of b s = 800 s/mm 
2 

as also implemented and used with otherwise same settings. A 

igh split b -value was chosen to reduce perfusion influence on the 

igh b -value magnitude and hence parameter bias, after checking 

esults from a parameter sweep of b s in simulated data. 

The proposed method (BSP & MRF) uses a non-segmented data 

ikelihood and combines a hierarchical (BSP) with a spatial prior 

MRF). The fixed hyper-parameters ˆ μ and ˆ �μ were learnt from 

ata using estimates from a previous segmented BSP approach, as 

xplained above. The weights W in the spatial prior were set to 

he inverse of the current voxel-wise parameter estimate in the 

etropolis-Hastings algorithm ( Scannell et al., 2020 ). This normal- 

zation accounts for the different scaling of the parameters. To 

peed up computation of the relatively expensive MRF computa- 

ion, the estimates from the segmented BSP approach were used 

s start values. A burn-in phase of 10 0 0 discarded samples was 

ollowed by 10 0 0 samples per Markov chain, yielding 40 0 0 usable 

amples in total. Results from a single Markov chain with the same 

urn-in length, but of four-fold length were assessed for the pro- 

osed method in simulations with realistic SNR. 

All calculations were performed on a Linux workstation with 

ntel Xeon E5 CPU with 2.5 GHz and 128 GB RAM, except for the 

VIMNET calculations which were performed on a Windows laptop 

ith Intel i5 CPU with 2.9 GHz and 16 GB RAM. 

All presented Bayesian inference methods were implemented 

n Matlab (R2017b, Mathworks, USA) and code is available under: 

ttps://github.com/georgrspinner/BayesIVIM . 

.4. Simulations 

MR data generation in a realistic numerical brain phantom 

as performed using a modified version of existing brain simula- 

ion routines ( Guerquin-Kern et al., 2012 ) with eight surface coils. 

ancer-like lesions were drawn in the frontal region using Bézier- 

urves consisting of two outer layers (cancer and edema) with in- 

reased diffusion and perfusion, while the central necrotic region 

ad (virtually) zero perfusion. In a second experiment, an acute 

troke-like lesion was modeled by a core with (virtually) zero per- 

usion surrounded by a penumbra of reduced perfusion. Diffusion 

as reduced across the whole lesion. 

The non-diffusion weighted magnitude S 0 was set to higher 

alues compared to the healthy parenchyma in both scenarios to 

eflect the situations in-vivo . Data was weighted with the IVIM 

odel magnitude of Eq. (1) using IVIM parameters as noted in 

able 1 . Simulated b -values were: 0, 10, 20, 40, 80, 110, 140, 170,

0 0, 30 0, 40 0, 50 0, 60 0, 70 0, 80 0 and 900 s/mm 
2 . Normal dis-

ributed noise was added to the real and imaginary parts of the 

ignal such that the mean SNR across the ROI equaled 10, 20, 30, 

0, 50, 75, 100, 125, 150, 175 and 200 after Roemer coil combina- 

ion ( Roemer et al., 1990 ). The simulation procedure is illustrated 

n Supplemental Fig. S1. 

https://github.com/oliverchampion/IVIMNET
https://github.com/georgrspinner/BayesIVIM
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Table 1 

Mean ± standard deviation of IVIM parameter estimates from simulations. The asterisk ( ∗) indicates that estimates were significantly different from reference param- 

eters (p < 0.05, Wilcoxon signed rank test with 5% significance level and Bonferroni correction for multiple testing). LSQ = least squares, IVIMNET = deep neural network, 

BSP = Bayesian shrinkage prior, MRF = Markov random field, segm. = segmented, WM = white matter, GM = gray matter. 

Cancer (SNR = 40) Acute stroke (SNR = 30) 

Necrotic core WM GM Edema Tumor Necrotic core Penumbra WM GM 

D[10 -3 mm 
2 /s] LSQ non-segm. 0.37 ±0.25 ∗ 0.52 ±0.21 ∗ 0.71 ±0.25 ∗ 1.15 ±0.19 ∗ 1.35 ±0.15 ∗ 0.24 ±0.10 ∗ 0.33 ±0.16 ∗ 0.51 ±0.23 ∗ 0.67 ±0.29 ∗

LSQ segm. 0.38 ±0.14 0.63 ±0.11 ∗ 0.84 ±0.07 ∗ 1.23 ±0.05 ∗ 1.43 ±0.06 ∗ 0.30 ±0.06 0.42 ±0.04 ∗ 0.64 ±0.14 ∗ 0.84 ±0.09 ∗

IVIMNET non-segm. 0.44 ±0.07 ∗ 0.65 ±0.05 ∗ 0.83 ±0.04 ∗ 1.25 ±0.03 ∗ 1.50 ±0.03 ∗ 0.33 ±0.03 ∗ 0.45 ±0.02 ∗ 0.63 ±0.08 ∗ 0.86 ±0.04 ∗

BSP non-segm. 0.45 ±0.05 ∗ 0.61 ±0.04 ∗ 0.80 ±0.03 ∗ 1.16 ±0.03 ∗ 1.36 ±0.03 ∗ 0.33 ±0.02 ∗ 0.40 ±0.02 0.57 ±0.05 ∗ 0.79 ±0.05 ∗

BSP segm. 0.45 ±0.05 ∗ 0.61 ±0.04 ∗ 0.80 ±0.03 ∗ 1.16 ±0.03 ∗ 1.37 ±0.03 ∗ 0.31 ±0.03 ∗ 0.40 ±0.02 0.60 ±0.05 ∗ 0.80 ±0.04 ∗

BSP & MRF non-segm. 0.49 ±0.05 ∗ 0.61 ±0.03 ∗ 0.81 ±0.03 ∗ 1.17 ±0.03 ∗ 1.38 ±0.03 ∗ 0.32 ±0.02 ∗ 0.40 ±0.02 ∗ 0.60 ±0.04 ∗ 0.79 ±0.04 ∗

Reference 0.40 0.60 0.80 1.20 1.40 0.30 0.40 0.60 0.80 

F[%] LSQ non-segm. 8.4 ±12.3 ∗ 12.9 ±16.9 ∗ 16.4 ±19.2 ∗ 13.6 ±11.7 ∗ 17.7 ±8.0 ∗ 6.2 ±10.5 ∗ 12.5 ±19.0 ∗ 13.7 ±17.6 ∗ 19.2 ±22.2 ∗

LSQ segm. 3.9 ±5.4 4.1 ±4.6 ∗ 5.4 ±3.2 ∗ 8.3 ±2.2 ∗ 13.4 ±2.8 ∗ 1.7 ±2.3 ∗ 2.1 ±2.0 ∗ 4.7 ±5.5 ∗ 5.8 ±4.1 ∗

IVIMNET non-segm. 0.1 ±0.6 ∗ 2.6 ±2.7 ∗ 7.1 ±2.2 ∗ 1.0 ±0.9 ∗ 0.0 ±0.0 ∗ 0.1 ±0.4 ∗ 0.9 ±1.3 ∗ 3.9 ±4.0 ∗ 4.8 ±2.1 ∗

BSP non-segm. 3.1 ±0.5 ∗ 4.7 ±0.5 ∗ 7.2 ±0.5 ∗ 11.8 ±0.9 ∗ 16.0 ±1.2 ∗ 26.6 ±2.8 ∗ 18.0 ±1.4 ∗ 9.9 ±1.2 ∗ 7.4 ±0.9 ∗

BSP segm. 3.1 ±0.5 ∗ 4.7 ±0.5 ∗ 7.1 ±0.4 ∗ 11.5 ±0.7 ∗ 15.5 ±1.0 ∗ 3.0 ±0.2 ∗ 3.8 ±0.2 ∗ 5.5 ±0.4 ∗ 7.2 ±0.5 ∗

BSP & MRF non-segm. 3.8 ±0.4 ∗ 4.9 ±0.3 ∗ 6.8 ±0.4 ∗ 11.1 ±0.6 ∗ 14.6 ±0.7 ∗ 3.4 ±0.3 ∗ 3.9 ±0.2 ∗ 5.7 ±0.2 ∗ 6.9 ±0.3 ∗

Reference 1.0 5.0 8.0 10.0 15.0 1.0 3.0 5.0 8.0 

D ∗[10 -3 mm 
2 /s] LSQ non-segm. 8.6 ±15.0 ∗ 10.5 ±15.5 ∗ 11.0 ±13.3 ∗ 13.2 ±10.4 ∗ 12.6 ±6.0 7.7 ±14.6 ∗ 7.9 ±14.2 11.6 ±16.6 ∗ 11.3 ±14.1 ∗

LSQ segm. 31.6 ±21.7 ∗ 24.7 ±20.7 ∗ 17.7 ±15.2 ∗ 15.9 ±8.3 ∗ 15.7 ±5.8 ∗ 29.7 ±21.4 ∗ 25.1 ±21.2 ∗ 26.4 ±21.0 ∗ 19.6 ±17.1 ∗

IVIMNET non-segm. 52.4 ±8.6 ∗ 29.8 ±8.9 ∗ 7.7 ±2.1 ∗ 2.0 ±0.2 ∗ 1.5 ±0.2 ∗ 30.2 ±2.5 ∗ 27.9 ±2.0 ∗ 25.7 ±5.4 ∗ 20.8 ±3.3 ∗

BSP non-segm. 3.8 ±0.4 ∗ 5.0 ±0.3 ∗ 6.4 ±0.3 ∗ 8.7 ±0.8 ∗ 10.3 ±0.8 ∗ 0.3 ±0.1 ∗ 0.7 ±0.1 ∗ 2.6 ±0.8 ∗ 7.0 ±1.3 ∗

BSP segm. 3.8 ±0.4 ∗ 5.0 ±0.3 ∗ 6.4 ±0.3 ∗ 8.9 ±0.5 ∗ 10.6 ±0.6 ∗ 1.7 ±0.2 ∗ 2.4 ±0.2 ∗ 4.2 ±0.5 ∗ 6.5 ±0.5 ∗

BSP & MRF non-segm. 4.2 ±0.3 ∗ 5.1 ±0.2 ∗ 6.5 ±0.3 ∗ 9.0 ±0.5 ∗ 10.8 ±0.5 ∗ 1.8 ±0.2 ∗ 2.4 ±0.1 ∗ 4.4 ±0.3 ∗ 6.2 ±0.4 ∗

Reference 0.1 4.0 6.0 10.0 12.0 0.1 3.0 4.0 6.0 
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.5. Patient demographics 

The cancer study was approved by the local ethics committee 

f the University of Lausanne. Patients were scanned from March 

011 to December 2012 and were also used as part of a clinical 

tudy cohort ( Federau et al., 2014a ). Consecutive histopathologic 

iagnostic findings were: 9 cancer patients had glioblastoma (WHO 

rade 4), 1 patient had oligoastrocytoma (WHO grade 3) and 1 pa- 

ient had a neuroglial tumor (WHO grade 2). These patients had no 

elevant treatment history at the time of imaging (such as radio-, 

hemo- or antiangiogenic therapy). Out of the 11 cancer patients, 

 were female. The mean age of the cancer patients was 58 ±15 

ears (age-range 24–84 years). 

The two-center acute stroke study was approved by both lo- 

al ethics committees at the Universities of Virginia and Lau- 

anne. Data was collected from February 2011 to August 2013 in 

atients presenting with symptoms of hemispheric acute stroke 

nd their data was also used as part of a clinical study cohort 

 Federau et al., 2014c ). The mean time from symptom onset to 

maging was 59 ±46 h (range 10–120 h). Out of the 9 patients, 2 

ere female. The mean age of the stroke patients was 58 ±20 years 

age-range 25–86 years). 

.6. In-vivo data acquisition 

The in-vivo acquisitions were performed using 3T MR scan- 

ers (Trio, Verio and Skyra; Siemens, Erlangen, Germany) with 32 

ulti-channel receive head coils. The imaging parameters were: 

lice thickness 4 mm, field-of-view of 297x297 mm 
2 (cancer) 

nd 270x270 mm 
2 (acute stroke), spatial resolution = 1.2x1.2 mm 

2 , 

R = 40 0 0 ms, TE = 99 ms (cancer) and 89–102 ms depending on

canner (acute stroke), receiver bandwidth 1086 Hz/pixel (cancer) 

nd 1106 Hz/pixel (acute stroke), spectrally selective fat saturation, 

arallel imaging with acceleration factor 2 and 75% partial Fourier 

n phase-encoding direction. Single-shot echo-planar readout was 

sed for Stejskal and Tanner (1965) diffusion imaging with 16 b - 

alues (same values as used for simulations) along 3 orthogonal di- 

ections, from which the trace was calculated by taking the mean. 
5 
 single average was acquired in an acquisition time of about 

 min. 

.7. Registration, segmentation & processing 

IVIM parameters of the simulated data were estimated in all 

oxels of the brain, while excluding areas of simulated cere- 

rospinal fluid (CSF), bone and skin. Bias and standard devia- 

ion were assessed by calculating the absolute differences from 

he simulated parameters and the standard deviation of the esti- 

ated parameters within the different simulated tissues, respec- 

ively. The errors (bias and standard deviation) in different tis- 

ue sub-types (i.e. necrotic core, cancer and edema in the can- 

er scenario; necrotic core and penumbra in the stroke scenario; 

hite and gray matter in healthy parenchyma) were then added as 

eighted sums for both the lesion and parenchyma, respectively. 

he weights of the sums accounted for the different numbers of 

imulated voxels of the different tissue types. 

Images of the in-vivo data were first registered slice-wise af- 

er magnitude normalization and taking the square-root. To this 

nd, a nuclear (i.e. principal component analysis) group-wise met- 

ic was used to measure image dissimilarity during registration 

ogether with isotropic total variation regularization of displace- 

ents ( Vishnevskiy et al., 2017 ) using code from https://github. 

om/visva89/pTVreg . 

The in-vivo data was then automatically segmented in a heuris- 

ic approach. First the foreground was selected by magnitude 

hresholding with lower (15% of maximum signal) and upper (40% 

f minimal signal) limits, followed by global image thresholding 

sing Otsu’s method ( Otsu, 1979 ) and subsequent erosion and di- 

ation of the mask (disk-shaped structure elements with radius 

 and 10, respectively). The pre-segmentation was used as start- 

ng point for active contours ( Chan and Vese, 2001 ) segmentation 

ith 100 iterations. The resulting mask was opened (disk-shaped 

tructure element with radius 9). In an additional step, voxels with 

 ≥ 1 . 25 · 10 −3 mm 
2 and F ≥ 25 % (fitted using a log-linear LSQ fit

f data with b ≥ 200 s/mm 
2 ) were excluded, to prevent inclusion 

f CSF. Finally, the resulting mask was eroded and closed (disk- 

https://github.com/visva89/pTVreg
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haped structure element with radius 1) to remove detached vox- 

ls around the edges of the ROI. 

From the in-vivo data, a single slice was chosen in each pa- 

ient and ROIs were placed manually in consensus of two expe- 

ienced neuroradiologists in the cancer patients ( Federau et al., 

014a ), with high IVIM perfusion fraction (cancer lesion) and on 

he contralateral white matter parenchyma (control). The IVIM pa- 

ameters for the segmentation were estimated using segmented 

on-linear LSQ with a split b -value of 200 s/mm 
2 . Cystic, hemor- 

hagic, or necrotic areas were avoided. For acute stroke patients, 

OIs in the ischemic core were obtained by thresholding the diffu- 

ion map (from segmented non-linear LSQ) on a single axial slice 

ith the largest area of infarction. The ROIs were then verified by 

n experienced neuroradiologist and manually corrected if neces- 

ary ( Federau et al., 2014c ). All ROIs were placed such that they

ncluded as little CSF or as few large vessels as possible. The man- 

ally drawn ROIs in the lesion and control parenchyma were finally 

dded to the segmentation (if not already automatically included). 

In-vivo SNR was estimated using the dual acquisition method 

 Dietrich et al., 2007; Reeder et al., 2005 ), where the three diffu-

ion direction weightings with b = 10 s/mm 
2 served as signal av- 

rages. The mean SNR of the three acquisition pairs was calcu- 

ated for each brain segmentation in every patient. Finally, the re- 

orted SNR of the trace takes into account the number of diffu- 

ion gradient directions, which were averaged to yield trace mag- 

itude images. For both in-vivo scenarios, the SNR was reported as 

ean ±standard deviation across all segmented voxels of all data 

ets. 

CNRs were obtained for each IVIM parameter by subtracting the 

ean IVIM parameter estimate in the lesion from the mean es- 

imate in the control region and dividing it by the standard de- 

iation of the estimates within the control region ( Federau and 

’Brien, 2015 ). For acute stroke data, the subtraction was vice 

ersa, such that CNR was expected to be positive in the respective 

esions for both cancer and acute stroke. For both in-vivo scenar- 

os, the CNR was reported as median ±inter-quartile range across 

ll data sets. 

.8. Statistical analysis 

Differences of the IVIM estimates from the simulated param- 

ters were assessed using a Wilcoxon signed-rank test with 5% 

ignificance level with Bonferroni correction for multiple testing. 

ifferences of the IVIM estimates in-vivo between lesion and con- 

rol parenchyma were tested by using Wilcoxon rank sum/Mann- 

hitney U test (5% significance level with Bonferroni correction for 

ultiple testing). Differences in CNR in-vivo among the regression 

ethods were tested using the Kruskal-Wallis test (5% significance 

evel) with a subsequent multiple comparison test for unequal me- 

ians. 

. Results 

.1. Simulations 

The estimated IVIM parameters are presented together with 

he simulated parameters in Table 1 . The proposed method (BSP 

 MRF) produced accurate estimates for both scenarios of cancer 

SNR = 40) and acute stroke (SNR = 30) with a relative error (bias)

elow 30% for all IVIM parameters, apart from the necrotic cores. 

here, the perfusion parameters (F and D 
∗) are over-estimated, but 

hey remained smaller than the estimates from the segmented 

SQ fit. The corresponding standard deviations were the lowest 

f all methods, especially considering F and D 
∗. The LSQ meth- 

ds yielded large standard deviations in both scenarios. The IVIM- 

ET methods produced estimates, which were generally compara- 
6 
le to LSQ and Bayesian methods. However, perfusion was esti- 

ated to be virtually zero in the cancer lesion and D 
∗ was over- 

stimated in healthy parenchyma for both simulated pathologies. 

he non-segmented BSP method produced accurate estimates for 

 in both scenarios, but over-estimated F and under-estimated D 
∗

n most tissue types in the acute stroke scenario. Computation 

imes for parameter estimation in a single simulation dataset were 

bout 5/10/15/45 min for LSQ/IVIMNET/BSP methods/BSP & MRF 

n 1/1/4/4 CPU cores. The mean differences of the parameter esti- 

ates in cancer (SNR = 40) and acute stroke (SNR = 30) from multi- 

le Markov chains compared to a single longer Markov chain were 

ound to be smaller than the reported parameter accuracy. 

Results for the proposed method (BSP & MRF) from a parameter 

weep of the splitting b -value b s can be found in the Supplemental 

ig. S2. It was generally found that parameter estimation error de- 

reased with increasing b s in parenchyma. However, depending on 

he lesion type (hypo- versus hyperperfusion), a minimum of the 

arameter estimation error in the lesion was found for an interme- 

iate b s (30 0–40 0 s/mm 
2 for cancer; 500 s/mm 

2 for acute stroke, 

onsidering F only). 

.1.1. Cancer 

Fig. 1 shows results of the brain cancer scenario simulation. 

oth bias and standard deviation of the estimates in the lesion 

nd parenchyma were among the lowest of all methods across 

ll investigated SNRs. The errors (bias ±standard deviation) of 

SP & MRF at SNR = 40 were (10 -3 mm 
2 /s / % / 10 -3 mm 

2 /s):

.01 ±0.03/0.5 ±0.3/0.8 ±0.2 and 0.03 ±0.03/1.0 ±0.6/1.3 ±0.5 in 

arenchyma and lesion respectively. The corresponding maps 

ppeared similar to the reference maps, preserved the edges and 

llowed for clear delineation of the lesion in all IVIM parameter 

aps, while the LSQ methods partially obscured the lesion. The 

VIMNET method exhibited contrast inversion of the perfusion 

arameters by underestimating F and D 
∗ in the cancer lesion, 

hereby the latter was overestimated in the healthy parenchyma. 

he additional MRF prior effectively further removed remaining 

peckle-like noise in the central region. 

The relative amount of voxels with ˆ R > 1 . 1 in the cancer sim- 

lation (SNR = 40) were 0.0/0.0/0.0, 0.1/0.0/0.0 and 0.1/0.0/0.0% for 

SP non-segm./BSP segm./BSP & MRF and D, F and D 
∗, respectively. 

.1.2. Acute stroke 

Fig. 2 shows results of the acute stroke scenario simulation. 

oth bias and standard deviation of the estimates in the lesion 

nd parenchyma were among the lowest of all methods across 

ll investigated SNRs. The errors (bias ±standard deviation) of 

SP & MRF at SNR = 30 were (10 -3 mm 
2 /s / % / 10 -3 mm 

2 /s):

.00 ±0.04/0.9 ±0.3/0.3 ±0.3 and 0.01 ±0.02/1.5 ±0.2/1.0 ±0.2 in 

arenchyma and lesion, respectively. The corresponding maps 

ppeared similar to the reference maps, preserved the edges and 

llowed for clear delineation of the lesion in all IVIM parameters, 

hile the LSQ methods partially obscured the lesion. The IVIMNET 

ethod also allowed for clear delineation of the lesion in the F 

ap, but exhibited contrast inversion for D 
∗: Parameter estimates 

n the lesion were close to the upper parameter constraint, while 

stimates in the parenchyma were smaller. The additional MRF 

rior effectively further removed remaining speckle-like noise in 

he central region. Smoothing was especially noticeable in the 

aps for F. The non-segmented BSP method exhibited a contrast 

nversion: perfusion fraction F was over-estimated, especially in 

he stroke lesion, where it was higher than in healthy parenchyma. 

The relative amount of voxels with ˆ R > 1 . 1 in the acute stroke 

imulation (SNR = 30) was 5.2/0.0/0.0, 35.4/0.0/0.0 and 9.0/0.0/0.0% 

or BSP non-segm./BSP segm./BSP & MRF and D, F and D 
∗, respec- 

ively. 
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Fig. 1. Simulation of cancer. Upper part: error (bias and standard deviation) of all investigated inference methods both in the cancer lesion and in healthy remaining 

parenchyma. Lower part: example parameter maps for all IVIM parameters and methods for a signal-to-noise ratio (SNR) of 40. The proposed method (BSP & MRF) yielded 

low bias, high precision and preserved edges in the parameter maps. LSQ = least squares, IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov random 

field, segm. = segmented. 
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.2. In-vivo data 

An overview of median ±inter-quartile range of IVIM parame- 

er estimates in-vivo for all investigated methods is presented in 

able 2 . 

.2.1. Cancer 

Mean SNR was 43.4 ±16.4 considering segmented voxels in can- 

er patients in-vivo . 

An in-vivo example of cancer is shown in Fig. 3 . A lesion on

he right hemisphere could be seen with reduced central, but en- 

anced surrounding diffusivity (D). The maps of the LSQ methods 

ppeared grainy and showed frequent outliers. The IVIMNET esti- 

ates yielded increased estimates for D 
∗ compared to the other 

ethods. The non-segmented BSP approach yielded relatively re- 

uced D, increased F and reduced D 
∗. The proposed approach 

BSP & MRF) allowed for delineation of the lesion and allowed to 

iscriminate between central region (reduced diffusion, enhanced 

erfusion) and a surrounding region (enhanced diffusion, reduced 

erfusion). 

CNR values of cancer patient data are reported in Fig. 4 . The 

roposed method (BSP & MRF) yielded third-highest CNR (me- 

ian ±inter-quartile range) for D after IVIMNET and segmented 

SQ: 5.9 ±6.2, 8.7 ±7.7 and 9.3 ±7.9 respectively. CNR for F was high-

st using the proposed method (10.1 ±8.9). All methods yielded 
7 
egative median CNR for D 
∗, where the proposed method pro- 

uced a median CNR of -1.3 ±3.5. 

Uncertainty values together with in-vivo example maps are 

hown in Fig. 5 . Considering all methods, the proposed method 

BSP & MRF) had lowest uncertainty. The median ±inter-quartile 

ange was 3.3 ±1.3% for D and 8.0 ±7.8% for D 
∗, but highest for F:

here, uncertainty was 14.4 ±6.5%. The inter-ventricular area had 

levated uncertainty in D and corresponds to a region, where im- 

ge registration had deformed the image more than in other areas. 

he uncertainty maps of perfusion estimates showed two spots 

f increased uncertainty. There, the perfusion was particularly low 

nd perfusion parameter estimation hence difficult. 

The relative amount of voxels with ˆ R > 1 . 1 in cancer in- 

ivo were 6.1/0.0/0.0, 8.3/0.0/0.0 and 2.6/0.0/0.0% for BSP non- 

egm./BSP segm./BSP & MRF and D, F and D 
∗, respectively. 

.2.2. Acute stroke 

Mean SNR was 32.2 ±16.2 considering segmented voxels in 

cute stroke patients in-vivo . 

An in-vivo example of acute stroke is shown in Fig. 6 . The 

arameter maps of D revealed a lesion with decreased diffusion 

n the central region of the right hemisphere. The maps derived 

rom LSQ methods appeared grainy and showed frequent outliers. 

he IVIMNET estimates for D and F were comparable to the other 

ethods. Also, the estimates for D 
∗ were comparable to the other 
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Fig. 2. Simulation of acute stroke. Upper part: error (bias and standard deviation) of all investigated inference methods both in the cancer lesion and in healthy remaining 

parenchyma. Lower part: example parameter maps for all IVIM parameters and methods for a signal-to-noise ratio (SNR) of 30. The proposed method (BSP & MRF) yielded 

low bias, high precision and preserved edges in the parameter maps. LSQ = least squares, IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov random 

field, segm. = segmented. 

Table 2 

Median ±inter-quartile range of in-vivo IVIM parameter estimates. The asterisk ( ∗) indicates that estimates in the lesion were significantly 

different from the ones in the control parenchyma (p < 0.05, Wilcoxon rank sum/Mann-Whitney U test with 5% significance level and Bon- 

ferroni correction for multiple testing). LSQ = least squares, IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov 

random field, segm. = segmented. 

Cancer Acute stroke 

All Control Lesion All Control Lesion 

D[10 -3 mm 
2 /s] LSQ non-segm. 0.65 ±0.77 0.57 ±0.74 0.85 ±1.33 ∗ 0.62 ±0.75 0.53 ±0.71 0.33 ±0.42 ∗

LSQ segm. 0.78 ±0.15 0.78 ±0.13 1.77 ±0.73 ∗ 0.76 ±0.15 0.74 ±0.12 0.41 ±0.13 ∗

IVIMNET non-segm. 0.81 ±0.18 0.81 ±0.13 1.74 ±0.65 ∗ 0.78 ±0.16 0.77 ±0.13 0.47 ±0.12 ∗

BSP non-segm. 0.70 ±0.10 0.72 ±0.11 0.86 ±0.14 ∗ 0.67 ±0.12 0.64 ±0.10 0.40 ±0.11 ∗

BSP segm. 0.73 ±0.11 0.74 ±0.11 1.36 ±0.69 ∗ 0.71 ±0.12 0.69 ±0.10 0.40 ±0.11 ∗

BSP & MRF non-segm. 0.73 ±0.12 0.74 ±0.11 1.43 ±0.66 ∗ 0.70 ±0.13 0.68 ±0.10 0.41 ±0.12 ∗

F[%] LSQ non-segm. 17.0 ±59.6 21.6 ±65.3 43.0 ±77.7 ∗ 16.4 ±59.2 23.7 ±62.5 6.1 ±42.7 ∗

LSQ segm. 4.8 ±4.7 4.7 ±3.5 5.7 ±5.0 ∗ 5.0 ±5.4 5.2 ±4.0 2.4 ±3.4 ∗

IVIMNET non-segm. 5.4 ±6.7 5.5 ±5.4 6.7 ±4.3 ∗ 5.1 ±5.3 5.1 ±4.2 0.0 ±2.2 ∗

BSP non-segm. 11.34 ±10.32 9.29 ±7.42 72.70 ±43.27 ∗ 13.7 ±8.0 15.0 ±5.4 14.3 ±14.3 

BSP segm. 7.6 ±6.7 6.8 ±4.2 28.4 ±15.9 ∗ 8.0 ±5.5 8.3 ±3.7 3.4 ±2.4 ∗

BSP & MRF non-segm. 7.8 ±4.9 7.2 ±3.2 32.3 ±16.2 ∗ 8.6 ±4.0 8.8 ±2.1 3.8 ±1.6 ∗

D ∗[10 -3 mm 
2 /s] LSQ non-segm. 3.4 ±6.9 2.4 ±5.1 3.1 ±3.8 ∗ 3.5 ±9.5 2.4 ±5.2 2.9 ±11.0 ∗

LSQ segm. 9.6 ±7.6 8.7 ±6.0 9.2 ±3.6 ∗ 10.1 ±12.1 8.6 ±6.1 11.0 ±35.9 ∗

IVIMNET non-segm. 23.1 ±12.3 25.9 ±10.8 8.6 ±6.6 ∗ 24.5 ±14.1 22.3 ±13.4 40.0 ±25.5 ∗

BSP non-segm. 4.1 ±2.5 4.6 ±2.5 2.6 ±1.1 ∗ 3.4 ±3.4 3.2 ±1.8 1.2 ±1.7 ∗

BSP segm. 5.0 ±1.3 5.5 ±1.6 4.0 ±0.8 ∗ 4.8 ±2.4 4.5 ±1.4 3.6 ±1.8 ∗

BSP & MRF non-segm. 5.0 ±1.2 5.5 ±1.5 3.8 ±1.1 ∗ 4.8 ±2.2 4.6 ±1.0 3.7 ±1.5 ∗

8 
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Fig. 3. IVIM parameters for an example cancer patient (63 years, female, glioblastoma with oligodendroglial component, grade 4) in-vivo with non-diffusion-weighted 

magnitude image in the background. A lesion with diffusion abnormalities could be identified in the right hemisphere with all fit methods. The proposed method (BSP & 

MRF) yielded visually relatively smooth parameter maps, where a clear visual delineation of the lesion was possible in all IVIM parameters. LSQ = least squares, IVIMNET = deep 

neural network, BSP = Bayesian shrinkage prior, MRF = Markov random field, segm. = segmented. 

Fig. 4. Contrast-to-noise ratio (CNR) for all cancer in-vivo patient data. Positive 

values indicate that values in the lesion were higher than the ones in the con- 

trol parenchyma. Significant differences among the proposed method (BSP & MRF) 

and the other methods were checked using a Kruskal-Wallis test and are in- 

dicated using a black bar. The proposed method (BSP & MRF) yielded a rela- 

tively high CNR for D and F compared to the other methods. LSQ = least squares, 

IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov ran- 

dom field, segm. = segmented. 
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ethods in the central area, but higher than the largest value 

o display in peripheral areas. The non-segmented BSP approach 

ielded relatively reduced D, increased F and reduced D 
∗. The pro- 

osed approach (BSP & MRF) allowed for delineation of the lesion. 

CNR values of acute stroke patient data are reported in Fig. 7 . 

he proposed method (BSP & MRF) yielded a CNR (median ±inter- 

uartile range) for D of 3.3 ±2.1. CNR for F was highest using the 

roposed method (3.6 ±1.8). LSQ and IVIMNET methods yielded 

egative median CNR for D 
∗, where the proposed method pro- 

uced a positive CNR of 2.2 ±4.8. 
9 
Uncertainty values together with in-vivo example maps are 

hown in Fig. 8 . Considering all methods, the proposed method 

BSP & MRF) had lowest uncertainty. The median ±inter-quartile 

ange was 3.8 ±1.4% for D and 14.8 ±4.5% for F and 19.6 ±16.6% for

 
∗. The uncertainty maps of perfusion estimates showed a spot of 

ncreased uncertainty in the stroke lesion. There, the perfusion was 

ow due to the stroke and perfusion parameter estimation hence 

ifficult. 

The relative amount of voxels with ˆ R > 1 . 1 in acute stroke 

n-vivo were 0.1/0.0/0.0, 0.1/0.0/0.0 and 0.0/0.0/0.0% for BSP non- 

egm./BSP segm./BSP & MRF and D, F and D 
∗ respectively. 

. Discussion 

In this study, Bayesian inference using a combination of a hier- 

rchical and a spatial prior was used, hyper-prior values were es- 

imated from data using a model encompassing a segmented data 

ikelihood, a hierarchical prior and Jeffreys hyper-prior. The pro- 

osed method has been shown to improve IVIM parameter esti- 

ation in cancer and acute stroke relative to conventional LSQ, 

VIMNET and hierarchical Bayesian inference without spatial reg- 

larization or data likelihood segmentation. 

.1. IVIM estimates in-vivo 

The presented results in terms of IVIM estimates in-vivo were 

ithin the range of estimates found in literature on brain cancer 

sing segmented ( b s = 200 s/mm 
2 ) LSQ ( Conklin et al., 2016; Fed-

rau et al., 2017; 2014a ) and acute stroke ( Conklin et al., 2016; Fed-

rau et al., 2014c; 2019 ). Interestingly, the perfusion fraction F us- 

ng BSP & MRF was particularly high in cancer. Note that, on aver- 

ge, all methods apart from LSQ found a reduced D 
∗ in the cancer 

esion compared to the control region, which was also found previ- 

usly ( Federau et al., 2014a ). These two findings suggest presence 

f numerous additional vessels but reduced blood flow velocity, in- 

icating larger vessels in the cancer lesions. Supporting evidence 
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Fig. 5. Uncertainty as the coefficient of variation of the Markov chain Monte Carlo samples for all cancer patient data in-vivo. Boxplots contain all in-vivo cases, maps 

display one example (63 years, female, glioblastoma with oligodendroglial component, grade 4). LSQ uncertainty was estimated using flat priors, which accounted for the 

constraints used in the LSQ fits. The proposed method (BSP & MRF) had lowest uncertainty. LSQ = least squares, BSP = Bayesian shrinkage prior, MRF = Markov random field, 

segm. = segmented. 

Fig. 6. IVIM parameters for an example patient with acute stroke (25 years, female, right middle cerebral artery region, imaging 5 days after symptom onset) in-vivo with 

non-diffusion-weighted magnitude image in the background. A lesion with reduced diffusion could be identified in the right hemisphere with most fit methods. The proposed 

method (BSP & MRF) yielded visually relatively smooth parameter maps, where a clear visual delineation of the lesion was possible in all IVIM parameters. LSQ = least squares, 

IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov random field, segm. = segmented. 
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as found in histological studies of glioblastoma tissue samples, 

here an increased amount of vessels was found ( Pen et al., 2007 ).

In acute stroke, the perfusion fraction F was found to be 

bout half of the estimates in the control region using the 

roposed method. This finding was also confirmed using con- 

entional LSQ fits in this study and in more recent studies 

 Federau et al., 2019 ). The reduction in D 
∗ was more subtle for
10 
ll methods apart from the LSQ and IVIMNET methods, where 

t paradoxically increased or remained virtually constant, respec- 

ively. This is physiologically implausible, because vessel occlu- 

ions lead to reduced blood flow in subsequent vasculature. There- 

ore, it is also perceivable that the ground truth values might be 

ven smaller in the lesion, especially if perfusion is completely 

locked. 
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Fig. 7. Contrast-to-noise ratio (CNR) for all acute stroke in-vivo patient data. Pos- 

itive values indicate that values in the lesion are lower than ones in the con- 

trol parenchyma. Significant differences among the proposed method (BSP & MRF) 

and the other methods were checked using a Kruskal-Wallis test and are indicated 

using a black bar. The proposed method (BSP & MRF) yielded a relatively high 

CNR compared to the other methods for all IVIM parameters. LSQ = least squares, 

IVIMNET = deep neural network, BSP = Bayesian shrinkage prior, MRF = Markov ran- 

dom field, segm. = segmented. 
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.2. Least squares & deep neural networks 

The LSQ methods exhibited large parameter errors and grainy- 

ooking maps, especially the non-segmented version as frequently 

ound in other studies ( Pekar et al., 1992 ). The IVIMNET method 

ielded IVIM parameter estimates, which generally were compa- 

able to the other methods for D and F, but D 
∗ was frequently 

ound to be larger than the ones from the other methods. More- 

ver, bias was found to be relatively high and not monotonically 

ecreasing with SNR in simulations. Also, parameter contrast was 

nverted in cancer and acute stroke. It should be noted that results 

rom deep learning methods depend on settings such as the cho- 
ig. 8. Uncertainty as the coefficient of variation of the Markov chain Monte Carlo sample

or the constraints used in the LSQ fits. The proposed method (BSP & MRF) had lowest un

eld, segm. = segmented. 

11 
en network architecture, activation functions and the numerous 

yper-parameters, e.g. parameter constraints. Hence, it is perceiv- 

ble that this method might benefit from modifications such as 

.g. tighter parameter constraints, if prior knowledge is available 

or the considered application. 

.3. Data likelihood segmentation 

The influence of data likelihood/model segmentation was no- 

iceable both in LSQ and Bayesian methods. A higher cut-off than 

onventionally used ( b s = 200 s/mm 
2 ) reduced bias for the pro- 

osed method (BSP & MRF) and also for the LSQ method (not 

hown here). In fact, it was chosen as high as possible given the 

cquisition b -values for the proposed method. This lead to reduced 

rror and more importantly to the prevention of false contrast in- 

ersion as occurring for acute stroke in the non-segmented BSP 

ethod ( Orton et al., 2014; Spinner et al., 2017 ). Even though 

his non-segmented method did not introduce bias via data like- 

ihood segmentation (due to residual perfusion influence on high 

 -values), the estimates were found to be more biased than the 

nes from the segmented BSP approach: F was found to be rela- 

ively large, while D 
∗ was relatively small, both in simulations and 

n-vivo . The splitting b -value depends on the actual IVIM parame- 

ers to infer. Here, it was chosen to yield lowest error in healthy 

arenchyma, which was not always optimal for the lesion param- 

ters. In principle, the choice of cut-off b -value could be made in 

 Bayesian approach, by treating the index of the splitting b -value 

s a random discrete variable modelled by a discrete distribution 

nd imposing a Dirichlet prior. However, this would come at an 

dditional computational cost. 

.4. Hierarchical prior 

The hierarchical prior generally improved parameter estimation 

ompared to standard LSQ fits. The partial pooling of estimates in 

he hierarchical model was hence an effective technique. However, 

hat method also lead to estimates being “drawn” to the ROI mean 
s for acute stroke. LSQ uncertainty was estimated using flat priors, which accounted 

certainty. LSQ = least squares, BSP = Bayesian shrinkage prior, MRF = Markov random 
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or all BSP methods, especially where perfusion was low. There, the 

nfluence of the data likelihood is small on the estimation of par- 

icularly F and D 
∗, while the prior is more influential. This resulted 

n increased perfusion estimates in low perfused areas. A similar 

nderestimation of large ground-truth values was noted in simu- 

ations, however to a lesser extent. It should be noted however, 

hat the resulting bias of BSP segm. and BSP & MRF was gener- 

lly lower than that of non-regularized methods. The applied prior 

lso modelled correlations among the parameters. It was found 

hat in-vivo estimates using standard LSQ methods generally ex- 

ibited such correlation, i.e. both diffusion and perfusion varied 

ointly among the tissues. The hierarchical prior can potentially in- 

roduce bias in situations, where the correlations are strongly dif- 

erent across the ROI, e.g. small lesions with high diffusion, but 

ow perfusion or vice versa. Such correlations can be removed from 

he prior by using three uni-variate Normal distributions without 

orrelation instead. Likewise, the hyper-parameters can be set em- 

irically, if sufficient prior knowledge is available, from e.g. large 

tudies. Also, a more complex prior structure in the form of e.g. 

 Gaussian mixture model could be used to assign the voxels into 

everal clusters, instead of only one. Different b s could then be also 

sed for the different clusters. 

.5. Jeffreys hyper-prior 

The employed Jeffreys hyper-prior for the hierarchical prior is 

ata-driven and thus frees the user from detailed prior knowl- 

dge about the IVIM parameters. This hyper-prior leads to a small 

eterminant of the covariance matrix of the Normal prior and 

herefore to a narrow prior distribution. The resulting smoothing 

as particularly apparent if only one tissue type was investigated 

 Spinner et al., 2017 ). Here, the presence of different tissue types 

mpeded this behavior to a certain extent. The prior was wide 

nough to accommodate the different tissue types, especially in 

he cancer scenario. However in acute stroke, the relatively few 

oxels in the lesion were falsely found to be of high perfusion frac- 

ion F for the BSP non-segm. method: the data likelihood influ- 

nce becomes lower for smaller perfusion and the prior becomes 

ominant, which was not wide enough to accommodate these esti- 

ates. Also, this hyper-prior as used in the BSP non-segm. method 

ften lead to bias in the perfusion parameters, despite not em- 

loying a segmented data likelihood. Actually, this problematic is- 

ue was overcome by using the segmented data likelihood as ex- 

lained above in the segmented BSP method. Note that Jeffreys 

rior can be substituted with more informative empirical hyper- 

riors, which might be e.g. broader to reduce the pooling effect. 

lso, it is important to avoid the inclusion of many voxels with 

argely different IVIM parameters, such as CSF. This would lead to 

 broadening of the Normal prior, because of these outliers. 

.6. Spatial prior 

The combination with a spatial MRF prior further reduced the 

stimation error, especially the residual speckle-like noise in the 

aps. Such a combined approach has recently been presented for 

ynamic contrast-enhanced cardiac MRI ( Scannell et al., 2020 ), but 

ot for IVIM to the best of our knowledge. The influence of this 

rior was particularly noticeable in the central brain region with 

educed coil sensitivity and accordingly low SNR. The perfusion 

raction F was particularly affected by this MRF prior. Its influence 

ecame more prominent if overall SNR was reduced. In general, 

he prior preserved edges and did not lead to over-smoothing, pre- 

erving small details in-vivo . The degree of smoothing can be con- 

rolled via the rate parameter νi, j , which was set to 1 for all experi-

ents in this study. Note also, that presence of many outliers, such 

s CSF, leads to an influence onto the neighboring voxels. Hence, 
12 
oth the hierarchical and the MRF prior necessitate adequate seg- 

entation with exclusion of CSF-rich areas. As an alternative, T 2 - 

repared acquisition sequences can be used, which suppress signal 

rom CSF during read-out ( Federau and O’Brien, 2015 ), a technique 

hich was also found to increase perfusion contrast. 

.7. Limitations 

Several limitations were present in this study. Simulations did 

ot take into account the anisotropy of both diffusion ( Le Bi- 

an, 2003 ) and perfusion ( Kubíková et al., 2018 ) in the brain. Spa-

ial variations in the brain were simulated only on a tissue-type- 

evel and not on a finer level. The lesion design was subjective and 

ot based on a cohort, especially in terms of shape. Also, only one 

et of parameters and one lesion shape on one axial brain level 

as investigated, mainly due to computationally intensive MCMC 

ampling. Furthermore, only 8 instead of 32 surface coil channels 

ere simulated, which might have influenced the SNR distribu- 

ion and hence conditioning, especially in central brain regions. 

ikewise, in-vivo patients were heterogeneous and not stratified in 

erms of severity of pathology, lesion size and location. Compar- 

sons with other perfusion measurement techniques such as arte- 

ial spin labeling or exogenous contrast agent-based methods were 

ot performed, because of the lack of data thereof. It would be de- 

irable to conduct and analyze further studies employing such ref- 

rence methods in comparison with IVIM ( Federau et al., 2019 ) and 

elate IVIM parameter estimates to clinical outcome ( Federau et al., 

017 ). In a time-critical scenario, such as acute stroke diagnosis, 

ast execution is crucial. MCMC is computationally demanding and 

ence time-consuming, but several improvements are possible: op- 

imization of the expensive MRF calculations, which are currently 

mplemented as for-loops over the image dimensions and early 

topping of the MCMC algorithm after e.g. a certain ˆ R value is 

eached. The number of samples used for this study was more 

han sufficient for most datasets. In addition, MCMC can be ex- 

cuted in parallel on more processing units than shown in this 

tudy. Other methods have also been proposed for Bayesian infer- 

nce from MR images, such as gradient-based variational inference 

r Langevin Monte Carlo ( Dikaios, 2020 ), which might also allow 

or faster computation. 

. Conclusion 

The proposed approach of combining a hierarchical with a spa- 

ial prior improved IVIM parameter estimation in both cancer and 

cute stroke compared to standard regression methods. 
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IVIM: intravoxel incoherent motion, TR: repetition time, TE: 

cho time, ROI: region-of-interest, LSQ: least squares, CNR: 

ontrast-to-noise ratio, SNR: signal-to-noise ratio 
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