
IoT

Article

Performance Analysis of Secure Elements for IoT

Mario Noseda 1,† , Lea Zimmerli 1,† , Tobias Schläpfer 2,† and Andreas Rüst 1,∗,†

����������
�������

Citation: Noseda, M.; Zimmerli, L.;

Schläpfer, T.; Rüst, A. Performance

Analysis of Secure Elements for IoT.

IoT 2022, 3, 1–28. https://doi.org/

10.3390/iot3010001

Academic Editor: Hyun-Ho Choi

Received: 21 October 2021

Accepted: 7 December 2021

Published: 21 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Embedded Systems, Zurich University of Applied Sciences, 8401 Winterthur, Switzerland;
mario.noseda@zhaw.ch (M.N.); lea.zimmerli@zhaw.ch (L.Z.)

2 NatWest Group, NatWest Services (Switzerland) Ltd., 8045 Zuerich, Switzerland;
tobias.schlaepfer@iost-company.ch

* Correspondence: andreas.ruest@zhaw.ch; Tel.: +41-(0)-58-934-77-01
† These authors contributed equally to this work.

Abstract: New protocol stacks provide wireless IPv6 connectivity down to low power embedded IoT
devices. From a security point of view, this leads to high exposure of such IoT devices. Consequently,
even though they are highly resource-constrained, these IoT devices need to fulfil similar security
requirements as conventional computers. The challenge is to leverage well-known cybersecurity tech-
niques for such devices without dramatically increasing power consumption (and therefore reducing
battery lifetime) or the cost regarding memory sizes and required processor performance. Various semi-
conductor vendors have introduced dedicated hardware devices, so-called secure elements that address
these cryptographic challenges. Secure elements provide tamper-resistant memory and hardware-
accelerated cryptographic computation support. Moreover, they can be used for mutual authentication
with peers, ensuring data integrity and confidentiality, and various other security-related use cases.
Nevertheless, publicly available performance figures on energy consumption and execution times
are scarce. This paper introduces the concept of secure elements and provides a measurement setup
for selected individual cryptographic primitives and a Datagram Transport Layer Security (DTLS)
handshake over secure Constrained Application Protocol (CoAPs) in a realistic use case. Consequently,
the paper presents quantitative results for the performance of five secure elements. Based on these
results, we discuss the characteristics of the individual secure elements and supply developers with the
information needed to select a suitable secure element for a specific application.

Keywords: cybersecurity; dtls; secure elements; embedded systems; resource-constrained devices;
coaps; IoT

1. Introduction

In a typical, straightforward IoT application, a sensor node is sending data to an
application server. Nowadays, in many cases, such a node connects to a proprietary, local
network with a gateway providing connectivity to the internet by protocol translation.
Due to this non-transparent access from the internet, there is little need to implement
performance-hungry security measures on the resource-constrained sensor node itself.
In contrast, the gateway with its lower constraints on resources can, to a certain extent,
isolate the sensor node through security measures, such as firewalls and standard crypto-
graphic algorithms.

Interestingly, IoT networks like Thread [1] introduce native Internet Protocol version
6 (IPv6) connectivity down to the low-power sensor nodes. While this transparency offers
many new opportunities to access these resource-constrained devices, in turn, it now
requires them to provide a similar level of security as conventional computers. However,
cryptographic algorithms demand complex calculations with long execution times when
performed on a microcontroller unit (MCU) with little processing power. These algorithms
require a high amount of energy and thus reduce battery lifetime. Moreover, conventional
security algorithms (e.g., Rivest-Shamir-Adleman RSA) exacerbate this effect as they were

IoT 2022, 3, 1–28. https://doi.org/10.3390/iot3010001 https://www.mdpi.com/journal/iot

https://www.mdpi.com/journal/iot
https://www.mdpi.com
https://orcid.org/0000-0002-4103-6347
https://orcid.org/0000-0003-3094-0012
https://orcid.org/0000-0002-9991-4317
https://orcid.org/0000-0002-6984-3415
https://doi.org/10.3390/iot3010001
https://doi.org/10.3390/iot3010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/iot3010001
https://www.mdpi.com/journal/iot
https://www.mdpi.com/article/10.3390/iot3010001?type=check_update&version=3

IoT 2022, 3 2

not designed to run on resource-constrained devices. Thus, various semiconductor vendors
have developed dedicated hardware for MCUs to support the execution of cryptographic
algorithms. These so-called secure elements improve the overall security of an IoT device
and reduce the energy consumed by cryptographic computations. This paper introduces
the concept of secure elements and shows their opportunities as well as their challenges.
Specifically, we describe five secure elements in detail with appropriate energy and exe-
cution time measurements. The provided data supports the selection of a suitable secure
element for individual IoT applications.

This paper is structured accordingly: Section 2 highlights the motivation behind this
project. Section 3 contains the technical background (secure elements, Thread protocol,
CoAP) needed to understand the rest of the paper. Section 4 lists the five evaluated
secure elements and all the required soft- and hardware used for the evaluation. The
measurements and subsequent discussion are located in Sections 5 and 6, respectively.
Section 7 describes the key findings gathered during this project, Section 8 draws attention
to related work and similar studies, and Section 9 draws appropriate conclusions.

2. Motivation

Although secure elements have been available for a few years, there are still few to
no quantitative comparisons between chips from different manufacturers. Arguably, this
is primarily because manufacturers are very reluctant to provide information about the
hard- and software of their secure elements. Until recently, one usually had to sign a
non-disclosure agreement (NDA) before receiving the documentation and vendor-specific
software development kit (SDK) required to use the secure element. Although more and
more manufacturers are now moving away from these prohibitive practices, there is still a
lack of quantitative comparisons that help embedded security engineers decide on which
secure element best fits the task at hand. Embedded security is already lagging behind the
current emergence of IoT, which can be seen, among other things, in the lack of large and
active developer communities. Understandably, a lack of information does not contribute
positively to this situation.

Therefore, our primary motivation for this project is to make such information publicly
available and contribute to the security of IoT systems.

3. Technical Background
3.1. Secure Elements

A secure element is an integrated circuit (IC) for executing cryptographic algorithms
(mostly) in hardware. Such algorithms typically include the advanced encryption stan-
dard (AES), elliptic curve cryptography (ECC), the elliptic curve digital signature algorithm
(ECDSA), secure hashing algorithms (SHA), message authentication codes (MAC), and more
depending on the feature set of the secure element. They are designed to execute these
computationally intensive algorithms fast and with minimal energy. Furthermore, they need
to be connected to an MCU over a serial interface and function as a cryptographic coprocessor.

In contrast, more and more MCUs with built-in security peripherals also implement
such algorithms in hardware. They have an advantage concerning execution time and
energy consumption compared to secure elements as the security peripherals are connected
to the internal data bus and not to a comparatively slow external interface. For such MCUs,
it is common practice to encrypt sensitive key material with a master key before storing it
in the flash memory. However, even though the sensitive data is encrypted, such MCUs
usually provide little to no tamper detection as well as no tamper-resistant memory.

Conversely, most secure elements provide tamper-resistant memory, multiple tamper
detection mechanisms like active shielded circuits, voltage and temperature monitoring, and
inputs for user-defined tamper sensors. These features are a clear added benefit over using
MCUs with built-in security peripherals. Additionally, they provide sophisticated counter-
measures against side-channel attacks and have some level of Common Criteria certification.

IoT 2022, 3 3

A (D)TLS handshake is a likely use case for secure elements, which is usually imple-
mented in two distinct ways. On the one hand, some secure elements support an MCU in
the execution of cryptographically complex computations. However, the complete (D)TLS
stack must still be present in the MCU to handle the various messages correctly. Conversely,
other secure elements can handle the entire (D)TLS session independently. In this case,
the MCU does not have to process the (D)TLS messages but only forwards them in both
directions. The execution of all security-related functions within the secure element natu-
rally offers higher security. Nevertheless, these secure elements can also support a (D)TLS
stack running on the MCU, making them very versatile. Further theoretical foundations
concerning secure elements can be found in our previously released papers: chapter II
“Secure Elements” in “Security on IoT Devices with Secure Elements” [2] and “Securing
the IoT: Introducing an Evaluation Platform for Secure Elements” [3].

3.2. Constrained Application Protocol

The Constrained Application Protocol (CoAP) is specified by RFC7252 [4] and is a
document transfer protocol like Hypertext Transfer Protocol (HTTP). However, as the name
implies, it is specifically designed for constrained devices. Bit fields and mappings are used
to keep the packets as small as possible, and User Datagram Protocol (UDP) is used instead of
Transmission Control Protocol (TCP). CoAP is based on a simple client/server model and
follows the RESTful paradigm. The secure Constrained Application Protocol (CoAPs) utilizes
DTLS and guarantees confidentiality, integrity and authenticity of the CoAP packets.

3.3. Thread Protocol

Thread is a wireless network protocol for embedded IoT devices building on the
Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 [5] standard. It provides a
mesh network for resource-constrained devices where each device has IPv6 connectivity.
The devices within the Thread network have access to the internet via border routers.
This new connectivity provides new opportunities such as service discovery for each
device or the possibility to establish a real end-to-end encrypted channel between an end
device and an application server. Figure 1 shows a setup of such a Thread network and a
corresponding application server residing outside of that network.

Internet

Application
Server

Border RouterThread RouterEnd Device Thread Link

6LoWPAN / IPv6 / UDP / CoAPs

Figure 1. Typical Thread network with access to an application server over the internet.

Figure 2 illustrates the Thread stack which consists of IPv6 over Low-Power Wireless
Personal Area Networks (6LoWPAN), IP-routing and UDP. These layers, in turn, facilitate
the use of application protocols like CoAP.

IoT 2022, 3 4

CoAPs

UDP

IP Routing

6LoWPAN

IEEE 802.15.4 MAC

IEEE 802.15.4 PHY

Th
re

ad

Figure 2. Stack of the Thread protocol.

4. Materials and Methods
4.1. Test Cases

We define two specific test cases for our performance evaluation in terms of execution
time and energy consumption. While the first test case focuses on cryptographic primitives,
the second one features a practical application. Specifically, a node and a server establish a
secure session by executing a DTLS handshake. To establish a baseline reference without
MCU-external hardware acceleration, we measure both test cases with the cryptographic
functions running in software on the MCU using MbedTLS [6]. In contrast, subsequent
measurements make use of the evaluated secure elements. The results allow a direct
comparison to the reference as well as between devices.

4.1.1. Cryptographic Primitives

This test case assesses the performance of the individual secure elements concerning
the following cryptographic primitives:

• Generate a random number (32 bytes)
• Generate an ECC key pair (secp256r1 [7])
• Calculate the SHA-256 hash of the random number
• Sign the hash with ECDSA (using key pair from before)
• Verify the signature (using key pair and hash from before)

secp256r1 is one of the most common elliptic curves and thus has been selected for
this performance evaluation. Furthermore, curves with larger bit-fields were not evaluated
as they are rarely seen in IoT.

Moreover, the generation of the random number with the reference implementation
requires the following remarks:

MbedTLS contains a block-cipher counter-mode based deterministic random bit gen-
erator (CTR_DRBG) specified in NIST SP800-90A [8]. This cryptographically-secure pseu-
dorandom number generator (CSPRNG) requires a strong external entropy source for
periodical reseeding. Thus, the reference implementation does not purely rely on software,
as in this case, the true random number generator (TRNG) in the MCU itself is used as an
entropy source. We will discuss this further in Section 6.1.

4.1.2. DTLS Handshake

In this test case, a DTLS handshake with a server demonstrates the impact of the
secure elements as external crypto accelerators on execution time and energy consumption.
We have chosen TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 as the cipher suite for the DTLS
handshake as this suite is available in all the evaluated secure elements. Therefore, this
choice facilitates a fair comparison even though there are arguably better cipher suites from
a security standpoint. Lastly, CoAPs is used as the application protocol for getting some
dummy data from the server.

IoT 2022, 3 5

4.2. Test Setup

In order to keep the complexity of the network as low as possible, the Thread network
only consists of a border router and a secure node. Furthermore, the CoAPs server is
running directly on the border router itself to exclude as many unknowns as possible,
which could arbitrarily affect the handshake in any way. Figure 3 illustrates this test setup.

6LoWPAN / IPv6 / UDP / CoAPs

MCU Secure
Element

Border RouterSecure Node Thread Link

CoAPs
Server

Figure 3. Test setup with reduced complexity to ensure reproducibility of results.

Figure 4 depicts the secure node, which consists of a Nordic nRF52840 development
kit (DK) [9] and the secure element shield, which is a self-designed PCB with the form factor
of an Arduino shield on which all evaluated secure elements are present. Additionally, a
Raspberry Pi 3 Model B+ [10] and an nRF52840 dongle [11] (used as a radio co-processor
for IEEE 802.15.4) serve as the required border router and CoAPs server.

Figure 4. Secure node consisting of nRF52840 DK and secure element shield.

4.3. Evaluated Secure Elements

This paper evaluates the following secure elements:

• Infineon OPTIGA™ Trust M [12,13]
• Infineon OPTIGA™ Trust X [14,15]
• Maxim MAXQ1061 [16]
• Microchip ATECC608B [17,18]
• NXP SE050 [19,20]

These five secure elements have been selected as they list similar use cases and target
applications in their data sheets. Furthermore, they all support the specified algorithms

IoT 2022, 3 6

and the corresponding elliptic curve required for performing the cryptographic primitives,
which allows the direct comparison of the results.

4.3.1. Supported Cryptographic Primitives

Although all these secure elements provide cryptographic primitives like symmetric
encryption with AES, various ECC algorithms (ECDH, ECDHE, ECDSA, . . .), secure
hashing algorithms (e.g., SHA-256) and message authentication (e.g., HMAC-SHA-256),
essential differences exist. These include AES modes, hash and block cipher sizes, and
supported elliptic curves. Thus, it is essential to check if the selected secure element
provides the required functionality prior to including it in a new design.

Furthermore, the OPTIGA™ Trust X contains a complete (D)TLS stack and can handle
the entire handshake on its own by creating and parsing the messages without the help of
the MCU. Thus, the MCU does not have to process the (D)TLS messages and only transmits
them between the secure element and the (D)TLS peer. Conversely, the other secure
elements support the MCU by accelerating the computationally expensive cryptographic
algorithms while still requiring a (D)TLS stack to be present in the MCU for creating and
parsing the actual (D)TLS packets (i.e., ClientHello, ServerHello, . . .).

4.3.2. Memory Structure

The secure elements differ not only in the amount of memory available but also in
their structure. While the ATECC608B, OPTIGA™ Trust M, and OPTIGA™ Trust X feature
pre-partitioned slots with explicit restrictions on what type of data can be stored within
them, the MAXQ1061 and the SE050 allow the users to define the type and size of the
storage objects individually.

4.3.3. Available Interfaces

All evaluated secure elements feature an I2C interface. The OPTIGA™ Trust M,
OPTIGA™ Trust X, and the ATECC608B allow an I2C clock speed of up to 1 MHz. More-
over, the latter also allows the use of a significantly slower Single-Wire Interface (SWI). The
SE050 does not contain any other serial interface than I2C, but it features the fastest I2C
clock speed at 3.4 MHz. In contrast, the MAXQ1061 has the slowest maximum I2C clock
speed at 400 kHz. However, it is the only secure element containing an SPI peripheral, and
with a maximum clock speed of 4 MHz, it provides the fastest serial interface of them all.

We strongly recommend encrypting the communication between the host MCU and
the secure element. Even though the symmetric keys used for such secure channels
reside somewhere in the memory of the MCU and are at risk of being extracted by an
attacker, it significantly increases the level of security. This increase is because the attacker
requires drastically more time and effort as merely probing the serial interface is not
enough anymore. Therefore, it mostly mitigates the risk of easy eavesdropping but also
more dangerous attacks like tampering with the random numbers, which would severely
impede the reliability of certain cryptographic algorithms.

4.3.4. Energy Consumption and Sleep Modes

Another critical aspect of secure elements is their energy consumption during compu-
tation, idling, and sleeping. Their active supply current, sleep current, wake-up delay, as
well as other characteristics, may differ widely (up to orders of magnitude).

4.3.5. Provisioning

All manufacturers provide a provisioning service that can inject unique credentials
into the secure elements at secure manufacturing facilities. However, the ATECC608B is the
only secure element that must be provisioned and locked before any of the functionalities
(e.g., getting random numbers from the TRNG) can be used. On the one hand, this slightly
complicates the development stage, but it also increases the overall security as the chip
cannot be used without being locked first.

IoT 2022, 3 7

4.3.6. Compliance

Compliance with known certifications is another important aspect of secure elements,
as this might be a hard requirement depending on the target application. The Common
Criteria (CC) [21] provide a well-known standard within the field of Information Security.
The hardware and firmware of the SE050 and the hardware of the OPTIGA™ Trust M
and OPTIGA™ Trust X are CC EAL6+ certified. Although compliant development and
design practices for CC EAL4+ have been used on the MAXQ1061, which would suggest
compliance, Maxim has not performed any actual evaluation and thus cannot prove
the compliance by document (W. Pflästerer, personal communication, 6 June 2021). The
ATECC608B is the only evaluated secure element that does not state any compliance to
CC certifications. Moreover, as true randomness is fundamental in cryptography, the
compliance of the TRNGs with further certification is another key characteristic. While
the MAXQ1061 does not state a compliance with any certification, the TRNGs of the other
secure elements are either compliant with NIST SP 800-90A/B/C [8,22,23] or AIS-31 [24].

4.3.7. Resources for Development

Lastly, the secure elements also differ in how much resources are available. The
OPTIGA™ Trust M and OPTIGA™ Trust X provide a lot of publicly available documenta-
tion, examples, and ready-to-use driver implementations (e.g., Nordic nRF5 SDK, Zephyr,
. . .). In contrast, the full data sheet and SDK of the MAXQ1061 are still under NDA at
the time of writing this paper, with the remaining secure elements landing somewhere
between these two.

4.4. Selected Communication and Sleep Modes

In order to make the measurements uniform, we chose an I2C clock speed of 400 kHz,
as this is the fastest possible communication that all secure elements support. The evaluated
secure elements require the MCU to poll their busy state over I2C. Moreover, the MCU is not
put into sleep mode during the secure elements’ execution of the cryptographic primitives.

4.5. Software
4.5.1. Secure Node Firmware

Zephyr [25] is an open-source real-time operating system for resource-constrained
devices (mainly microcontrollers) with a focus on connectivity. It integrates various protocol
stacks, and supports a wide range of architectures and processor families, allowing you to
compile the same code for a wide range of MCUs. This abstraction from the hardware and
communication interfaces makes this RTOS an excellent choice for IoT projects. The Zephyr
project is part of the Linux Foundation, and this is visible in its structure. Among other
things, it has a device driver model with clear parallels to conventional Linux. This model
allows us to create a so-called external module for every secure element, which contributes
to an excellent encapsulation of SDKs provided by the chip vendors. Furthermore, it
includes an open-source implementation of the Thread protocol called OpenThread [26],
which uses MbedTLS as a cryptographic software library. Although the OPTIGA™ Trust X
can handle the complete DTLS handshake on its own, in our setup, the DTLS handshake is
handled by MbedTLS. Thus, all secure elements are used as external cryptoprocessors for
all security and performance-critical computations, which results in a better comparison
between secure elements.

MbedTLS (version 2.7.0 or later) allows alternative cryptographic implementations [27],
so-called hooks, by packing the definitions of various functions into include guards as
displayed by Listing 1.

IoT 2022, 3 8

Listing 1. MbedTLS ECDSA verify function definition with include guards.

1 #if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
2

3 /*
4 * Verify ECDSA signature of hashed message
5 */
6 int mbedtls_ecdsa_verify(mbedtls_ecp_group *grp, const unsigned char *buf,
7 size_t blen, const mbedtls_ecp_point *Q,
8 const mbedtls_mpi *r, const mbedtls_mpi *s)
9 {

10 ...
11 }
12 #endif /* !MBEDTLS_ECDSA_VERIFY_ALT */

By defining the MBEDTLS_ECDSA_VERIFY_ALT option in the MbedTLS configuration,
only the function declaration within the corresponding header file remains, and the user
can now supply a new definition of the function, which makes use of the secure element.
The following configuration options have been defined to hook the desired computations
with the evaluated secure elements:

• MBEDTLS_ENTROPY_HARDWARE_ALT
• MBEDTLS_ECDSA_SIGN_ALT
• MBEDTLS_ECDSA_VERIFY_ALT
• MBEDTLS_ECDH_COMPUTE_SHARED_ALT
• MBEDTLS_ECDH_GEN_PUBLIC_ALT

4.5.2. Certificate Authority (CA)

Figure 5 illustrates the certificate structure used for this project with all the required
certificates for the DTLS handshake test case. Generally, we strongly advise making use of
an intermediate CA. However, for the measurements in this project, only a root CA without
any intermediate CAs has been created in order to keep it as simple as possible.

Root CA

Server
Certificate

Client
Certificate

Figure 5. Certificate structure used in this project.

4.5.3. CoAPs Server

The CoAPs server running on the OpenThread border router is based on Eclipse Cali-
fornium™ [28]. This CoAP framework is written in Java and compliant with RFC7252 [4].
By using the build automation tool Maven [29], Californium™ can be easily obtained and
used in a project. The Californium (Cf) core implements the basic CoAP functionality, and
the additional Scandium (Sc) submodule complements this with the necessary security

IoT 2022, 3 9

capabilities (like DTLS 1.2 and key storage) to set up the desired CoAPs server. The server
is provided with a PKCS#12 [30] archive file in which all required certificates and the
server’s private key are stored.

4.6. Measurement Setup

Figure 6 shows how a Keysight N6705B power analyzer is used to determine execution
times and power consumption. It supplies the nRF52840 MCU with 3.3 V which in turn
supplies the connected secure element. It is used to measure the supply current of the
MCU and the secure element. Furthermore, it measures the voltage of the supply and an
auxiliary GPIO of the MCU (left side of the MCU directly connected to a voltage measure-
ment channel of the power analyzer), which signals when the individual cryptographic
primitives and the DTLS handshake are currently being executed. This setup does not just
allow the acquisition of the execution time, but also the energy consumption of the MCU,
secure element and both of them combined.

AV

3.3V

V

A

nRF52840 Secure Element

I2C

GPIOs

GPIO

Figure 6. Conceptual measurement setup of the node for acquiring the execution time and energy
consumption during the stated test cases.

In order to allow the separation of the MCU supply from the rest of the development
kit, it needs to be set up as listed in Appendix A.1. Additionally, Appendix A.2 provides a
more detailed explanation of the measurement setup.

To assess the variance, we acquire a large number of measurements by remotely
controlling the power analyzer through a Python package. The same package processes
the individual measurements and performs statistical analysis.

5. Results
5.1. Cryptographic Primitives

Figures 7–11 and the corresponding Tables 1–5 show the execution time and energy
consumption of the node (secure element and MCU) during the cryptographic primitives in
percentages relative to the reference implementation using only MbedTLS on the MCU. E.g.,
when generating an ECC key pair (secp256r1), the SE050 takes 26% of the time required
by the reference implementation. I.e., substituting the sofware-based implementation in
MbedTLS with the hardware-based alternative in the SE050 decreases the execution time
of the key pair generation by 74%. The percentages have been calculated by dividing
the median time and energy consumption of the node (secure element and MCU) by the
reference (MCU by itself). The tables in Appendix C.1 contain the median values of the
absolute and relative measurements used for creating these figures. Notably, the time and
energy required for getting the 32 bytes of random data in the reference implementation
originated from triggering the reseeding process of MbedTLS’ CTR_DRBG, which accessed
the TRNG in the MCU itself.

IoT 2022, 3 10

0 50 100 150 200 250 300
Time [%]

0

100

200

300

400

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

Random

Figure 7. Time and energy measured for getting 32 bytes of random data relative to the reference
implementation. (median of values, rounded to the nearest percent, n = 100).

Table 1. Table of values for Figure 7.

Secure Element Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 244 449
Optiga Trust X 244 463
MAXQ1061 94 268
ATECC608B 328 306
SE050 256 442

IoT 2022, 3 11

0 50 100 150 200 250 300
Time [%]

0

200

400

600

800

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

Generate ECC Key Pair

Figure 8. Time and energy measured for generating an ECC key pair relative to the reference
implementation. (median of values, rounded to the nearest percent, n = 100).

Table 2. Table of values for Figure 8.

Secure Element Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 17 35
Optiga Trust X 16 32
MAXQ1061 308 906
ATECC608B 19 23
SE050 26 46

IoT 2022, 3 12

0 20,000 40,000 60,000 80,000
Time [%]

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

SHA-256 Hash

Figure 9. Time and energy measured for calculating the SHA-256 for 32 bytes of data relative to the
reference implementation. (median of values, rounded to the nearest percent, n = 100).

Table 3. Table of values for Figure 9.

Secure Element Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 83,000 156,670
Optiga Trust X 92,100 178,431
MAXQ1061 14,800 41,206
ATECC608B 20,300 18,530
SE050 25,000 41,663

IoT 2022, 3 13

0 20 40 60 80 100 120 140 160
Time [%]

0

100

200

300

400

500

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

ECDSA Sign

Figure 10. Time and energy measured for calculating an ECDSA signature (secp256r1) relative to the
reference implementation. (median of values, rounded to the nearest percent, n = 100).

Table 4. Table of values for Figure 10.

Secure Element Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 42 84
Optiga Trust X 42 87
MAXQ1061 165 490
ATECC608B 50 59
SE050 27 51

IoT 2022, 3 14

0 20 40 60 80 100
Time [%]

0

50

100

150

200

250

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

ECDSA Verify

Figure 11. Time and energy measured for verifying an ECDSA signature (secp256r1) relative to the
reference implementation. (median of values, rounded to the nearest percent, n = 100).

Table 5. Table of values for Figure 11.

Secure Element Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 15 31
Optiga Trust X 14 31
MAXQ1061 89 262
ATECC608B 9 12
SE050 8 15

The relative standard deviation (RSD), also known as the coefficient of variation (CV),
describes the amount of dispersion with regard to the mean. In contrast to the standard
deviation, this allows us to compare data sets with widely different means, as is the case
with the measurements of the cryptographic primitives. Equation (1) expresses how the
RSD is calculated using the standard deviation σ and the mean µ.

RSD =
σ

µ
× 100 (1)

The secure elements exhibited very consistent performance as 10.6% (energy consump-
tion of the MAXQ1061 while generating random numbers) was the highest RSD of all the
time and energy measurements within the cryptographic primitives. All the remaining
measurements even had an RSD < 5%. Even though the values are tightly grouped, they
are not normally-distributed throughout. This is mainly because the secure elements are
polled at defined intervals via I2C, and thus the end of a primitive is recorded on the
next poll instead of the exact time when the primitive finished. Primitives with a very
short execution time would require an extremely small polling interval in order to test for
normality. For this reason, the figures and tables in this chapter are based on the median
instead of the arithmetic mean. However, the remaining statistical values (min, max, mean,

IoT 2022, 3 15

standard deviation, and relative standard deviation) are available in the supplementary
data (refer to the supplementary materials statement after Section 9).

5.2. DTLS Handshake

We noticed during the measurement process that handshake packets were sometimes
lost and had to be retransmitted either by the client or the server, thus dramatically
increasing the execution time. As an example, Figure 12 shows the DTLS handshake
using the software-based MbedTLS reference. Since the focus is not on the reliability of
OpenThread, we have removed all outliers that differ from the median by 20 percent or
more. Figure 13 shows the corresponding adjusted measurements. We applied the same
removal for all handshake measurements.

Identical to the benchmark for the cryptographic primitives, the DTLS handshake
benchmark was repeated 100 times. Table 6 lists the remaining amount of valid measure-
ments of the DTLS handshake after the removal of outliers caused by OpenThread.

3.5 4.0 4.5 5.0 5.5 6.0 6.5
Time [s]

0

10

20

30

40

50

60

70

80

Fr
eq

ue
nc

y

DTLS Handshake With Outliers

Figure 12. Execution time of the DTLS handshake using MbedTLS including outliers.

3.56 3.58 3.60 3.62 3.64 3.66 3.68
Time [s]

0

2

4

6

8

10

Fr
eq

ue
nc

y

DTLS Handshake

Figure 13. Execution time of the DTLS handshake using MbedTLS without outliers differing more
than 20% from the median.

IoT 2022, 3 16

Table 6. Measurement count for the DTLS handshake after removing outliers caused by OpenThread.

Handshake Measurement Count n

MbedTLS 81
Optiga Trust M 85
Optiga Trust X 82
MAXQ1061 79
ATECC608B 75
SE050 78

Figure 14 and Table 7 show the time and energy consumption of the node (secure
element and MCU) for the DTLS handshake in percentages relative to the reference imple-
mentation using only MbedTLS on the MCU. E.g., the ATECC608B takes 39% of the energy
consumed by the reference implementation when performing a DTLS handshake. I.e.,
substituting the software-based cryptographic operations in MbedTLS with the hardware-
based alternatives in the ATECC608B decreases the energy consumption of the DTLS
handshake by 61%. The percentages have been calculated by dividing the median time
and energy consumption of the node (secure element and MCU) by the reference (MCU by
itself). The corresponding median values of the absolute and relative measurements are
listed in the tables in Appendix C.2.

0 20 40 60 80 100
Time [%]

0

50

100

150

200

E
ne

rg
y

[%
]

Secure Element
MbedTLS
Optiga Trust M
Optiga Trust X
MAXQ1061
ATECC608B
SE050

DTLS Handshake

Figure 14. Time and energy measured for a DTLS handshake relative to the reference implementation.
(median of values, rounded to the nearest percent, n = (see Table 6)).

Table 7. Table of values for Figure 14.

Operation Time [%] Energy [%]

MbedTLS 100 100
Optiga Trust M 21 37
Optiga Trust X 21 38
MAXQ1061 74 223
ATECC608B 38 39
SE050 53 84

As with the cryptographic primitives, we calculated the RSD for all adjusted handshake
measurements. The largest RSD resulted from the execution time of the OPTIGA™ Trust M

IoT 2022, 3 17

at 3.4%. Again, this is an indication of how tightly grouped the measurements are, and thus
only the median is listed in this section, and all the remaining statistical values are available
in the supplementary data (refer to the supplementary materials statement after Section 9).

6. Discussion

Importantly, even though this paper focuses on the performance of secure elements,
their use is not limited to improving execution time and energy consumption. When used
correctly, they also significantly improve the IoT device’s overall security. Furthermore, a
potential increase in execution time or energy consumption compared to the pure MbedTLS
reference is often justified by the gained security.

6.1. Cryptographic Primitives

The results of the cryptographic primitives show that, as expected, no blanket state-
ments can be made about the use of secure elements in regard to execution time and energy
savings. However, looking at the primitives where the secure elements generally exhibited
a higher performance as the software-based reference (i.e., generating an ECC key pair and
ECDSA sign/verify), the performance increase was particularly evident in the execution
time. In order to be able to make further statements about the results, the primitives require
to be examined individually.

As mentioned in Section 4.1.1, the CTR_DRBG needs to be seeded with a strong en-
tropy source. This source would be either the TRNG within the MCU in case of the reference
implementation or the externally connected secure element. By default, MbedTLS reseeds
the CTR_DRBG after every 10,000 calls to mbedtls_ctr_drbg_random, which is used to re-
trieve random data. Furthermore, the prediction resistance can also require the CTR_DRBG
to be reseeded if it is enabled. Thus, the internal TRNG or the externally connected secure
element will not be polled for random data with every call to mbedtls_ctr_drbg_random.
Requesting 32 bytes of random data from the CTR_DRBG without reseeding only requires
0.246 ms and 2.76 µJ, which significantly reduces the average time and energy required for
getting random data. Of course, one has to decide on the tradeoff between reducing the
energy consumption but still reseeding the CTR_DRBG frequently enough in order to keep
the prediction resistance high. It is important to note that in contrast to most TRNGs in the
secure elements, the TRNG in the nRF52840 is not compliant with any certificate. Thus, the
higher time and energy consumption is clearly justified as strong sources of randomness
are at the foundation of information security.

Using a secure element for calculating the SHA-256 over 32 bytes requires vastly more
time and energy than the reference implementation. Arguably, calculating the hash on a
secure element does not improve the overall security of an IoT device as hashing does not
involve any cryptographic secret or key. Thus, the data might as well just be hashed internally.

Looking at the three primitives containing asymmetric cryptography, we see that
secure elements shorten the execution time considerably in 13 out of 15 measurements
while decreasing the energy consumption in 12 out of 15. Depending on your specific
application, it is possible to either significantly improve or degrade the performance in
terms of execution time and energy consumption. Therefore, a suitable secure element
must be carefully evaluated and selected. This necessity reinforces the need for quantitative
comparisons, as presented in this paper, so that developers can improve their application’s
overall security without sacrificing performance.

6.2. DTLS Handshake

All secure elements noticeably save time when compared to the reference implemen-
tation. This saving is due to the MbedTLS hooks introduced in Section 4.5.1, which allow
the ECDSA signature creation and verification to be offloaded to the secure elements. As
observed with the cryptographic primitives, ECDSA computations benefit significantly from
the hardware acceleration supplied by the secure elements. Furthermore, storing the sensitive
key pairs and certificates in the tamper-resistant memory of a secure element, rather than

IoT 2022, 3 18

in the flash of an MCU, can significantly improve protection. Although generating random
numbers with the MCU’s internal TRNG was faster and more energy-efficient, we still added
this as a hook for the DTLS handshake to make use of the secure elements’ certified TRNGs.
Since this hook is only needed for reseeding the CTR_DRBG, the negative impact on time and
energy is negligible and therefore clearly justifiable. Moreover, we did not hook the computa-
tion of hashes such as SHA-256 since this neither improves performance nor security. Finally,
cipher suites using the elliptic curve Diffie-Hellman ephemeral (ECDHE) key exchange
require an ECC key pair to be generated and subsequently used in a key exchange for every
handshake. MbedTLS again provides hooks to offload these two computationally-expensive
computations to the connected secure element. Unfortunately, it turned out that we could
not simply implement these hooks for one of the secure elements and then just duplicate
the code with some minor modifications, mainly because their API structures are vastly
different. While one requires a session (between the secure element and the host MCU) to
be opened, another does not allow the import of arbitrary public keys without sticking to a
strict key importation process. The ECDHE key exchange could not be implemented for the
MAXQ1061 and the SE050 without changes to MbedTLS itself. This should not be a problem
in and of itself but was considered out of scope for this project. Therefore, further significant
time and energy savings can still be expected for these two secure elements.

6.3. Performance Comparison

The Microchip ATECC608B was the most energy-efficient secure element in 3 out of 5
tested primitives when compared to the other secure elements. Especially with resource-
constrained devices, this can be a huge selling point. Although it is important to note that
it was never the fastest one, and a complete DTLS stack needs to be present in the MCU
for performing handshakes as it cannot handle the handshake on its own. This requires a
substantial amount of memory and might end in selecting an MCU with more memory
than otherwise needed.

Interestingly, even though the Infineon OPTIGA™ Trust M is the successor of the
OPTIGA™ Trust X, it didn’t outperform its predecessor as their results were either tied
or only marginally different. Therefore, the selection between these two secure elements
should be purely based on their respective feature set.

The Maxim MAXQ1061 requires the most energy out of all secure elements while
performing asymmetric cryptography. On the other hand, it is more than twice as fast
as the second-ranked secure element when generating random data. Additionally, the
MAXQ1061 can be connected using SPI with a clock speed of up to 4 MHz (20 MHz for
when using the AES stream encryption engine) which is the fastest connectivity out of all
the secure elements. As data transmission is a significant portion of the execution time, this
provides a significant improvement of the energy consumption as well. Furthermore, the
newly released MAXQ1065 has an extended feature set by adding a physically unclonable
function (PUF), extended DTLS support, etc. More importantly, it should be able to perform
the tested primitives with significantly less energy given that the complete communication
can run over SPI with a maximal clock speed of 20 MHz and an active supply current of
5 mA compared to the 17 mA of the MAXQ1061.

Lastly, the NXP SE050 was clearly the fastest secure element for ECDSA signing and
verifying. Additionally, it was never the best but also never the worst regarding energy
consumption, which earns it the all-rounder title.

6.4. Feature Set and Development

From a developer’s point of view, the OPTIGA™ Trust M and OPTIGA™ Trust X
allowed for the most straightforward integration. This is mainly because they provide a lot
of publicly available resources like extensive documentation, examples, and ready-to-use
driver implementations (e.g., Nordic nRF5 SDK, Zephyr, . . .). Furthermore, the same
software framework can be used for the OPTIGA™ Trust M as well as the OPTIGA™ Trust
X without any changes, which makes switching between them extremely easy. Currently,

IoT 2022, 3 19

version 1 (V1) and version 3 (V3) of the OPTIGA™ Trust M are available, with the V3
having additional features (i.e., AES, HMAC, HKDF, . . .). Unfortunately, the OPTIGA™
Trust M V1 and OPTIGA™ Trust X used for this project don’t provide a feature for loading
externally generated private keys into the secure element, and thus have to be generated
internally. In contrast, the OPTIGA™ Trust M V3 is capable of such a protected key update.
Although, not being able to import private keys is arguably a desirable restriction from a
security standpoint as it forces the private keys to never exist outside of the secure element
in the first place. However, during development or in the case of a project like this one,
this is rather cumbersome as we cannot just create a key pair and a corresponding client
certificate once and load it into the secure elements.

Even though the ATECC608B performed the best regarding energy consumption, it
has even stricter setup requirements as it has to be configured, provisioned and then locked
before even the least security-critical functions like getting random data can be executed.
This constraint results in a relatively rigid development process. However, it increases
security by preventing human errors (e.g., locking cannot be forgotten if the device is
subjected to a functional test as it simply would not work without it being locked). In
contrast, other secure elements can be deployed without locking them.

Even though the MAXQ1061 required significantly more energy for the asymmetric
cryptography compared to the ATECC608B, it provides considerably more flexibility during
development in regards to not having to lock the provisioned data before being able to
execute anything. It features a life-cycle model with 4 states (Delivery, Initialized, Operational,
Terminated) and four security conditions (Anyone, Admin, Host, Secure boot), otherwise
known as roles. Finally, for any given life-cycle state, an object in the internal memory can
be assigned any combination of the five object access rules (Read/Export, Write/Import,
Execute, Generate, Delete) and the previously mentioned security conditions. This culminates
in the most extensive role-based access model compared to all the other secure elements.
Furthermore, 32 kB of user-programmable EEPROM storage is significantly more flexible
than other secure elements where the memory is already partitioned in fixed slots.

The SE050’s access model might not be as extensive as the MAXQ1061’s. However, it
features up to 50 kB of user-programmable storage, which should satisfy all secure storage-
related needs of any given project. Moreover, the SE050 has the largest feature set of all
evaluated secure elements regarding algorithms, supported elliptic curves, and bit lengths.
It features another I2C peripheral where it acts as a master in order to read and write
sensors securely. NXP provides extensive API documentation and corresponding samples,
which speed up the development immensely.

6.5. Which Secure Element Is the Right One for the Job?

The measurements show that the fastest secure element for any given task is not
necessarily the most energetically favorable. The same observation also holds in the other
direction, where the most energetically favorable secure element is not necessarily the
fastest. Furthermore, each secure element achieves the first or second rank in execution
time or energy consumption for at least one cryptographic primitive. A look at the general
description of the secure elements also shows that their feature set does not allow any
conclusions to be drawn about their performance or certification.

These are essential findings and underline our motivation for this project. This is
why it is so important for developers to have easy access to information and comparisons,
because depending on the project, a different secure element may be the best choice to
achieve the optimum in terms of performance and energy consumption.

7. Key Findings

Working with secure elements has shown their great potential and need in the IoT-
industry. Secure elements support resource-constrained devices by performing cryptographic
algorithms in hardware and providing tamper-resistant storage. Especially in asymmetric
cryptography, we were able to improve time and energy efficiency compared to the software-

IoT 2022, 3 20

based reference implementation. Conversely, the generation of random numbers resulted in a
lower performance independent of the used secure element. However, it is imperative to note
that some of the secure element TRNGs are certified, which is not the case for the internal
TRNG of the nRF52840. Thus, their use is quite justified despite lower performance.

Furthermore, we strongly advise against hashing with secure elements because the
time and energy consumption exceeds the reference by several orders of magnitude. Espe-
cially as there is also no increase in the security level. In contrast, the secure storage of sen-
sitive material, such as private keys, long-lived session keys, and root-of-trust certificates,
provides an opportunity to increase the overall security of embedded devices significantly.

The results of the measurements clearly show that no general statements can be
made as to which is the best or the worst performing one. Other metrics like feature set,
development experience, and cost must also be considered for this decision because they
might justify a slightly lower performance in some cases. The specific use case doesn’t
just dictate which metric is more important but also what is “better” or “worse”. e.g.,
one would intuitively define a larger feature set as the better one. However, a project
might require some lesser-known curve or algorithm that just happens to be implemented
by a secure element with an otherwise significantly smaller feature set. Fortunately, the
measurement data in this paper, together with the respective data sheets, should allow
developers to make an informed decision.

It all comes down to the availability of extensive and—most importantly—publicly
accessible information for developers to find a suitable secure element for their specific
applications. Until recently, this was made much more difficult because NDAs had to
be signed for accessing the documentation and SDK of each secure element. Fortunately,
more and more manufacturers are moving away from such prohibitive practices, and at
the time of publishing this paper, you only had to sign an NDA for one out of five chips.
We strongly believe that detailed and publicly available information significantly lowers
the threshold for using secure elements.

8. Related Work

As outlined in Section 2, we cannot find any quantitative comparisons of secure elements
even with extensive searches. Works that provide performance figures mostly compare a
single secure element against other types of hardware acceleration. For example, P. Kiet-
zman et al. [31] compared the performance of the ARM CryptoCell 310 (contained in the
nRF52840) to the ATECC608A with various symmetric and asymmetric algorithms. They ob-
tained comparable time and energy consumption results during ECC key generation, ECDSA
signing and verifying (secp256r1) to our measurements with the ATECC608B. In another
publication, P. Kietzmann et al. [32] provide a guideline on PRNGs in the IoT by comparing
various aspects (like statistical properties, execution time, energy consumption, and memory
overhead) of software- and hardware-based solutions. Unfortunately, their results using the
ATECC508A (predecessor of the ATECC608A) cannot be directly compared to ours as these
two secure elements do not contain the same RNG. According to Microchip’s application note
AN2589 [33], “the ATECC608A includes an enhanced high-quality cryptographic random
number generator [. . .]” when compared to its predecessor.

B. Pearson et al. [34] acquired a faster ECDSA signature generation (−4.2%) using
the ATECC608B and secp256r1 and ECDSA signature verification (−19%). However, it
is unclear if they start the time measurement before calling the first ATECC608B API
function and stop the time after the last API call returns, or if they measured the time
between the first and last I2C packet. This point would, of course, explain the observed
differences. Moreover, the listed MCUs (Texas Instruments CC3220SF, Espressif ESP8266,
Espressif ESP32) have maximum clock speeds of 80, 160, and 160 MHz, respectively. This
is consistently higher than the nRF52840, which could lead to faster execution of the API
calls and thus result in shorter execution times.

R. A. Nofal et al. [35] conducted extensive measurements of the TLS handshake and
record layer. Amongst other things, they measured the execution time and energy consump-

IoT 2022, 3 21

tion of ECDSA signing and verifying (secp256r1) on a BCM4343W which is also an ARM
Cortex M4 MCU. As cryptographic libraries, they used MbedTLS, as well as the micro-ECC
(µECC) library [36]. Interestingly, our implementation using MbedTLS on a slower MCU
resulted in a 56% faster ECDSA sign and 26% faster ECDSA verify operation. Conversely,
their µECC implementation is even faster (signing 56% and verifying 85% faster). E. Nasci-
mento [37] and T. Silde [38] concluded independently that µECC’s side channel protections
are not properly documented. Additionally, T. Silde states that further security measures for
differential power analysis are required to be on par with MbedTLS.

9. Conclusions & Future Work

Secure elements can support resource-constrained devices in terms of security by
providing tamper-resistant memory, a variety of cryptographic algorithms, and the on-chip
generation of key pairs with the private key never leaving the secure element. Thus, they
allow increasing the overall security of an IoT device. Unfortunately, there are few to
no quantitative comparisons between secure elements from different manufacturers as
they have been reluctant to publibly release information about their devices’ hard- and
software. This paper provides detailed measurement results of cryptographic primitives
and a real-world application use case executed on five different secure elements to combat
this information gap. The measurement results indicate that secure elements can improve
the battery life of embedded devices depending on the respective execution time and energy
consumption of the cryptographic algorithm. Furthermore, the paper presents detailed
information about the evaluated secure elements to supply developers with additional
information to select a suitable secure element for a given application.

The benchmark used in this paper tests only a few primitives and a single real-world
use case. Since these were chosen strategically, they already provide much information
about the performance of the secure elements. Nevertheless, future work should signif-
icantly expand the benchmark in order to supply the developers with a more extensive
overview of the available secure elements. For example, the already used primitives
should be executed for various data lengths where applicable (e.g., random generation and
SHA-256), and other curves could be used for the asymmetric primitives (e.g., secp256k1).
Moreover, primitives that were not tested in the current benchmark, such as message
authentication codes (MACs) or symmetric ciphers, should also be included. Finally, secure
elements from other manufacturers should also be added in order to be able to create an
even more comprehensive benchmark.

Supplementary Materials: The processed data and the corresponding statistical analysis presented
in this study are available in CSV files at https://www.mdpi.com/article/10.3390/iot3010001/s1.

Author Contributions: Conceptualization, M.N., L.Z., T.S. and A.R.; software, M.N., L.Z. and T.S.;
data acquisition, M.N.; writing—original draft preparation, M.N.; writing—review and editing, L.Z.,
T.S. and A.R.; supervision and project administration, A.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The processed data presented in this study is available in the supple-
mentary material attached to this article. Contact the authors directly for requesting access to raw
measurement data.

Acknowledgments: We thank Infineon Technologies AG, Maxim Integrated, Microchip Technology
Inc., and NXP Semiconductors N.V. for their generous support during the reviewing process of
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/iot3010001/s1

IoT 2022, 3 22

Abbreviations
The following abbreviations are used in this manuscript:

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
AES Advanced Encryption Standard
AG Aktiengesellschaft (US: Incorporated)
API Application Programming Interface
CA Certificate Authority
CSPRNG Cryptographically Secure Pseudorandom Number Generator
CTR_DRBG Block-Cipher Counter-Mode Based Deterministic Random Bit Generator
CV Coefficient of Variation
CoAP(s) Constrained Application Protocol (Secure)
DK Development Kit
(D)TLS (Datagram) Transport Layer Security
EAL Evaluation Assurance Level
ECC Elliptic Curve Cryptography
ECDH(E) Elliptic Curve Diffie-Helmann (Ephemeral)
ECDSA Elliptic Curve Digital Signature Algorithm
EEPROM Electrically Erasable Programmable Read-only Memory
GND Ground
GPIO General-purpose input/output
HKDF HMAC-Based Key Derivation Function
(H)MAC (Hashed) Message Authentication Code
HTTP Hypertext Transfer Protocol
HW Hardware
I2C Inter-integrated Circuit
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IP(v6) Internet Protocol (version 6)
InES Institute of Embedded Systems
IoT Internet of Things
KDF Key Derivation Function
MCU Microcontroller Unit
MDPI Multidisciplinary Digital Publishing Institute
MTU Maximum Transmission Unit
N.V. Naamloze Vennootschap (US: Incorporated)
NDA Non-disclosure Agreement
NIST National Institute of Standards and Technology
PCB Printed Circuit Board
PKCS Public Key Cryptography Standards
PRF Pseudorandom Function Family
PUF Physical Unclonable Function
REST Representational State Transfer
RESTful API that conforms to REST
RFC Request for Comments
(T|D|N)RNG (True|Deterministic|Non-deterministic) Random Number Generator
RSA Rivest-Shamir-Adleman (initials of the authors of the cryptosystem)
RSD Relative Standard Deviation
RTOS Real-time Operating System
SDK Software Developement Kit
SECG Standards for Efficient Cryptography Group
SHA Secure Hash Algorithms
SPI Serial Peripheral Interface
SWI Single-wire Interface
TCP Transmission Control Protocol
UDP User Datagram Protocol
USB Universal Serial Bus

IoT 2022, 3 23

Appendix A. Hardware

Table A1 contains the hardware used for the devices under test as well as the test
infrastructure (e.g., OpenThread border router).

Table A1. Hardware used for the test setup.

Hardware Manufacturer

ATECC608B Microchip Technology Inc.
Chandler, Arizona, United States

MAXQ1061 Maxim Integrated
San Jose, California, United States

nRF52840 DK & Dongle Nordic Semiconductor
Trondheim, Trøndelag, Norway

OPTIGA Trust M V1 & X Infineon Technologies AG
Neubiberg, Bavaria, Germany

Raspberry Pi 3 Model B+ Raspberry Pi Foundation
Cambridge, England, UK

SE050 NXP Semiconductors N.V.
Eindhoven, North Brabant, Netherlands

Appendix A.1. nRF52840 DK

Table A2 contains the configuration and modification required for an nRF52840 DK
version 2.0.1 for reproducing the measurements.

Table A2. Configuration and modification of the nRF52840 DK.

Part Configuration/Modification

SW6 nRF only
SW9 VDD
SW10 VEXT -> nRF
P0.03 100 kΩ pull-down to GND

The host MCU resets the OPTIGA™ Trust M, OPTIGA™ Trust X, and MAXQ1061
using their dedicated RESET pin. On the secure element shield, the RESET pins of the
secure elements are connected to the RESET pin of the Arduino pin header. Lastly, this
connects to P0.18 of the nRF52840 which is also the RESET pin of the MCU. In order for
the MCU to be able to independently control this pin, the reset button (SW5) needs to be
disconnected with the modifications listed in Table A3.

Table A3. Modification of the nRF52840 DK for disconnecting the reset button.

Trace-Cut Jumper Modification

SB42 open
SB44 closed
SB56 open

Appendix A.2. Measurement Setup

Figure A1 illustrates how the Keysight N6705B power analyzer is connected to the
secure node. It supplies the nRF52840 MCU as a constant voltage source with 3.3 V over
channel 1 while simultaneously monitoring the voltage and current of the MCU with the
same channel. Channel 2 is configured as a voltmeter and is connected to the additional
GPIO (P0.03) which signals when the individual cryptographic primitives and the DTLS
hanshake are currently being executed. The rest of the DK (on-board JLink probe, etc.) is
supplied over USB (J2) as this would not be present on a custom board. Thus, it is supplied

IoT 2022, 3 24

separately in order to prevent any erroneous energy measurements of the MCU. The DK
contains a regulator that provides a 3.3 V rail which is then passed through channel 3
configured as an ammeter and finally used to power the secure element.

Keysight N6705B

I2C

GPIOs

GPIO3V3
Supply

3V3
Supply

MCU

nRF52840 DK

USB Power

Secure Element Shield

V&I
CH1

V
CH2

I
CH3

R
es

t o
f D

K

Figure A1. Measurement setup of the secure node for acquiring the execution time and energy
consumption during the stated test cases.

Appendix B. Software

Table A4 contains the versions of all the libraries, frameworks, and SDKs used in this
project. They were further modified to solve incompatibilities and add missing functionality.

Table A4. Software versions of the used libraries and frameworks.

Software Version Year Manufacturer

Californium 2.5.0 2020 Eclipse Foundation
Ottawa, Ontario, Canada

cryptoauthlib 20180329 2018 Microchip Technology Inc.
Chandler, Arizona, United States

MAXQ1061 SDK 5.3.0 2020 Maxim Integrated
San Jose, California, United States

MbedTLS 2.16.4 2020 ARM Ltd.
Cambridge, England, UK

OpenThread ab89f40 2020 Google LLC
Mountain View, California, US

optiga-trust-m 1.30.885 2019 Infineon Technologies AG
Neubiberg, Bavaria, Germany

plug-and-trust 03.00.02 2020 NXP Semiconductors N.V.
Eindhoven, North Brabant, Netherlands

Zephyr 2.2.0 2020 Linux Foundation
San Francisco, California, US

IoT 2022, 3 25

Appendix C. Measurement Values

Appendix C.1. Cryptographic Primitives

Tables A5 and A6 contain the calculated medians of all time and energy measurements while executing the cryptographic primitives. In both tables, the column “MbedTLS”
again represents the reference implementation and lists the execution time and energy consumption of the MCU by itself. The other columns represent the time and energy
required by the MCU and the corresponding secure element combined and list the absolute values as well as the percentages relative to the reference. E.g., during the ECC key
pair generation, the MCU using MbedTLS consumed 12.4 mJ while the ATECC608B combined with the MCU only consumed 2.83 mJ. Thus, the hardware implementation using
the ATECC608B required only 22.8% of the energy that the reference implementation consumed for the same task. Furthermore, Table A7 lists the energy consumption of the
secure element itself without the MCU during the cryptographic primitives.

Table A5. Absolute execution time (abs.) of the node (MCU) during the cryptographic primitives using MbedTLS as a reference and absolute execution time of the
node (MCU and secure element) during the cryptographic primitives using the secure elements with percentages relative (rel.) to reference (median of values,
rounded to 3 significant digits, n = 100).

Time [s] MbedTLS Optiga Trust M Optiga Trust X MAXQ1061 ATECC608B SE050

Abs. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

Random 5.90×10−3 1.44×10−2 2.44×10+2% 1.44×10−2 2.44×10+2% 5.57×10−3 9.44×10+1% 1.93×10−2 3.28×10+2% 1.51×10−2 2.56×10+2%
Gen. ECC Key Pair 4.41×10−1 7.59×10−2 1.72×10+1% 6.86×10−2 1.56×10+1% 1.36×10+0 3.08×10+2% 8.50×10−2 1.93×10+1% 1.13×10−1 2.56×10+1%
SHA-256 Hash 8.19×10−5 6.80×10−2 8.30×10+4% 7.54×10−2 9.21×10+4% 1.21×10−2 1.48×10+4% 1.66×10−2 2.03×10+4% 2.05×10−2 2.50×10+4%
ECDSA Sign 1.85×10−1 7.71×10−2 4.17×10+1% 7.71×10−2 4.17×10+1% 3.05×10−1 1.65×10+2% 9.31×10−2 5.03×10+1% 4.93×10−2 2.67×10+1%
ECDSA Verify 6.09×10−1 9.42×10−2 1.55×10+1% 8.79×10−2 1.44×10+1% 5.40×10−1 8.87×10+1% 5.59×10−2 9.18×10+0% 4.77×10−2 7.83×10+0%

Table A6. Absolute energy consumption (abs.) of the node (MCU) during the cryptographic primitives using MbedTLS as a reference and absolute energy
consumption of the node (MCU and secure element) during the cryptographic primitives using the secure elements with percentages relative (rel.) to reference
(median of values, rounded to 3 significant digits, n = 100).

Energy [J] MbedTLS Optiga Trust M Optiga Trust X MAXQ1061 ATECC608B SE050

Abs. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

Random 1.66×10−4 7.44×10−4 4.49×10+2% 7.67×10−4 4.63×10+2% 4.44×10−4 2.68×10+2% 5.06×10−4 3.06×10+2% 7.33×10−4 4.42×10+2%
Gen. ECC Key Pair 1.24×10−2 4.29×10−3 3.45×10+1% 4.01×10−3 3.23×10+1% 1.13×10−1 9.06×10+2% 2.83×10−3 2.28×10+1% 5.69×10−3 4.57×10+1%
SHA-256 Hash 2.34×10−6 3.66×10−3 1.57×10+5% 4.17×10−3 1.78×10+5% 9.62×10−4 4.12×10+4% 4.33×10−4 1.85×10+4% 9.73×10−4 4.17×10+4%
ECDSA Sign 5.20×10−3 4.37×10−3 8.41×10+1% 4.50×10−3 8.66×10+1% 2.55×10−2 4.90×10+2% 3.08×10−3 5.92×10+1% 2.65×10−3 5.11×10+1%
ECDSA Verify 1.72×10−2 5.39×10−3 3.14×10+1% 5.23×10−3 3.05×10+1% 4.49×10−2 2.62×10+2% 2.05×10−3 1.19×10+1% 2.63×10−3 1.53×10+1%

IoT 2022, 3 26

Table A7. Energy consumption of the secure elements without the MCU during the cryptographic primitives (median of values, rounded to 3 significant digits,
n = 100).

Energy [J] Optiga Trust M Optiga Trust X MAXQ1061 ATECC608B SE050

Random 4.22×10−4 4.45×10−4 3.17×10−4 8.95×10−5 3.26×10−4

Gen. ECC Key Pair 2.67×10−3 2.54×10−3 8.08×10−2 1.03×10−3 2.64×10−3

SHA-256 Hash 2.07×10−3 2.42×10−3 6.84×10−4 6.31×10−5 4.21×10−4

ECDSA Sign 2.71×10−3 2.84×10−3 1.90×10−2 1.09×10−3 1.32×10−3

ECDSA Verify 3.36×10−3 3.34×10−3 3.36×10−2 8.35×10−4 1.35×10−3

Appendix C.2. DTLS Handshake

Tables A8 and A9 list the time and energy required for executing the DTLS handshake. They are constructed in the same way as Tables A5 and A6, with the percentages again
being relative to the reference (column “MbedTLS”).

Table A8. Absolute execution time (abs.) of the node (MCU) during the DTLS handshake using MbedTLS (reference) and absolute execution time of the node (MCU
and secure element) during the handshake using the secure elements with percentages relative (rel.) to the reference (median of values, rounded to 3 significant
digits, n = (see table 6)).

Time [s] MbedTLS Optiga Trust M Optiga Trust X MAXQ1061 ATECC608B SE050

Abs. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

DTLS Handshake 3.63×10+0 7.71×10−1 2.12×10+1% 7.77×10−1 2.14×10+1% 2.67×10+0 7.36×10+1% 1.40×10+0 3.84×10+1% 1.93×10+0 5.31×10+1%

Table A9. Absolute energy consumption (abs.) of the node (MCU) during the DTLS handshake using MbedTLS (reference) and absolute energy consumption of the
node (MCU and secure element) during the handshake using the secure elements with percentages relative (rel.) to the reference (median of values, rounded to 3
significant digits, n = (see table 6)).

Energy [J] MbedTLS Optiga Trust M Optiga Trust X MAXQ1061 ATECC608B SE050

Abs. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

DTLS Handshake 9.85×10−2 3.62×10−2 3.67×10+1% 3.72×10−2 3.77×10+1% 2.20×10−1 2.23×10+2% 3.89×10−2 3.95×10+1% 8.31×10−2 8.44×10+1%

IoT 2022, 3 27

References
1. Thread Group. What is Thread. Available online: https://www.threadgroup.org/What-is-Thread/Overview (accessed on

28 April 2021).
2. Schläpfer, T.; Rüst, A. Security on IoT Devices with Secure Elements. In Proceedings of the Embedded World Conference,

Nuremberg, Germany, 26–28 February 2019. Available online: https://doi.org/10.21256/zhaw-3350 (accessed on 6 May 2021).
3. Zimmerli, L.; Schläpfer, T.; Rüst, A. Securing the IoT: Introducing an Evaluation Platform for Secure Elements. In Proceedings

of the Konferenz Internet of Things—vom Sensor bis zur Cloud, Stuttgart, Germany, 20 November 2019. Available online:
doi:10.21256/zhaw-18794 (accessed on 6 May 2021). [CrossRef]

4. Shelby, Z.; Hartke, K.; Bormann, C. RFC7252: The Constrained Application Protocol (CoAP). IETF. June 2014. Available online:
https://www.rfc-editor.org/rfc/rfc7252.html (accessed on 6 May 2021).

5. Montenegro, G.; Hui, J.; Culler, D.; Kushalnagar, N. RFC4944: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. IETF.
September 2007. Available online: https://rfc-editor.org/rfc/rfc4944.html (accessed on 28 April 2021).

6. MbedTLS. Available online: https://tls.mbed.org/ (accessed on 23 August 2021).
7. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. SECG. January 2010. Available online: https:

//www.secg.org/sec2-v2.pdf (accessed on 23 August 2021).
8. Barker, E.; Kelsey, J. NIST Special Publication 800-90A Revision 1: Recommendation for Random Number Generation Using

Deterministic Random Bit Generators. NIST. June 2015. Available online: https://csrc.nist.gov/publications/detail/sp/800-90a/
rev-1/final (accessed on 11 June 2021).

9. nRF52840 DK. Available online: https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk (accessed on 31
August 2021).

10. Raspberry Pi 3 Model B+. Available online: https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/ (accessed on
31 August 2021).

11. nRF52840 Dongle. Available online: https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle (ac-
cessed on 1 August 2021).

12. Infineon OPTIGA Trust M. Available online: https://www.infineon.com/cms/en/product/security-smart-card-solutions/
optiga-embedded-security-solutions/optiga-trust/optiga-trust-m-sls32aia/ (accessed on 28 September 2021).

13. Optiga-trust-m. Available online: https://github.com/Infineon/optiga-trust-m (accessed on 28 September 2021).
14. Infineon OPTIGA Trust X. Available online: https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-

embedded-security-solutions/optiga-trust/optiga-trust-x-sls-32aia/ (accessed on 28 September 2021).
15. Optiga-trust-x. Available online: https://github.com/Infineon/optiga-trust-x (accessed on 28 September 2021).
16. Maxim MAXQ1061. Available online: https://www.maximintegrated.com/en/products/embedded-security/MAXQ1061.html

(accessed on 28 September 2021).
17. Microchip ATECC608B. Available online: https://www.microchip.com/en-us/product/ATECC608B (accessed on 28 September 2021).
18. Cryptoauthlib. Available online: https://github.com/MicrochipTech/cryptoauthlib (accessed on 28 September 2021).
19. NXP SE050. Available online: https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050

-plug-trust-secure-element-family-enhanced-iot-security-with-maximum-flexibility:SE050 (accessed on 28 September 2021).
20. plug-and-trust. Available online: https://github.com/NXP/plug-and-trust (accessed on 28 September 2021).
21. The Common Criteria. Available online: https://www.commoncriteriaportal.org (accessed on 6 May 2021).
22. Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.A.; Baish, M.L.; Boyle, M. NIST Special Publication 800-90B: Recommendation for the

Entropy Sources Used for Random Bit Generation. NIST. January 2018. Available online: https://csrc.nist.gov/publications/
detail/sp/800-90b/final (accessed on 11 June 2021).

23. Barker, E.; Kelsey, J. (Second Draft) NIST Special Publication 800-90C: Recommendation for Random Bit Generator (RBG)
Constructions. NIST. April 2016. Available online: https://csrc.nist.gov/publications/detail/sp/800-90c/draft (accessed on 11
June 2021).

24. German Federal Office for Information Security. AIS-31. May 2013. Available online: https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_pdf.pdf?__blob=\publicationFile&v=1 (accessed on 29 September 2021).

25. The Zephyr Project. Available online: https://www.zephyrproject.org (accessed on 6 May 2021).
26. OpenThread. Available online: https://openthread.io (accessed on 6 May 2021).
27. Alternative Cryptography Engines Implementation. Available online: https://tls.mbed.org/kb/development/hw_acc_

guidelines (accessed on 12 June 2021).
28. Eclipse Californium. Available online: https://www.eclipse.org/californium (accessed on 6 May 2021).
29. Apache Maven Project. Available online: https://maven.apache.org (accessed on 6 May 2021).
30. Moriarty, K.; Nystrom, M.; Parkinson, S.; Rusch, A.; Scott, M. RFC7292: PKCS #12: Personal Information Exchange Syntax v1.1.

IETF. July 2014. Available online: https://www.rfc-editor.org/rfc/rfc7292.html (accessed on 6 May 2021).
31. Kietzmann, P.; Boeckmann, L.; Lanzieri, L.; Schmidt, T.C.; Wählisch, M. A Performance Study of Crypto-Hardware in the

Low-End IoT. EWSN, ACM. 2021. Available online: https://eprint.iacr.org/2021/058.pdf (accessed on 31 May 2021).
32. Kietzmann, P.; Schmidt, T.C.; Wählisch, M. A Guideline on Pseudorandom Number Generation (PRNG) in the IoT. ACM, 2021.

Available online: https://dl.acm.org/doi/abs/10.1145/3453159 (accessed on 30 November 2021). [CrossRef]

https://www.threadgroup.org/What-is-Thread/Overview
https://doi.org/10.21256/zhaw-3350
doi: 10.21256/zhaw-18794
http://doi.org/10.21256/zhaw-18794
https://www.rfc-editor.org/rfc/rfc7252.html
https://rfc-editor.org/rfc/rfc4944.html
https://tls.mbed.org/
https://www.secg.org/sec2-v2.pdf
https://www.secg.org/sec2-v2.pdf
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://csrc.nist.gov/publications/detail/sp/800-90a/rev-1/final
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.nordicsemi.com/Products/Development-hardware/nRF52840-Dongle
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/optiga-trust-m-sls32aia/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/optiga-trust-m-sls32aia/
https://github.com/Infineon/optiga-trust-m
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/optiga-trust-x-sls-32aia/
https://www.infineon.com/cms/en/product/security-smart-card-solutions/optiga-embedded-security-solutions/optiga-trust/optiga-trust-x-sls-32aia/
https://github.com/Infineon/optiga-trust-x
https://www.maximintegrated.com/en/products/embedded-security/MAXQ1061.html
https://www.microchip.com/en-us/product/ATECC608B
https://github.com/MicrochipTech/cryptoauthlib
https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050-plug-trust-secure-element-family-enhanced-iot-security-with-maximum-flexibility:SE050
https://www.nxp.com/products/security-and-authentication/authentication/edgelock-se050-plug-trust-secure-element-family-enhanced-iot-security-with-maximum-flexibility:SE050
https://github.com/NXP/plug-and-trust
https://www.commoncriteriaportal.org
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90c/draft
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_pdf.pdf?__blob=\publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_pdf.pdf?__blob=\publicationFile&v=1
https://www.zephyrproject.org
https://openthread.io
https://tls.mbed.org/kb/development/hw_acc_guidelines
https://tls.mbed.org/kb/development/hw_acc_guidelines
https://www.eclipse.org/californium
https://maven.apache.org
https://www.rfc-editor.org/rfc/rfc7292.html
https://eprint.iacr.org/2021/058.pdf
https://dl.acm.org/doi/abs/10.1145/3453159
http://dx.doi.org/10.1145/3453159

IoT 2022, 3 28

33. Logaswamy, K. AN2589: Differences between the ATECC608A and ATECC508A CryptoAuthentication Devices. Available online:
http://ww1.microchip.com/downloads/en/Appnotes/00002589A.pdf (accessed on 30 November 2021).

34. Pearson, B.; Luo, L.; Zhang, Y.; Dey, R.; Ling, Z.; Bassiouni, M.; Fu, X. On Misconception of Hardware and Cost in IoT Security
and Privacy. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May
2019. Available online: https://ieeexplore.ieee.org/abstract/document/8761062 (accessed on 31 May 2021).

35. Nofal, R.A.; Tran, N.; Garcia, C.; Liu, Y.; Dezfouli, B. A Comprehensive Empirical Analysis of TLS Handshake and Record Layer
on IoT Platforms. In Proceedings of the 22nd International ACM Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWIM ’19), Miami Beach, FL, USA, 25–29 November 2019. Available online: https://dl.acm.org/doi/10.1
145/3345768.3355924 (accessed on 31 May 2021).

36. Micro-ecc. Available online: https://github.com/kmackay/micro-ecc (accessed on 12 June 2021).
37. Nascimento, E.; Chmielewski, L.; Oswald, D.; Schwabe, P. Attacking Embedded ECC Implementations through Cmov Side

Channels. Selected Areas in Cryptography 2016, St. John’s, Canada, 2016. Available online: https://cryptojedi.org/papers/
cmovsca-20160718.pdf (accessed on 12 June 2021).

38. Silde, T. Comparative Study of ECC Libraries for Embedded Devices. Norwegian University of Science and Technology.
March 2019. Available online: https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf
(accessed on 12 June 2021).

http://ww1.microchip.com/downloads/en/Appnotes/00002589A.pdf
https://ieeexplore.ieee.org/abstract/document/8761062
https://dl.acm.org/doi/10.1145/3345768.3355924
https://dl.acm.org/doi/10.1145/3345768.3355924
https://github.com/kmackay/micro-ecc
https://cryptojedi.org/papers/cmovsca-20160718.pdf
https://cryptojedi.org/papers/cmovsca-20160718.pdf
https://tjerandsilde.no/files/Comparative-Study-of-ECC-Libraries-for-Embedded-Devices.pdf

	Introduction
	Motivation
	Technical Background
	Secure Elements
	Constrained Application Protocol
	Thread Protocol

	Materials and Methods
	Test Cases
	Cryptographic Primitives
	DTLS Handshake

	Test Setup
	Evaluated Secure Elements
	Supported Cryptographic Primitives
	Memory Structure
	Available Interfaces
	Energy Consumption and Sleep Modes
	Provisioning
	Compliance
	Resources for Development

	Selected Communication and Sleep Modes
	Software
	Secure Node Firmware
	Certificate Authority (CA)
	CoAPs Server

	Measurement Setup

	Results
	Cryptographic Primitives
	DTLS Handshake

	Discussion
	Cryptographic Primitives
	DTLS Handshake
	Performance Comparison
	Feature Set and Development
	Which Secure Element Is the Right One for the Job?

	Key Findings
	Related Work
	Conclusions & Future Work
	Hardware
	nRF52840 DK
	Measurement Setup

	Software
	Measurement Values
	Cryptographic Primitives
	DTLS Handshake

	References

