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Management Summary

In 1990, Harry Markowitz was awarded with the Nobel Prize for his work on modern
portfolio theory. To this day, the mean-variance framework is the preferred method to
pick investments for many retail and institutional investors. Meanwhile, big data and the
real-time economy have created new challenges and opportunities in the field of asset
allocation. These developments are well documented, and portfolio management firms
continuously implement the findings into sophisticated models. Nevertheless, only a few
comprehensive software models are available publicly to use, study, or modify.

We tackle this issue by engineering practical tools for asset allocation and implementing
them in the Python programming language. With its clear syntax, efficient development,
and usability, Python provides an ideal framework for this thesis. We turn to convex
optimization to formulate specific portfolio optimization problems and incorporate differ-
ent investment constraints. Even though convex optimization proves to offer a restricted
class of optimization problems, its fundamental advantages become apparent throughout
this thesis. We consistently examine our problems by solving them analytically or with
numerical examples. The focus is to keep the tools simple enough for interested practi-
tioners to understand the underlying theory yet provide adequate numerical solutions. For
this reason, we provide code snippets of the accompanying routines as well as valuable
visuals to describe the input data and the obtained results.

We extend the original mean-variance model by going beyond the first two moments of
the return distribution. Particularly we set up optimization problems with more advanced
risk measures such as expected shortfall. We show how estimation errors in practical
asset allocation can be reduced by combining the sample covariance matrix with a more
structured estimator through a process called shrinkage. The effect of the implemented
routines becomes apparent in the out-of-sample optimization results. Additionally, we
provide a discussion on methods that did not demonstrate the anticipated improved results
or did not meet our standard of efficiency and comprehensibility.

We find that most optimization problems can be expressed in convex form and therefore
be implemented and solved efficiently using available Python modules to create portfo-
lios from real-world data. Finally, we demonstrate how even in an environment with high
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correlation, achieving a competitive return with a lower expected shortfall and lower ex-
cess risk than the given benchmark over multiple periods is possible. We underline this
through various studies with historical data from the Swiss equity market.
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1 Introduction

Every investor, be it a trader, a mutual fund, or a private investor, has to decide how
to allocate their given resources. Even the unconscious decision of holding a cash-only
portfolio is ultimately an investment decision. While one can rely solely on his or her
intuition, follow trends, or take advice from other parties, institutional investors are most
often bound by regulations, prospectus, and the need to generate excess returns compared
to a given benchmark. The key is to not only choose one fitting asset but find a combina-
tion of securities that complement each other. The practice of spreading among different
investments to reduce risk is known as diversification.

Asset Allocation involves assigning different weights (portions of wealth) to different as-
set categories such as stocks, bonds, or cash. While doing so, the investors are looking
for a combination that best suits their needs in an environment they cannot predict. To
determine the optimum allocation, one has to estimate, assess, model, and manage uncer-
tainty. Since this is no trivial task with little to no given variables, the investor must rely
on quantities and function estimates.

One of the best-known optimization models in finance is the portfolio selection model
developed by Harry Markowitz [Mar52] which forms the foundation of modern portfolio
theory. The mean-variance approach by Markowitz led to significant developments in
financial economics such as Tobin’s [Tob58] mutual fund separation theorem and Sharpe’s
[Sha64] Capital Asset Pricing Model (CAPM). Markowitz was awarded the 1990 Nobel
Prize for Economics for the enormous influence on both theory and practice.

For this reason, there have been many advances and modifications of the original model in
the past decades. While the theoretical findings are well documented and portfolio man-
agement firms continuously implement these findings into sophisticated models, only a
few comprehensive software models are available publicly to use, study, or modify. For
this reason, this thesis aims to engineer and implement practical tools for asset allocation
with Python. The tools have to be simple enough for interested practitioners to under-
stand the underlying theory and sufficient enough to provide proper numerical solutions.
We answer the question of how to apply the principles of portfolio theory and the mathe-
matics of convex optimization efficiently and comprehensibly in practical asset allocation
as follows.
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1.1 Structure, Focus, and Methods
In Section 2 of this thesis, we establish the building blocks needed to model the securi-
ties market. Section 3 presents the mean-variance framework introduced by Markowitz
[Mar52] describing the basic principles of portfolio optimization. We extend the model
by adding constraints to different aspects of the portfolio. Further, we develop a measure
of the investor’s objectives and an understanding of optimality. In Section 4, we turn to
mathematical optimization, namely convex optimization, to formulate specific asset allo-
cation problems. In the first part, we work with analytical solutions where possible. We
then apply the principles in Section 5 as we implement the problems with Python to solve
them numerically. Mainly because it is not possible to determine analytical solutions to
most non-trivial optimization problems. Moreover, we can use historical time series to see
how the optimized portfolios perform in empirical backtesting. Python offers an ideal en-
vironment to both optimize, backtest and visualize our methodology and results. Section
6 and 7 provide a discussion on the results with a focus on the Swiss stock market.
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2 Asset Allocation

We consider a financial market where N assets i = 1, 2, ...,N are traded. Typical assets
are common stocks, bonds, or domestic and foreign cash. Generally, the term ”asset” can
be associated with any financial instrument that can be bought or sold.

2.1 Asset Prices and Returns
Every asset is described by its return as a profit on an investment over a defined period of
time, in proportion to the original investment.

Let Pi(t) be the Price of an asset i at time t and Pi(t− 1) the respective price at time t− 1.
Since stock prices can only take a certain set of values the variable Pi(t) is a positive,
discrete random variable. The linear return is defined as:

ri =
Pi(t)

Pi(t− 1)
− 1 (2.1)

Because the distribution of linear returns is not symmetrical, in finance many practitioners
use the logarithmic or compounded return which we define as:

Ri = ln(ri + 1) = ln
(

Pi(t)
Pi(t− 1)

)
(2.2)

Unlike the linear returns, the distribution of the compounded returns, considering them
independent and identically distributed random variables, can be easily projected to any
horizon. A broader discussion on this topic is to be found in Chapter 6 of this thesis. For
returns that are close to zero, the compounded return is almost identical to the linear return.
This is congruent with what was found when solving the problems in this thesis for linear
and logarithmic returns; the difference in results was minimal. Nevertheless, as Hudson
and Gregoriou [HG15] find, in the context of investigations into the terminal wealth of
investors, it seems clear that simple return is the most appropriate measure to use. Apart
from time aggregation or otherwise mentioned, we will work with linear returns in this
thesis.
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2.2 Distribution of Returns
Before we can estimate or forecast the expected return we have to look at the distribution
of ri. The most straightforward way to describe a random variable’s distribution is by
using the probability density function. Intuitively, the function shows a peak where the
measurement result is most likely to occur. Formally the probability density function is
defined as follows:

P[X ∈ a, b] =
∫ b

a
fX(x) dx (2.3)

Whereas the probability P is a measurement of the likelihood that X takes place in an
interval [a, b]. Most academic finance theory, including Sharpe’s [Sha64] CAPM and the
Black–Scholes [BS73] model for option pricing, rests on the assumption that stock returns
are normally distributed. The normal distribution with its bell shape is the most widely
used distribution. It is characterized by two parameters µ and σ2. The parameter µ is a
location parameter known as the expected value. The dispersion parameter σ2 is known
as the variance. The following notation is used to indicate that X is normally distributed:

X ∼ N(µ, σ2) (2.4)

To test if the normal distribution is an adequate representation of stock returns, we plot
a histogram showing the monthly returns of the Swiss Performance Index SPI1 for 18
consecutive years in Figure 2.1. On top of the Histogram, we overlay the theoretical
normal distribution. As expected, it looks approximately normally distributed with some
breakouts at both ends. These extreme events that occur more frequently than assumed by
the normal distribution are known as ”fat tails”.

According to Newbold et al. [NCT13], one of the most straightforward ways to test for
normality is to use a QQ probability plot. With this graphical method, we compare the
actual distribution with the theoretical (normal) distribution by plotting their quantiles
against each other. This yields a similar result in Figure 2.2. For most values, the normal
assumption holds. However, the more we move towards the ends, the greater the devi-
ation becomes. Also, the SPI returns are distributed skinnier in its center compared to
the normal distribution. The same can be observed when analyzing other indices, sectors,
or asset classes. It also has to be noted that the normality assumption is more accurate
for longer intervals. The distribution of monthly returns is closer resembled by the normal

1The SPI is a total-return index that tracks the performance of more than 200 of the largest Swiss
companies.
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distribution than weekly or daily returns. The discussion in Section 6.1 compares different
intervals and gives more insight into how returns are distributed.

0.15 0.10 0.05 0.00 0.05 0.10
Fit results: mu = 0.006,  std = 0.038
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Figure 2.1: Histogram of normalized actual return distribution with normal
distribution overlaid (Data: Thomson Reuters).
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Figure 2.2: Normality testing QQ Plot (Data: Thomson Reuters).

Given these properties, Peiró and Amado [Pei94] detail different alternative distributions.
Nevertheless, mean-variance models still rely on the normality assumption for different,
mostly practical, reasons. One of them is that the normal distribution is a good enough
representation of the actual distribution. Another reason is that the sum of two normally
distributed random variables is also normally distributed [BGP20], and it is characterized
by only two parameters that are easy to estimate. In this thesis, we will therefore assume
that asset returns are distributed normally, if not otherwise stated.
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2.3 Estimating Returns
As for any model, the output is only as good as its input. Therefore, much of the effort
should go into composing the anticipations or estimates, especially of the expected return
E(r). A good way to approach the expected return is to create a list of possible scenarios
s and specify both the probability of each scenario and the associated return. Then the
expected return E(ri) for asset i is defined as:

E(ri) = µi =
S

∑
s=1

ri(s)P(ri(s)) (2.5)

The notation indicates that the summation extends over all possible scenarios.

Since neither this thesis nor Markowitz [Mar52] himself in his introduction of the mean-
variance framework goes into detail on how these anticipated returns should be decided
upon, we consider the estimates as given. The most straightforward way to do so is by
using the arithmetic mean of historic returns:

E(ri) = µi =

T
∑
t=1

ri(t)

T
(2.6)

According to Meucci [Meu05, p. 102], sample estimates only make sense if the quantities
to estimate are market invariants. That is if they display the same statistical behavior inde-
pendently across different periods. In equity-like securities, the returns are approximately
invariant. This is why the mean-variance approach is usually set in terms of returns.

The sample mean µ can be considered a good estimator of the population mean µ if the
number of provided historic single-period returns is large.

2.4 Risk
Financial theory refers to risk as the degree of uncertainty or the chance that an outcome
will differ from what the investor expected. In reality, most investors are only concerned
about downside risk, meaning that the outcome is worse than expected. Even though the
variance is a symmetric measure, the mean-variance framework and many other financial
models consider variance one of the main risk measures. Mathematically the expectation
of the squared deviations about the mean (X− µ)2 known as the variance σ2 is given by:

σ2 = E[(X− µ)2] (2.7)
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Equivalent to the mean of historic returns (2.6) we calculate the historic standard deviation
σ2
i as a proxy of the deviation of the return ri from its mean µi as follows:

σ2
i =

T
∑
t=1

(
ri(t)− µi

)2

T
(2.8)

Again, this is only true if we assume that the sample mean is a good estimator of the
population mean. The standard deviation σ is the positive square root of the variance. An
asset that is considered to be risk-free therefore has a standard deviation of zero.

2.5 Portfolio definition
A portfolio is a distribution of a given amount of initial capital across a combination of dif-
ferent assets. The assets do not necessarily have to be of different asset classes. In financial
theory, a distinction is made between risky assets and risk-free assets (see Section 2.4).
In this thesis, if not otherwise stated, all assets are considered to be associated with some
risk. Furthermore, we consider all portfolios as self-financing, which means that there is
no addition or withdrawal of funds over the time of observation. The acquisition of a new
asset must be funded through the sale of an existing asset.

2.5.1 Portfolio weights
We consider a portfolio with n (n ∈ N) different assets. The Value Vi(t) invested in asset
i at time t can be expressed as:

Vi(t) = kiPi(t) (2.9)

Where ki is the number of securities of the i-th asset. The Value V(t) invested in the total
Portfolio at time t is given by:

V(t) =
n

∑
i=1

kiPi(t) =
n

∑
i=1

Vi(t) (2.10)

From (2.9) an (2.10) we can now express the relative weight wi(t) of asset i at time t:

wi(t) =
kiPi(t)
n
∑
i=1

kiPi(t)
=

Vi(t)
V(t)

(2.11)
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With no further constraints (see Section 3.3) such as limits on leverage or short selling,
the relative weight wi(t) of an asset can theoretically take any value in the space of real
numbers R. It can be seen in (2.11) that the relative weights, all other things being equal,
changes over time with the associated asset price. In this Thesis weights are always un-
derstood as relative weights. Note, that in the Markowitz [Mar52] approach to portfolio
creation the relative weights always have sum up to one:

w(t) =
n

∑
i=1

wi(t) = 1 (2.12)

This requirement must be taken into account when formulating the constrained optimiza-
tion problem in Section 4.2.

2.5.2 Expectations and Covariances of Returns
From (2.6) and (2.11) we now define the expected return on the portfolio as:

E(r) = µ =
n

∑
i=1

wiE
(
ri(t)

)
=

n

∑
i=1

wiµi (2.13)

The variance of the portfolio return, is calculated as follows:

σ2 = E
[
(ri − µi)

2
]

= E
[( n

∑
i=1

wi(ri − µi)
)2]

=
n

∑
i=1

n

∑
j=1

E[wiwj(ri − µi)(rj − µj)]

=
n

∑
i=1

n

∑
j=1

wiwjcovar(ri, rj)

=
n

∑
i=1

n

∑
j=1

wiwjσi,j

(2.14)

2.5.3 Matrix Notation
Matrices provide handy ways to organize data sets together; transforming and modify-
ing them becomes much more straightforward than working with each matrix constituent
separately.

From (2.11) we denote ω = [w1,w2 . . . ,wn]T a one-column vector containing all port-
folio weights. Similarly M = [µ1, µ1 . . . , µn]T contains all the expected returns arranged
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into a one-column vector. The covariance Matrix is setup as:

Σ = [σi,j] =


σ11 . . . . . . σ1n
... . . . ...
... . . . ...

σn1 . . . . . . σnn

 (2.15)

Note that the diagonal elements Σ = [σi,i] of the covariance matrix are the variances of
returns.

The portfolio then has an expected return:

E(r) = ωTM (2.16)

With a standard deviation:
σ =

√
ωTΣω (2.17)

With (2.16) and (2.17) we have established the two main parameters of the mean-variance
framework.
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3 Mean-Variance Framework

The mean-variance framework pioneered by Markowitz [Mar52] is the most common ap-
proach to asset allocation, in which the investor seeks to optimize the portfolio’s expected
return for a given degree of variance and a given set of investment constraints. Under the
assumptions made in Chapter 2, it is possible to estimate the market parameters that feed
the model and then solve the resulting optimization problem. The underlying assumptions
to the model are: (1) All assets are arbitrarily interchangeable at any time. (2) Investors
consider an equal time horizon. (3) Prices reflect all available information. (4) Investors
base their decisions on expected return and risk.

3.1 The general Approach
The observation that diversification can reduce risk is fundamental to any portfolio op-
timization model. By incorporating a combination of risky assets with different correla-
tions, the portfolio’s overall risk can be reduced. In Figure 3.1 the pairwise correlation of
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Figure 3.1: Strong negative correlation, strong positive correlation and un-
correlated returns (from L to R).

different sets with differently correlated returns can be seen. In theory, if the returns show
perfect negative correlation, perfect diversification could be achieved. This would mean
that the variance of returns, the measure of risk for the investor, would be zero. On the
other hand, if all assets were perfectly independent, the risk would tend toward zero as
more and more assets were added. In reality, asset returns are neither perfectly correlated
nor perfectly independent. As noted by William Sharpe in his work on the Capital Asset
Pricing Model [Sha64, p. 439], risk can be reduced by adding more assets to a portfolio,
but only to the limit of the average covariance. Average covariance therefore becomes a
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measure of the market risk which cannot be reduced by diversification. It is also true that
the mitigation of risk generally leads to lower expected returns. Nevertheless, a look at
the possible combinations of assets reveals that some portfolios dominate others in terms
of the expected return for a level of standard deviation.

1 def random_portfolio(timeseries):
2 #Return Vector (3x1)
3 M = pd.DataFrame(timeseries.mean())
4 #Weight Vector (3x1)
5 w = pd.DataFrame(gen_weights(timeseries.shape[1]),
6 index=['A', 'B', 'C'])
7 #CovMatrix
8 S = pd.DataFrame(timeseries.cov())
9

10 mu = w.T@M
11 sigma = np.sqrt(w.T@S@w)
12

13 return mu, sigma, w
14

15 for _ in range(300):
16 sim = sim.append(pd.DataFrame(np.concatenate(
17 random_portfolio(df_returns)).T,
18 columns=['Mean', 'Std', 'wA', 'wB', 'wC'])
19 )

Listing 3.1: Python code generating a set of 300 portfolios with random
weights for three random arbitrary risky assets A, B and C.

The Python code in Listing 3.1 lets us generate and visualize a set of 300 portfolios con-
sisting of three arbitrary assets with a random proportional weight assigned to each asset.
As we plot the means and standard deviations of the portfolios generated, in Figure 3.2 the
described effect can be seen clearly. It is observable that there are different portfolios with
equal means and different standard deviations and vice versa. Furthermore, there seems
to be an invisible boundary on both ends of the mean distribution. The top boundary of
this area, which looks like it is part of a hyperbola is called ”the efficient frontier”. All
portfolios on the efficient frontier are Pareto optimal, meaning that no other combination
of assets yields a higher return for a given amount of risk. On the contrary, the lower part
of the frontier contains all inefficient portfolios, meaning that another combination of the
same assets yields a higher return for the same amount of risk. In this thesis, we adjust the
weights of assets in a portfolio to achieve such Pareto efficiency.

A special case of an optimal portfolio is the minimum variance portfolio, located at the
global minima of the hyperbola surrounding all portfolios (red dot in Figure 3.2). This
portfolio is not particularly desirable; it is merely characterized by the fact that it is the
single portfolio with the lowest variance. According to Merton’s Analytic Derivation of
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Figure 3.2: Plot of standard deviation and mean as a measure of risk and
return for the generated portfolios.

the Efficient Portfolio Frontier [Mer72] the minimum variance portfolio marks the begin-
ning of the efficient frontier. The portfolio with the highest return marks the end of the
frontier. This portfolio naturally only consists of the one single asset with the highest
return.

3.2 Utility
Utility is a measure of how much happiness someone derives from something. We intro-
duce this concept here because an investor’s actions have direct effects on wealth which
in turn affects utility. Before we can approach utility, we have to define the investor’s
objective. Meucci [Meu05, p. 239] differentiates between the following three common
objectives: Relative wealth, and net profits, absolute wealth. Relative wealth is an objec-
tive sought after, for example, by fund managers who evaluate their performance against
a benchmark over a specific horizon. Opposite, traders who focus on their daily profit
and loss most likely have a net profit objective for their time horizon, which is a single
trading day. Most investors nevertheless focus on the value at the horizon of the portfolio
and therefore have an absolute wealth objective. Every investor can have one or more
objectives. If multiple objectives exist, it has to be analyzed if an order exists such that
one stochastically dominates or is dominated by another. In this thesis, we consider only
investors who have a single, absolute wealth objective.

As mentioned before, a utility function describes how much happiness someone derives
from a generic outcome regarding their objective. Therefore the expected utility can be
calculated by weighting the utility from every possible outcome by the probability of that
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outcome. This is the Von Neumann-Morgenstern [VM44] specification of expected utility.
Further, it states that people (investors) have preferences. When the investor has to choose,
he or she can tell whether portfolio A is preferred to B,U(A) > U(B); is indifferent
between A and B,U(A) = U(B); or prefers B to A,U(A) < U(B). Those choices are
transitive: If someone prefers A to B and prefers B to C, it follows that portfolio A is
preferred to C. Portfolios with equal utility are equally desirable. From the assessment
of these preferences, the individual utility function can be formulated. If an investor gets
positive marginal utility from taking onmore risk, he or she is called risk-seeking. Positive
but diminishing marginal utility is one of the characteristics in most models. The marginal
utility is diminishing because as the investor takes on more and more risk, he or she enjoys
each additional unit less.

1.00 0.75 0.50 0.25 0.25 0.50 0.75 1.00
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U(c)

a = -1
a = 1
a = 0

Figure 3.3: Exponential Utility Function for risk-averse (a > 0), risk-neutral
(a = 0) and risk-seeking investors (a < 0).

As it can be seen, utility is still an abstract concept, and there is no exact measure even in
ex post-analysis. Therefore, much of the research, such as prospect theory developed by
Kahneman and Tversky [KT79] is based on results from controlled studies. This thesis
does not go into further detail on how the individual utility function is determined. For the
sake of comprehension, we consider an exponential utility function with a being a constant
describing the investor’s risk profile and c the variable that the investor prefers more of,
such as consumption.

U(c) =

{
(1− e−ac)/a a ̸= 0
c a = 0

}
(3.1)

In financial literature, this variable is often denoted asW since the utilityU depends on the
investor’s wealth. Other types of utility functions, such as isoelastic utility or power utility
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functions, are considered more realistic since they exhibit decreasing absolute risk aver-
sion. Yet, due to its concavity and the relatively simple mathematical form, the quadratic
utility function as a simplifying assumption has prevailed in most academic literature.
Figure 3.3 displays the utility function (3.1) for different risk profiles. It can be seen that
the risk-averse investor prefers the portfolio that has less risk. In contrast, the risk-seeking
investor chooses the investment with more risk since he or she gains utility from increased
risk. The Risk-neutral investor is indifferent among the investments as long as their ex-
pected returns are the same. This shows how the investor’s utility function influences the
investment decisions.

3.2.1 Absolute risk aversion
Since the second derivative of the utility function is not invariant to positive linear trans-
formations of the utility function this cannot be used as local measure of risk aversion.
Therefore Arrow [Arr71] and Pratt [Pra64] came up with a measure of risk-aversion that
would remain the same even after an affine transformation of the utility function:

A(c) = −U′′(c)
U′(c)

(3.2)

The negative sign in front of the division of the second derivative by the first derivative
ensures that a larger number indicates a more risk-averse investor. This also implies that
the Arrow-Pratt risk aversion is positive only if the investor is locally risk-averse. We
will use a risk aversion parameter similar to A(c) to scale the relative importance of the
estimated return and the estimated risk when formulating the optimization problem in
Chapter 4.

3.3 Constraints
To determine the optimal allocation, the investor’s constraints have to be known first.
Constraints can arise for many different reasons. They can be imposed by law or corporate
policies in the case of institutional investors. Other times they are chosen voluntarily to
avoid certain undesirable portfolios. A constraint that was already introduced (2.12) is
that in the Markowitz style portfolio, all weights have to sum up to one. Following we list
some of the most common constraints.
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3.3.1 No-hold constraints
Constraint that forbids the holding of a specific asset i. This can be extended to multiple
assets or a class of assets:

wi = 0 (3.3)

3.3.2 Long/short constraints
Short sales can be achieved by borrowing an asset and then selling it without actually
owning it. This constraint ensures that only long positions are entered. Meaning that
assets cannot be sold if the investor does not own them:

wi ≥ 0 (3.4)

3.3.3 Budget constraints
The initial Value of the Portfolio V0 (2.10) cannot exceed the Budget as in initial wealth
W0 provided by the investor:

V0 ≤ W0 (3.5)

3.3.4 Concentration constraints
The holding of each asset i can be limited to a maximum fraction of the portfolio:

wi ≤ wmax (3.6)

Another form of this constraint is to limit the weight of the sum of the K largest positions:

K

∑
i=1

wi ≤ wmax (3.7)

3.3.5 Leverage constraints
We measure leverage L in excess of one. The leverage can therefore be limited with the
constraint:

n

∑
i=1

|wi| − 1 ≤ Lmax (3.8)

Note that to implement a leverage constraint effectively, the base constraint (2.12) has to
be lifted. Also, if a budget constraint (3.5) is already implemented, the leverage constraint
does not affect the optimization since the budget constraint already implies zero leverage.
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Furthermore, the usage of leverage presupposes that lending and borrowing are available
without any restrictions.

1 2 3 4 5
Standard Deviation

0.3

0.2

0.1

0.0

0.1

0.2

0.3
M

ea
n 

(E
xp

ec
te

d 
Va

lu
e)

Figure 3.4: Possible random portfolios with (blue) and without (red) con-
straints

The above-listed constraints are not exhaustive. Every constraint restricts the choice of
possible feasible portfolios. This also limits the number of feasible optimal portfolios,
which means that an unconstrained optimization might yield a portfolio that better fits the
investor’s profile. This has to be kept inmindwhen implementing constraints. To visualize
the effect of constraints we again generate several random portfolios in Figure 3.4. For
the set of blue portfolios only positive weights (long-only) were considered. For the set of
red portfolios this constraint was not applied. While the constraints mentioned above all
limit holdings, there are also constraints limiting trading which are especially important
in multi-period models. Such constraints can impose turnover limits, limits relative to
trading volume, no-buy, no-sell, or trade restriction.
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4 Optimization

In the previous chapters we have collected information on the market and projected them
into the future by estimating the anticipated returns and their variances for individual as-
sets as well as on the portfolio level. Furthermore, we have collected information on the
investor by defining the utility function and therefore setting a measure for risk aversion.
We are now setting up the function to be optimized (either minimized or maximized) to
derive the optimal portfolio, given these inputs. Mathematically, an optimization problem
has the following form:

minimize f0(x)

subject to fi(x) ≥ bi, i = 1, ...,m
(4.1)

The vector x = (x1, ..., xn) is the optimization variable of the problem, the function f0
is the objective function, the functions fi are the (inequality) constraint functions, and the
constants b1, ..., bm are the limits, or bounds, for the constraints. For a minimization prob-
lem, a vector x∗ is called optimal, or a solution of the problem (4.1), if it has the smallest
objective value among all vectors that satisfy the constraints. Characterized by specific
forms of the objective and constraint functions optimization problems are organized into
different classes.

As we will find, general optimization is difficult, in some extreme cases even impossible.
This for many reasons: First, the number of feasible candidates grows exponentially in the
search space. Secondly, the search algorithms often get trapped in local minima or saddle
points. In general, complex feasible regions are complicated to navigate [BV04, p. 128].
An exception is when the objective function f (x) is convex, and the feasible region sat-
isfying all constraints is a convex set. Only then, local extrema are also guaranteed to be
global extrema, which allows efficient algorithmic solving [BV04, p. 8].

Least-squares problems are optimization problems with no constraints and an objective
which is a sum of squares. A solution can be found by solving a set of linear equations.
With linear programming, we have another class in which the objective and all constraint
functions are linear. Compared to the least-squares problems, there is no simple analyti-
cal formula for the solution. Convex optimization problems are of the same form as (4.1)
where the functions f0, ..., fm are convex. Meaning that the objective function, as well
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as all the inequality constraints, have to be convex. As with linear programming, there
is often no analytical formula for the solution of convex optimization problems. Never-
theless, there are certain algorithms such as interior-point methods [Wri04] that can solve
these problems in a small number of iterations. As we will see, the convex problem can
be solved efficiently and reliably using available software.

4.1 Convex Optimization
According to Boyd et al. [BV04] the first and most challenging step in using convex
optimization is in recognizing and formulating the problem. A function f (x) is convex if:

f (x0t+ x1(1− t)) ≤ f (x0)t+ f (x1)(1− t), t ∈ [0, 1] (4.2)

As it can be seen in the plot on the left of Figure 4.1 the inequality (4.2) signifies that the
line segment between [x0, f (x0)] and [x1, f (x1)], has to lie above the graph of the func-
tion. A function f is strictly convex if (4.2) holds whenever x0 ̸= x1 and 0 < t < 0.
A function f is concave if − f is convex. Because of the definition of convexity, convex

f(x0 * t + x1 * (1 - t))
f(x0) * t + f(x1) * (1 - t)

f(x0 * t + x1 * (1 - t))
f(x0) * t + f(x1) * (1 - t)

Figure 4.1: For a Convex function (left) the line segment (between any two
points) lies above the graph. This property is not fulfilled by the non-convex

function (right).

optimization is a restricted class of optimization problems. Nevertheless, it is an instru-
mental class that offers many advantages that justify its heavy use in different kinds of
applications such as machine learning, control, signal and image processing, networking,
and many more.

For one, solutions to convex problems guarantee that the found local extrema are also
global extrema. Further, it offers good ways to analyze the sensitivity of the solution to
small changes to the constraints. As we will see in Chapter 5, there are already many
high-quality solvers available to tackle convex problems. Also are ready to use convex
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modeling languages, which transform mathematical syntax into solver language just as a
compiler automates the translation into machine language.

4.2 Constrained Optimization
TheMarkowitz [Mar70, p. 175] optimization problem can be formulated in three different
ways which lead to equivalent results. The following formulation yields the portfolio with
the least variance for a given target (mean) return rP, desired by the investor:

minimize 1
2
wTΣw

subject to wTM = rP

wT1m = 1

(4.3)

In Section 3.3 different constraints were introduced. We are now applying them to our
objective function. The first constraint ensures that the achieved return is equivalent to
the desired target return. The second constraint is the base constraint (2.12) that applies
to all Markowitz style optimization problems. The constant 12 is added for convenience in
calculation and does in no way affect the solution. For the second variation of this problem
the return is being maximized given an upper limit on the variance σ2

P of the portfolio:

maximize wTM

subject to wTΣw ≤ σ2
P

wT1m = 1

(4.4)

If the first constraint would be voided, the optimization would logically lead the investor
to invest all his or her wealth wn = 1 in the one asset with the highest return, leaving all
other possible assets without an investment.

None of the previous mentioned formulation can directly reflect the investor’s objective
to put weights on the conflicting interest of minimal risk and maximum return. Only by
adding a scalar variable γ gauging the trade-off between risk and return, the risk-adjusted
return can be calculated by solving the following quadratic program:

maximize wTM− γ

2
wTΣw

subject to wT1m = 1
(4.5)



Chapter 4. Optimization 20

The Lagrange coefficient γ ≥ 0 that solves (4.5) can be interpreted as the Arrow-Pratt
risk aversion (3.2) and is essentially a scalar that puts more weight on risk as the risk
aversion index grows. As Meucci [Meu05, p. 339] points out, it would be incorrect to
consider the risk aversion γ∗ as a feature of the investor that is independent of the market.
The opposite is true since the same investor shows a different risk aversion when facing
different markets. Therefore, the Problem (4.5) has to be solved in a two-step process.
First w∗(γ) the curve on which the optimal allocation lies has to be calculated. From
there, a one-dimensional search for the optimal level of risk aversion γ∗ can be performed
according to the investor’s objective. If the investor’s objective is to achieve a certain level
of risk (aversion), which might have been predetermined through psychological analysis
(see Section 3.2), only then γ∗ = γ and the second step becomes obsolete.
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Figure 4.2: Effect of the risk aversion value on the position of the optimal
portfolio on the efficient frontier.

We observe that for γ = 0, the optimal portfolio only consists of the one asset with the
highest return, disregarding all other assets as described in the comment to (4.4). As the
risk aversion increases γ → +∞, the scalar variable begins to push downwards toward
the Minimum Variance Portfolio (MVP)(4.3), which is located at the beginning of the
efficient frontier.

In Figure 4.3 we compute the solution to (4.5) for the arbitrary assets from Figure 4.2 and
plot the relative weights of each asset against the corresponding value of risk aversion.
As risk aversion decreases (from left to right), we move further away from the MVP and
closer to the Asset A with the highest mean return. This shift can be observed clearly in
the change of relative asset weights.



Chapter 4. Optimization 21

Risk Aversiom
0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e 

W
ei

gh
t

Asset A
Asset B
Asset C
Asset D
Asset E

Asset F
Asset G
Asset H
Asset I
Asset J

Risk Aversion

Figure 4.3: Relative portfolio composition as we move the risk aversion up
along the efficient frontier.

4.2.1 Solving Constrained Optimization Problems
An essential tool in solving constrained optimization problems is the Lagrange function.
Lagrangian multipliers can be used to find the extrema of a multivariate function subject
to one or many constraints [Str91, p. 514]. First, the Lagrangian function L (4.6) is being
set up by associating a so-called Lagrange multiplier λ with each of the constraints. With
the lagrange multiplier, we are making use of the fact that when our objective function
is tangential to the constraint, the two gradients that are perpendicular to the curve are
pointing in the same direction. Therefore, we have ∇ f = λ∇g; that is, one is a multiple
of the other. In a further step to find the desired extrema, we compute the derivative of the
Lagrangian function and find points where the derivative is 0 (critical points) and evaluate
the function at these points.

To solve the previously defined problem (4.3) we define the Lagrangian:

L(w,λ1,λ2) =
1
2
wTΣw+ λ1(rP − wTM) + λ2(1− wT1m) (4.6)

Derive the first-order conditions:

∂L
∂w

= Σw− λ1M− λ21m = 0m

∂L
∂λ1

= rP − wTM = 0

∂L
∂λ2

= 1− wT1m = 0

(4.7)

By substitution λ1,λ2 for w we arrive at:[
rP
1

]
=

[
a b
b c

] [
λ1

λ2

]
(4.8)
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with
a = MTΣ−1M, b = MTΣ−11m, c = 1T

mΣ−11m (4.9)

With the Lagrange multiplier λ1 and λ2 the vector of weights for the optimal portfolio can
be formulated as:

w0 = λ1Σ−1M+ λ2Σ−11m (4.10)

Since the variance is always non-negative, we assume Σ to be a positive definite matrix.
This is a necessary condition for the optimization to yield a global optimum. Since the
inverse of a positive definite matrix is also a positive definite matrix, this can be assumed
for Σ−1 as well.

Therefore, the variance of the minimum-variance target portfolio can be calculated as
follows:

σ2
0 = wT

0 Σw0

= λ2
1(M

TΣ−1M) + 2λ1λ2(MTΣ−11m) + λ2
2(1

T
mΣ−11m)

=

[
rP
1

]T [
a b
b c

]−1

=

[
rP
1

]

=
1

ac− b2
(c(rP)2 − 2b(rp) + a)

(4.11)

The problems (4.4) and (4.5) can be solved by equivalent Lagrangians. From these prob-
lems we can then find the efficient frontier which is the collection of all possible solutions.
This can be done by ranging the target return (4.3), the maximum variance (4.4) or the
risk aversion coefficient (4.5) amongst all feasible values. All these problems are convex
quadratic optimization problems. By adding inequality constraints such as (3.4) to the
basic mean-variance model, the problems become more complex, which means that they
generally do not have an analytical closed-form solution anymore.

4.2.2 Maximizing Sharpe Ratio
As an alternative or addition to the previously proposed problems, we consider the problem
of finding the efficient portfolio with the highest reward-to-variability ratio. This ratio is
also known as the Sharpe ratio and can be useful especially if there is no clear index
of satisfaction that maximizes the investor’s utility. The common formulation for this
problem is the following:
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maximize wTM√
wTΣw

subject to wT1m = 1

wi ≥ 0

(4.12)

Notice that the long only constraint wi ≥ 0 is not necessarily a feature of the Sharpe Ratio
formulation. This problem, as it stands, is not a quadratic optimization problem, and the
objective function is not convex. Nevertheless, this problem can be recast as a quadratic
convex optimization problem via a suitable homogenization [CPT18, p. 103] under the
assumption that a vector w exists satisfying all constraints such that wTM > 0. Meaning
that at least one combination of assets is able to yield a positive mean return. By doing so
we arrive at the following equivalent formulation with a convex objective function:

minimize zTΣz

subject to zTM = 1
N

∑
i=1

zi = κ

κ ≥ 0

wi =
zi
κ

(4.13)

Where z is the set of unscaled weights and κ the scaling vector. For a more comprehensive
mathematical proof of equivalency see Section A.1.

A more straightforward approach would be to consider a two-step process where first the
efficient frontier is defined by solving (4.5) and then perform a one-dimensional search
for γ∗ to find the allocation σ∗, r∗ which yields the portfolio with the maximum Sharpe
ratio. We will see in Chapter 5, that the result is equivalent for both methods as long as
the mentioned assumptions hold.

4.2.3 Semivariance Models
For the classic mean-variance portfolio optimization, we have assumed that the investor
is only concerned about the first two moments of the return distribution: Mean and vari-
ance. However, actual market returns are not entirely normally distributed but display
skewness, which means that the variance above and below the mean is not equal. If this
is the case, a measure of downside risk (downside deviation; which measures variance
only below a benchmark) such as the excess return to downside variance ratio proposed
by Sortino [SP94] should be implemented. Consequently mean-semivariance portfolio
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optimization should yield results superior to the more popular mean-variance optimiza-
tion. However, since the semicovariance matrix is endogenous, meaning its terms change
if the portfolio weights change, the optimization problems become intractable. Estrada
[Est07] among others proposed a heuristic solution: The elements of the semicovariance
matrix are computed with respect to when the single assets unperformed the benchmark
and not the portfolio as a whole. This again yields a symmetric and exogenous semico-
variance matrix. Nevertheless, even with a feasible semicovariance matrix Cheremushkin
[Che09] shows that this approach can lead to significant approximation errors, especially
when assets are negatively correlated. Even if the assets are uncorrelated, substantial er-
rors can occur. The author concludes that this is due to the fact that the heuristic devised
by Estrada [Est07] does not account for upside returns of one asset that could compen-
sate the downside returns of another asset. The problem is to be found in the notion of
downside risk, not necessarily in the measure of downside risk. It conditions the investor
to estimate the necessary inputs with a fraction of the available information. For these
reasons, semivariance models have not gained acceptance.

4.2.4 Downside Risk Measures (VaR / CVaR)
Another risk measures, which aims to address the shortcomings and pitfalls of the clas-
sic mean-variance model is a measure called Value at Risk (VaR). This concept was first
introduced by a team at J.P. Morgan [JPM96]. VaR indicates the worst possible loss to
a portfolio, at a given confidence level (typically 99% or 95%), within a given period of
time. Following the notation in [CPT18, p. 183] the random variable Y describes the loss
function of the portfolio and β ∈ (0, 1) the confidence level. Then the β value at risk of
Y is the (1− β) quantile of Y that is, the value ξ such that:

P(Y ≥ ξ) = 1− β (4.14)

Both a higher confidence level and a longer period of observation imply, all other things
being equal, a higher VaR. Supposed the loss function is normally distributed, so that
Y ∼ N(µ, σ2), the VaR can be computed via the known quantiles of the normal distri-
bution. Even though the VaR function is monotonic (entirely non-increasing, or entirely
non-decreasing), homogeneous (multiplicative scaling behavior), and translation invari-
ant (translation with a displacement vector does not change the value of the function), it is
not sub-additive. That is VaR(rP1 + rP2) ≤ VaR(rP1) + VaR(rP2) and therefore does
not improve with diversification, diversification can actually increase VaR. Only fulfilling
three of the four criteria set by Artzner et al. [Art+99, p. 210] it cannot be considered a
coherent risk measure. Another shortcoming is that VaR does not provide any measure
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for losses beyond its threshold. However, there is a modification of VaR that is coherent
and provides a loss measure beyond the VaR.

Return

D
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VaR
CVaR

(1 - )

Figure 4.4: Probability density function with illustrative distinction be-
tween VaR and CVaR.

Namely the Tail Conditional Expectation known as Conditional Value at Risk (CVaR) or
Expected Shortfall. Introduced by Rockafellar and Uryasev [RU00] the CVaR denotes
the average loss, when VaR is exceeded. More formally: Given a random variable Y
describing the loss function and confidence level β ∈ (0, 1) the conditional value at risk
is the expected loss Y, under the condition that the loss is at least VaRβ(Y):

E(Y | Y ≥ VaRβ(Y)) (4.15)

Instead of using the loss function, CVaR andVaR can also be definedwith a return function.
The random variable Z := −Y then describes the return function of the portfolio over the
period under consideration.

A key property of CVaR as Rockafellar and Uryasev [RU00, p. 27] find, is that it can
be expressed as the following equivalent convex function. This allows to solve CVaR
portfolio optimization problems via convex optimization.

Fβ(w, α) = α +
1

1− β

∫
[−wTr− α]+p(r)dr (4.16)

Where w is the vector of weights, r a vector of daily asset returns with probability distri-
bution p(r),−wTr the loss (negative return) of the portfolio and α the portfolio VaR with
confidence β. We further suppose that [x]+ = max(x, 0).
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The authors then prove that minimizing Fβ(w, α) over all w, α successfully minimizes the
CVaR. For a set of T daily returns the integral in (4.16) can be approximated. In terms of
auxiliary real variables ut it is equivalent to minimizing the following linear expression:

minimize α +
1

T(1− β)

T

∑
t=1

ut

subject to ut ≥ 0

ut ≥ −wTrt − α

(4.17)

Note, although VaR and CVaR are usually defined in terms of money, here we follow the
mentioned literature and intentionally use percentage terms. The optimization in (4.17)
yields a vector of weights minimizing portfolio CVaR. Although, formally, the method
only minimizes CVaR, numerical experiments [RU00, p. 37] indicate that it also lowers
VaR because CVaR≥ VaR as it can be seen in Figure 4.4. Like minimizing absolute port-
folio variance minimizing absolute CVaRmight not be a desirable goal for most investors.
Additional constraints can be added to optimize for other goals. By adding the constraint:

MTw = rP (4.18)

Analogous to (4.3) CVaRwill beminimized for a given target return. A common constraint
is to maximize portfolio return while the portfolio CVaR should be kept below or at a given
value:

CVaR ≤ CVaRP (4.19)

If returns are considered independent and identically distributed random variables, the
square-root rule applies, meaning that shorter-term VaR and CVaR grow at the square root
of the longer-term horizon.

4.2.5 Effects of adding a Risk-free Asset
For now, we have always considered all assets to be risky, equity-like assets. Meaning that
for every expected return, we have an associated uncertainty in the form of variance. We
considered the variance of returns or its square root, the standard deviation, the investor’s
measure for risk.

Nevertheless, there are also assets that are considered to be risk-free r f . A risk-free asset
has a certain future return; that is, the value of the return is given, and the variance is zero.
In academic literature, it is widely accepted to consider any government debt issued by
a stable nation to be risk-free. We now suppose the investor can invest in n risky assets
as well as the risk-free asset. Since the variance is zero, the risk-free asset is to be found
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Figure 4.5: Efficient portfolio with the risk-free asset.

on the y-axis of our mean-variance plot in Figure 4.5. If we combine this asset with any
of the portfolios on the efficient frontier, the feasible set will be any point along the line
S which is a tangent to the efficient frontier and is often called the Capital Market Line.
This combination will lead to a Portfolio with the expected mean that is the weighted sum
of the risky assets and the risk-free asset. As we can see, we are now able to achieve
an improvement over the points on the efficient frontier with either a higher return for
the same amount of variance or less variance for the same expected return. The problem
corresponding with 4.3 in this case can be formulated as:

minimize 1
2
wTΣw

subject to wTM+ (1− wT1m)r f = rP

wT1m = 1

(4.20)

This problem can again be solved with a Lagrangian objective function. Note that the
addition of the risk-free asset to the portfolio consisting of risky assets does not change
portfolio variance since w f σ

2
f = 0 with σ2

f = 0. By changing (reducing) the weight
on the portfolio of risky assets, we achieve the same expected return but with a reduced
standard deviation. In our formulation of the problem (4.20) this happens inevitably since
the constraint wT1m = 1 demands the sum of weights remain unchanged. The described
tangency portfolio is also relevant for Tobin’s [Tob58] Mutual Fund Theorem, where the
author concludes that every optimal portfolio is a combination of the risk-free asset and the
Market (tangency) Portfolio. Nevertheless, this thesis does not further regard optimization
problems with a risk-free asset.
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5 Implementation

This chapter forms the core of the thesis, in that we put the previously established theoret-
ical findings into practice. We do so by comparing different approaches and modifications
to evaluate which model offers the most significant benefit regarding efficiency and com-
prehensibility in practical asset allocation. This requires that the tools we employ can
process large amounts of data aptly. Meanwhile, the syntax and semantics should not
impose a barrier but enable the user to work more efficiently. Among the most used solu-
tions for analysis and optimization in finance are R and Python, alongside languages such
as C++, C#, and Java. One of the significant advantages of Python is that it is a high-level
programming language with a simple syntax that in many ways resembles the English lan-
guage. Its simplicity does not limit the functionality. Because of its open-source license,
programmers can add specific features to the language. Mathematicians and programmers
have made available some very complex structures and algorithms in Python for practi-
tioners to use. In addition, with the rise of machine learning and artificial intelligence,
many algorithms developed by university researchers are written in Python. For this rea-
son, we decided to use Python and its available packages for the implementation part of
this thesis.

5.1 Python in Finance
Many of the underlying principles and findings of portfolio theory and optimization have
been around for many decades. Meanwhile, as Hilpisch [Hil19] points out, two things
have changed drastically: Big data and the real-time economy. The unprecedented avail-
ability of data is a challenge and an opportunity to tune the models and gain new insights.
Meanwhile, it demands increased computing power and an overhaul of legacy systems.
With the rise of real-time data, models had to be adjusted to interpret and assess data in
seconds or fractions of a second [Duh09]. The Python programming language is predes-
tined to bring a solution to both of those challenges. Any algorithmic statement can be
translated into a single line of python code. Code that is to be reused is organized in mod-
ules that can be called anywhere inside a project. Available performance packages provide
essential pre-compiled functions to ensure reduced run-time, contributing to the efficiency
of Python. Characterized by its benefits, such as the elegant syntax, efficient development,
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and usability for prototyping and production, Python became an ideal framework for the
financial industry. We will introduce some of the packages that prove to be most helpful
in solving the Problems introduced in this thesis.

5.1.1 NumPy
NumPy is a package or library, adding support for large, multi-dimensional arrays and ma-
trices. It incorporates fundamental array concepts [Har+20] such as vectorization, broad-
casting or indexing. This comes along with high-level mathematical functions to operate
on these arrays. Providing stability and speed, NumPy has established itself in the indus-
try, academia and finance.

5.1.2 Pandas
With its support for numerical tables and time series, Pandas became the most important
Python library for data analysis and data science. It enables the user to import data from
numerous file formats such as CSV, JSON, SQL, or Microsoft Excel. Further, Pandas
also enables modification operations such as selecting, reshaping or merging, making data
easier to read or more structured. By wrapping functionality from other packages, math-
ematical operations can be performed on a tabular level using Pandas.

5.1.3 Matplotlib
Visualizing data is an integral part of data analysis, especially in academia, where findings
are often best presented graphically. Matplotlib allows the creation of static 2D and 3D
bitmap plots. There are other libraries that offer interactive plots. We find that the outputs
offered by Matplotlib are, in our case, often sufficient. Pandas already provides a wrapper
aroundMatplotlib, enabling basic visualization of a pandas table with a single line of code.

5.1.4 CVXPY
According to Diamond and Boyd [DS16], the authors of cvxpy, their modeling language
allows users to express convex optimization problems in a natural syntax that follows the
math, rather than in the restrictive standard form required by solvers. The cvxpy mod-
eling language makes it easy to combine convex optimization with high-level features of
Python, such as parallelism and object-oriented design. Nevertheless, cvxpy is not a solver
but attempts to find a suitable solver for a supplied problem [Agr+18]. In Subsection 5.2.3
we take a closer look at the different solvers and their characteristics.
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All of the mentioned libraries are widely used in many different fields within and outside
of finance. They are open-source, performance-oriented, and continuously developed.

5.2 Python Optimization Problem
To prove the solidity of our optimization problem we consider a simple example with a
set of three arbitrary assets. We first calculated the solution using the Lagrangian defined
in (4.6). We then implement the problem with cvxpy and compare the result obtained by
the solver to the result from the Lagrange function. The assets under consideration have
the following properties:

µ = [µi] =

0.0170.002
0.008

 , Σ = [σi,j] =

 0.402 0.065 −0.022
0.065 0.136 0.008
−0.022 0.008 0.003


Further we define a target return for the Portfolio rP = 1.25% to be achieved.

5.2.1 Solving the Lagrangian equation
From (4.8) we solve for λ1 and λ2:

λ1 =

− 0.348
0.812
0.536

 , λ2 =

 45.708
− 98.105

52.397


Only then we are able to calculate:

w =
[
0.224 −0.414 1.190

]
Solving (4.11) we arrive at:

σ2
0 = 0.01606

From this, we have proof that the satisfactory target return rP = 1.25% can be achieved.
Note that this illustrative example could only be solved in such a manner because we did
not deal with any inequality constraints.

5.2.2 Optimizer
We set up the simple optimization problem defined in (4.3) using the cvxpy syntax as
follows:
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1 w = cp.Variable(len(df_assets.columns),)
2 ret = w.T@get_mu(df_assets)
3 sigma_square = cp.quad_form(w, get_cov(df_assets))
4 objective = cp.Minimize(sigma_square)
5 constraints = [ret == 0.0125,
6 cp.sum(w) == 1]
7

8 prob = cp.Problem(objective, constraints)

Listing 5.1: Minimum variance optimization Problem (4.3) formulated us-
ing cvxpy.

A detailed description of the setup and definition can be found in Subsection 5.4.1. Note
again, that since there are no inequality constraints in this version of our optimization
problem it can be solved with a linear system solver. In this case we use the qdldl routine
from OSQP (Subsection 5.2.3). Running the optimizer with the convex problem defined
in Listing 5.1 yields the following result:

status: solved
solution polish: successful
number of iterations: 25
optimal objective: 0.01606
w.value: [ 0.22369437 -0.41445845 1.19076409 ]
run time: 7.06e-04s

As we can see, the solver returns σ2
0 as our optimal objective. The result matches with the

value we obtained by solving the Lagrangian (Subsection 5.2.1). To see if the constraints
are being met, we calculate the return using the weights calculated by the solver and vali-
date if the sum of the weight is equal to one. This proves that we successfully set up our
optimization problem in Python.

5.2.3 Solver
Distributed with cvxpy are the open-source solvers ECOS, OSQP, and SCS [Agr+18].
Many other solvers can be called by CVXPY if installed separately1. As we will see, most
of our problems, we are able to solve using OSQP [Ste+20] a Quadratic solver developed
by a Team at the University of Oxford. This solver runs infeasibility detection proofs
using the ADMM [Ban+17] algorithm.

1A comprehensive overview can be found in the cvxpy documentation.

https://www.cvxpy.org/tutorial/advanced/#choosing-a-solver
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5.3 Portfolio Construction
In the first step of the optimization process, we have to define our portfolio, that is, the
data set from which the input to the optimization routine is taken. Further, we have to
set a benchmark against which the success of our optimization can be measured. We
choose to set our primary focus on risky assets, specifically on the Swiss stock market.
The Swiss stock market is dominated by three companies: Nestlé, Roche, and Novartis.
As of April 2021, these companies alone accounted for about 48% of the market in terms
of capitalization. This imbalance has existed unchanged for more than 15 years. The same
assets can also be found among the largest listed European companies, ranking second,
third, and sixth. Furthermore, all major indices provided by SIX Swiss Exchange are
weighted by market capitalization, amplifying this concentration. This setting poses a
number of challenges for an investor considering this market, particularly with regard to
diversification.

For our analysis, we chose 85 of the largest companies listed on the SIX Swiss Exchange
by market capitalization and volume as of April 2021. We do not include securities with a
free float of less than 20% or shares of investment companies. Further, we only included
securities that were listed every day of the considered period. As a Benchmark, the SIX
Swiss Exchange Index ”SPI Mid & Large Total Return” provides a good representation
of the chosen set.

5.3.1 Data Sourcing
In order to collect information on the market, we turn to a data provider (Thomson Reuters
Refinitiv) retrieving time-series of daily stock prices for the period of nine years starting
from 2011. To do so, we made use of the subscription-based API. To gather more than
190’000 data points and still comply with the API limits, the datareader script shown in
Listing 5.2 had to be set up.

The change in stock price is not always a proper reflection of an investor’s return. One
example are dividend payouts; they negatively impact the stock price, yet this effect is
offset by the cash the investor receives and can potentially reinvest. To address this issue,
most stock exchanges provide adjusted closing prices. This data is unavailable for some
of the stocks under consideration. Therefore, to account for dividends and stock splits and
to ensure a fair comparison with the benchmark index, the daily total return calculated
by Thomson Reuters Refinitiv was also pulled as a single time-series for each asset. The
total return incorporates the price change and any relevant dividends for the specified
period. This methodology is also known as the dividend reinvested total return. The daily
total return data of the ”SPI Mid & Large Total Return” Index and the daily total return
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1 def eikon_datareader_TR(RICs, Start, End, Frequency):
2 """
3 RICs : List of Thomson Reuters Instrument Code
4 Start: Last day of requested time series yyyy-mm-dd
5 End: First day of requested time series yyyy-mm-dd
6 Frequency: D, W, M, Q, Y
7 """
8

9 df, err = ek.get_data([RICs[0]],fields=[
10 "TR.TotalReturn(SDate={},EDate={},Frq={}).date"
11 .format(Start, End, Frequency)])
12 df_store = pd.DataFrame(df["Date"].str[:10])
13

14 for i in range(len(RICs)):
15 df, err = ek.get_data([RICs[i]],fields=[
16 "TR.TotalReturn(SDate={},EDate={},Frq={}).date"
17 .format(Start, End, Frequency),
18 "TR.TotalReturn(SDate={},EDate={},Frq={})"
19 .format(Start, End, Frequency)])
20

21 df_returns_temp = pd.DataFrame(df["Total Return"])
22 df_returns_temp.columns = [df.iloc[1][0]]
23 df_store = pd.concat([df_store, df_returns_temp], axis=1)
24 i += 1
25

26 return df_store

Listing 5.2: Script to request a total return time series from Thomson
Reuters Eikon API.

data for each of the 85 Assets for the mentioned eight-year period build the basis of our
optimization process.

5.3.2 Data Processing
The time series contains 85 Assets with 2256 daily observations each. The annual re-
turns are between -20.44% and 25.62%, the annual volatility ranges between 8.52% and
50.51% for our period of observation. Meanwhile, the benchmark index yields a return
of 9.39% with a volatility of 14.44% per year. Note that in the context of stock returns,
the term volatility is often used to describe the standard deviation. This wording is in line
with academic literature; therefore, the terms will be handled equally from now on. All
assets in our data set are positively correlated. Since the chosen period of observation in-
cludes different market phases as well as extreme tail events, it is ideal for testing different
optimization methods and models.
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Figure 5.1: Most volatile asset (AMS) vs least volatile asset (ISN) and asset
with highest return (BION) vs asset with lowest return (ARYN).

5.4 Portfolio Optimization
In this step of the process, the datawill be applied to the problems established in Section 4.2
to solve for numerical solutions. In addition, the models will be extended and further
developed based on the analytical findings. The main focus stays to provide efficient,
accurate, and easily understandable python routines and to gain insights into the state of
the Swiss equity market.

5.4.1 Reducing Volatility vs. Benchmark
To demonstrate the effect of mean-variance optimization an adaption of the minimum
variance optimization problem (4.3) is being considered. To ensure a fair comparison, we
add a long only constraint since this restriction also applies to the benchmark index. By
doing so the following question is being answered: How can the weights of a portfolio be
adjusted to achieve the same return as the market or benchmark but with less volatility?
Using cvxpy we set up the following optimization problem:

1 w = cp.Variable(len(df_assets.columns),)
2 ret = w.T@get_mu(df_assets)
3 sigma_square = cp.quad_form(w, get_cov(df_assets))
4 objective = cp.Minimize(sigma_square)
5 constraints = [ ret == get_mu(df_index),
6 cp.sum(w) == 1.0,
7 w >= 0.0]
8

9 prob = cp.Problem(objective, constraints)

Listing 5.3: Minimum variance optimization with three linear constraints
concerning desired return, the sum of weights and a long only constraint.
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The problem is constructed (9) by defining the objective and the applicable constraints.
On line (1), the viable constructor from cvxpy is used to set up the variablew, representing
the vector of weights. We then set the expected portfolio return (2) as a function of the
weights vector and the expected returns vector. Further the expected portfolio variance (3)
is setup as a function of the covariance matrix and the weights vector. The objective (4)
is then set to minimize the previously defined expression using the corresponding cvxpy
constructor. On line (5) and following, we set a list of constraints. The first constraint
ensures that the return of the optimized portfolio is equal to the desired expected return, in
this case, the return of the benchmark index. The second constraint represents the general
requirement (2.11) that in Markowitz style portfolio creation, the relative weights always
have to sum up to one. With the last constraint, for the reasons already mentioned, short
selling (3.4) is being prevented. The Helper Functions used in the code, such as get_mu,
are user-defined and can be found in Section B.2. Solving this problemwith the previously
developed methods leads to an optimized portfolio containing only 18 of the available 85
assets. The optimization appears to be successful as the volatility is being reduced bymore

Table 5.1: Benchmark compared to volatility optimized portfolio.

Index MV Optimized
Expected Annual Return 9.386% 9.386%
Annual Volatility 14.445% 5.574%
Sharpe Ratio 0.650 1.684
Number of Assets 85 18

than 60% while attaining an equivalent return of 9.386% annually. However, this result
must be taken with caution since the optimization was done entirely in-sample, meaning
that all historical data-points were available to the optimizer. Therefore, the portfolio is
not guaranteed to be optimal in the future or any other scenario. One could argue that
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Figure 5.2: Time series of the results shown in Table 5.1.

it is straightforward to find an optimal portfolio with the benefit of hindsight. However,
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this is beyond the point of this step of the process. The result merely proves that with
the methods described in this thesis, it is possible to make a weighted selection of assets
resulting in more desirable parameters, in this case, lower volatility of returns. A closer
look at the resulting weights reveals that 85% of the optimized portfolio is made up by
only six of the 18 assets. This finding raises the question of whether a satisfactory result
could also be achieved with fewer assets. When the optimization is performed again, this

Table 5.2: Single asset weights from optimization with all available assets
compared to optimization only with assets w >5% in the first run.

Weights run 1 Weights run 2 Difference
ISN.S 0.346 0.469 +35.5%
BEKN.S 0.114 0.072 -36.8%
ZUGER.S 0.112 0.120 +7.1%
GRKP.S 0.101 0.087 -13.9%
LUKN.S 0.093 0.100 +7.5%
ALLN.S 0.089 0.153 +71.9%

time only with assets that have reached a weighting >5%, the annual volatility increases
by only 0.233 percentage points to 5.807%. The observed difference is consistent with the
finding that diversification’s impact on portfolio risk has diminishing benefits, even when
transaction and holding costs are ignored. First discovered by Evans and Archer [EA68]
over 50 years ago, the limiting number was set to ten assets. Since then, following the
evolution of capital markets, different statements have been made about the number of
stocks needed for efficient diversification [Sta87][CLM][DLR06]. Wherever the number
was found to be, the underlying assumption stayed the same.

A look at the change in asset weights reveals that the proportions have not scaled linearly.
This observation ultimately leads to the conjecture that a more satisfying result could have
been obtained by limiting the number of assets with a constraint on minimum holding size
or the number of assets held. Nevertheless, when expressing such constraints in a way
that ensures convexity new challenges arise, which we further discuss in Section 6.3.

Removing Long Only Constraint As noted in Subsection 3.3.5 each constraint lim-
its the number of feasible optimal portfolios. Therefore lifting the long-only constraint
w ≥ 0 from the previous example should naturally lead to a ”better optimized” portfolio.
In this case, equal or less volatility for an equal expected return compared to the first opti-
mization run. Allowing short positions means that the calculated weights can be less than
zero. In practice, to be short of an asset the investor has to borrow this specific asset and
immediately sell it again. The investor is then short of this asset because he or she has to
repurchase this asset to fulfill the obligation towards a creditor. Since the portfolio weights
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still have to add up to one, this allows to overweight the portfolio’s long component, in
this case, assets with a mean-variance profile more desirable to the investor.

Table 5.3: Benchmark compared to volatility optimized portfolio (long-
only) and an optimized portfolio with short-selling allowed.

Index MV optimized Long/Short optimized
Expected Annual Return 9.386% 9.386% 9.386%
Annual Volatility 14.445% 5.574% 5.276%
Sharpe Ratio 0.650 1.684 1.779
Number of Assets 85 18 46 (39)

From the results in Table 5.3 it can be seen that the volatility can be further reduced by
allowing short positions. Nevertheless, if transaction and holding costs were introduced
into the model, the benefit from reduced volatility could be offset by the additional num-
ber of positions (46 long and 39 short). There are two apparent reasons for the minimal
effect on the expected volatility from allowing short-positions. The main reason lies in
the optimization problem under consideration: The first constraint still limits the portfolio
return to equal the benchmark index’s return. The other explanation can be found in the
positive long-term correlation of the available assets from our data-set.

Even with short positions allowed, the top long holdings are represented by the same po-
sitions, as in the previous long-only optimization, with only slightly different weightings.
The largest short positions are all represented by assets previously not included in the 18
assets long-only portfolio. It also has to be noted that the number and size of short po-
sitions are substantially smaller than the number and size of long positions. Lifting the
long-only constraint leads to an absolute sum of weights of 1.662. This number can be
interpreted as leverage of 66.20% on the portfolio level.

5.4.2 Enhancing Return vs. Benchmark
Another approach is to optimize for maximum return (4.4) instead of minimum volatil-
ity. Here a different question is being answered: How can the weights of a portfolio be
adjusted to achieve the highest possible return while limiting the volatility to not exceed
the benchmark volatility? Similar to the problem set up in Listing 5.3 we use cvxpy to
implement the problem shown in Listing 5.4. Again, to ensure a fair comparison with the
benchmark index a long-only constraint is added at first. The main difference regarding
the cvxpy setup is that we now maximize a concave problem. Equivalently we could also
formulate this as a convex minimization problem. The results in Table 5.4 show that the
optimized portfolio includes only 11 of the 85 available assets. The previous remarks on
diversification apply here as well. Since many of the assets have a high positive pairwise
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1 w = cp.Variable(len(df_assets.columns),)
2 ret = w.T@get_mu(df_assets)
3 sigma_square = cp.quad_form(w, get_cov(df_assets))
4 objective = cp.Maximize(ret)
5 constraints = [ sigma_square <= get_var(df_index),
6 cp.sum(w) == 1.0,
7 w >= 0.0]
8

9 prob = cp.Problem(objective, constraints)

Listing 5.4: Maximum return optimization with three linear constraints con-
cerning desired variance, the sum of weights and a long only constraint.

Table 5.4: Benchmark compared to return optimized portfolio.

Index Return Optimized
Expected Annual Return 9.386% 23.397%
Annual Volatility 14.445% 14.445%
Sharpe Ratio 0.650 1.620
Number of Assets 85 11

correlation, no further diversification can be achieved by adding more assets from the
same basket. Nevertheless, an excess return of 432.23% over the period of observation
compared to the benchmark index is earned by the investor with the optimized portfolio.
Meanwhile, the volatility of both portfolios is equal. In Figure 5.3 the diversion of returns
becomes clear. An important observation here is that compared to the minimum variance
optimization in Subsection 5.4.1 the expected/desired volatility is 8.91 percentage points
higher, which is a factor of almost 2.6. This allows for more volatile assets with higher
expected returns to be included. On the downside, the Sharpe ratio, which reflects the re-
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Figure 5.3: Time series of the results shown in Table 5.4

lationship between reward to variability, decreases from 1.684 for the minimum variance
portfolio to 1.620 for the maximum return portfolio. Meaning the investor accepts a small
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amount of excess risk for the higher returns. This disparity can be addressed by explicitly
solving for the optimal Sharpe ratio.

Removing Long Only Constraint Removing the long-only constraint has a much more
significant effect when optimizing for maximum returns. Throughout observation, the
return would grow almost 25 times more compared to the benchmark. This makes it clear
that being able to enter short positions is more advantageous when aiming to increase
returns than when limiting volatility. However, the investor must be aware that giving
up the long-only constraint can lead to a highly leveraged portfolio. In this example, the
leverage is at 476.8%, which in reality would bring new challenges such as that a margin
account with adequate collateral is needed. It must be pointed out again that the complete
optimization was done in-sample.

Table 5.5: Benchmark compared to volatility optimized portfolio (long-
only) and an optimized portfolio with short-selling allowed.

Index Return optimized Long/Short optimized
Expected Annual Return 9.386% 23.397% 49.859%
Annual Volatility 14.445% 14.445% 14.445%
Sharpe Ratio 0.650 1.620 3.452
Number of Assets 85 11 46 (39)

5.4.3 Sharpe Ratio Optimization
An Investor aiming to combine the objectives of minimum variance and maximum re-
turn naturally arrives at the Sharpe ratio (4.12) asking the following question: How much
additional return do I get for an additional unit of risk? To maximize the Sharpe ratio
as convex problem the variable transformations which have been worked out in Subsec-
tion 4.2.2 have to be applied. Here z is considered the transformed variable:

1 z = cp.Variable(len(df_assets.columns),)
2 k = cp.Variable()
3 ret = z.T@get_mu(df_assets)
4 sigma_square = cp.quad_form(z, get_cov(df_assets))
5 objective = cp.Minimize(sigma_square)
6 constraints = [ ret == 1.0,
7 cp.sum(z) == k,
8 z >= 0.0,
9 k >= 0.0 ]

10

11 prob = cp.Problem(objective, constraints)

Listing 5.5: Transformed Sharpe Ratio maximization problem.
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Once the problem is solved, the variable transformation has to be reversed; this is done
by dividing the transformed variable z by the scalar k. The results in Table 5.6 show the
success of the optimization. The optimized portfolio has an expected return higher than
the benchmark index, as well as a lower volatility.

Table 5.6: Benchmark compared to sharpe optimized portfolio.

Index Sharpe Optimized
Expected Annual Return 9.386% 15.676%
Annual Volatility 14.445% 7.347%
Sharpe Ratio 0.650 2.134
Number of Assets 85 21

Lifting the long-only constraint z ≥ 0 results in a portfolio which includes all of the 85
available assets. Again, the portfolio is highly leveraged with 336.8% and has a Sharpe
ratio of 3.368, which is higher than the long/short optimized maximum return portfolio.
These results confirm the thesis in Subsection 5.4.2 were we stated that the investor with
the maximum return portfolio is taking on too much excess risk. Further descriptions and
variations of the problem are omitted since the results behave similarly to the previous
examples.

5.4.4 Risk Aversion Optimization
Implementing the risk aversion optimization problem (4.5) poses one major challenge:
The constant γ has to be implemented in a way that the optimization problem can be
solved for w as in the previous examples and a value to the scalar γ can be assigned after
construction of the problem. The cvxpy parameters expression allows us to specify the
value of the parameter after the problem is created. Therefore, the parameters expression
proves to be ideal for computing trade-off curves such as the efficient frontier.

1 w = cp.Variable(len(df_assets.columns),)
2 ret = w.T@get_mu(df_assets)
3 sigma_square = cp.quad_form(w, get_cov(df_assets))
4 gamma = cp.Parameter(nonneg=True)
5 objective = cp.Maximize(ret - gamma*sigma_square)
6 constraints = [cp.sum(w) == 1.0,
7 w >= 0.0]
8

9 prob = cp.Problem(objective, constraints)

Listing 5.6: Risk aversion optimization problem.

The goal of this optimization is twofold. Firstly, risk aversion optimization allows us to
construct the efficient frontier and optimize for the investor’s risk aversion. Secondly, the
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efficient frontier then allows us to derive the maximum Sharpe ratio and therefore prove
the validity of the solution to our problem in Subsection 5.4.3. To obtain the entire curve,
the optimization process is being iterated with a varied risk aversion parameter. The pa-
rameters range from 0, the position of the maximum return portfolio, up to a parameter
value that is no more than 5 · 10−4 larger than the respective risk aversion of the minimum
variance portfolio. With this routine, a smooth curve can usually be plotted with less than
1’000 iterations. A practitioner’s approach to finding the optimal risk aversion parameter
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Figure 5.4: Efficient frontier with different risk aversion parameters γ high-
lighted.

γ∗ would be to present the investor with the efficient frontier in Figure 5.4. Since the op-
timal allocation has to lie on the presented curve, that is, the efficient frontier, the investor
could then pick a point on that curve. He or she would be able to do so because it becomes
apparent that a 10% annual expected volatility, as an example, bears the potential of an
18% annual return.

From this statement, the investor’s optimal risk aversion γ∗ ≈ 4.25 would then be de-
rived. In Figure 5.5 we plot the return distributions of the portfolios for different levels of
risk aversion. By comparing the different distributions, the effect of reduced variance for
higher levels of risk aversion can be clearly recognized.

Another approach is the two-step mean-variance heuristic presented by Meucci [Meu05,
pp. 249, 338]. Akin to the approach presented here in the first step, the mean-variance ef-
ficient frontier is computed. Instead of presenting the investor with the efficient frontier, a
function called the index of satisfaction S is introduced. This function translates the return
distribution of the portfolio into the investor’s personal preference ranking. Therefore, the
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Figure 5.5: Return distributions for different levels of risk aversion.

optimal Portfolio is selected by the following one-dimensional search:

w∗ = argmax{S(wγ)} (5.1)

Meucci [Meu11, p. 21] does not fail to mention that the choice of the most suitable index of
satisfaction S varies widely depending on the profile of the securities return distribution,
the investment horizon, and other features of the market and the investor. To keep the
model as general as possible, we refrain from further detailing this two-step process.
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Figure 5.6: Scatter diagram detailing the mean-variance characteristic for
each asset in relation to the efficient frontier.

On the mean-variance diagram in Figure 5.6, it can be seen how the different assets are
positioned relative to the curve. We calculate the Sharpe ratios and search for the portfo-
lio with the highest ratio from the efficient portfolios that form the frontier. The portfolio,
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which is also highlighted in Figure 5.6 has a Sharpe ratio of 2.134. The ratio is equiva-
lent to the one that was calculated in Subsection 5.4.3 thus proving the validity of both
approaches.

5.4.5 Conditional Value at Risk Optimization
We now suppose that the investor is concerned with risk in quantities of Expected Short-
fall / Conditional Value at Risk instead of the symmetric measure of standard deviation.
The Python code in Listing 5.7 is a variation of the problem (4.15), with the additional
constraint (4.18) the CVaR is minimized for a given target return.

1 w = cp.Variable(len(df_assets.columns),)
2 alpha = cp.Variable()
3 u = cp.Variable(len(df_assets))
4 beta = 0.95
5

6 return_target = get_mu(df_index)
7 ret = w.T@get_mu(df_assets)
8

9 objective = cp.Minimize(alpha +1.0 / (len(df_assets)*(1 - beta))*cp.sum(u))
10 constraints = [
11 cp.sum(w) == 1,
12 u >= 0.0,
13 w >= 0.0,
14 df_assets.values@w + alpha + u >= 0.0,
15 ret >= return_target
16 ]
17 prob = cp.Problem(objective, constraints)

Listing 5.7: Optimization problem minimizing CVaR for a given target Re-
turn.

In line with the previous examples, we set the desired target return to equal the bench-
mark’s return. With a confidence of 95% (β = 0.95) the benchmark index will not lose
more than 1.407% (VaR). The historically expected shortfall (CVaR) is 2.174%. The re-
sults in Table 5.7 show that the CVaR and therefore the VaR could be reduced substantially
even at a higher confidence level.

Table 5.7: 1-Day minimum VaR and CVaR obtained for an expected return
equal to the benchmark.

β = 0.90 β = 0.95 β = 0.99
VaR 0.355% 0.512% 0.866%
CVaR 0.578% 0.730% 1.084%
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The accuracy of the solution is confirmed by comparing the solver result with the historic
CVaR of the corresponding portfolio.
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Figure 5.7: Diminishing excess return from higher CVaR (β=0.95) and
therefore diminishing Sharpe ratio.

We further find that when increasing the risk level, additional volatility grows dispro-
portionately to the additional expected return. Figure 5.7 shows that there is no linear
relationship between the two measures, which should be kept in mind when comparing
them in the following section.

5.5 Results
In this section, we combine and extend the Python routines previously introduced to pro-
vide some practical insights. For this purpose, we think of an investor willing to take risk,
but only if he or she is adequately compensated for the risk. We consider the period from
January 2011 to December 2017 as the in-sample period. In the previous chapters, we
found risk measures more sophisticated than the classical mean-variance model; there-
fore, we consider the expected shortfall (CVaR) as our measure of risk.

We further found that it is challenging to quantify the investor’s risk aversion. For this
reason, we propose a different approach; in the first step, we calculate the efficient frontier
for different levels of CVaR starting from the minimumCVaR portfolio. As a modification
of the problem in Listing 5.7, we replace the constraint that requires the optimized portfolio
to achieve a target return. Instead, we implement a constraint to require a desired CVaR
level. We then perform a one-dimensional search on the efficient frontier to obtain the
portfolio with the highest Sharpe ratio. In Table 5.8 the results for the confidence level
β = 0.95 can be found. In the second step, we find that the maximum Sharpe Ratio is
achieved at a 1.00% CVaR level.
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Table 5.8: Portfolio compositions for different 1-day CVaR levels with β =
0.95; Assets with zero weights for any portfolio not included in list. Period:

Jan 2011 - Dec 2017.

CVaR, % 0.68 0.70 0.75 0.80 0.85 0.90 1.00 1.10 1.20
Exp. Ret, % 9.82 11.59 14.02 15.56 16.76 17.67 19.12 20.39 21.52
St.Dev, % 5.53 5.67 6.17 6.59 6.96 7.27 7.83 8.42 9.05
Sharpe 1.777 2.045 2.271 2.362 2.408 2.432 2.44 2.42 2.38
ISN.S 44.84 44.51 47.89 50.37 53.43 52.88 50.25 49.37 45.15
LUKN.S 14.07 14.35 18.06 17.77 13.15 9.2 3.88 0 0
COTNE.S 0.92 1.72 3.45 6.22 7.81 9.9 12.17 13.44 16.08
CONC.S 3.63 3.92 5.74 6.85 7.31 7.65 7.8 7.76 7.49
BANB.S 3.89 4.71 5.3 5.25 5.78 5.12 4.61 4.25 3.08
LEHN.S 0.54 1.26 2.59 2.91 3.08 4.04 5.29 5.68 6.71
ALSN.S 1.34 1.31 2.21 3.01 3.2 3.19 3.96 4.87 6.42
JFN.S 0 0.73 2.36 3.48 2.94 3.7 4.24 2.82 1.37
GRKP.S 7.31 7.29 3.39 2.22 0 0 0 0 0
BEKN.S 9.67 7.57 1.32 0 0 0 0 0 0
ZUGER.S 6.39 5.17 3.39 0.53 0 0 0 0 0
EMSN.S 0 0 0 0.03 0.31 1.66 3.25 4.08 4.86
ALLN.S 5.72 5.34 1.67 0 0 0 0 0 0
AMS.S 0 0 0.15 0.1 0.51 0.64 1.09 1.78 2.89
BOS.S 0 0 0 0 0 0.24 1.11 1.5 2.35
INRN.S 0 0 0 0.45 0.83 0.65 0.74 1.5 0.86
SFZN.S 0 0.73 0.49 0 0 0 1.22 0.78 1.55
PGHN.S 0 0 0.25 0.53 1.67 1.13 0.41 0 0.23
VZN.S 0.78 0.89 0.99 0.28 0 0 0 0 0
BION.S 0 0 0 0 0 0 0 1.5 0.92
BARN.S 0.57 0.5 0.75 0 0 0 0 0 0
KARN.S 0 0 0 0 0 0 0 0.67 0.02
GIVN.S 0.34 0 0 0 0 0 0 0 0
Total w, % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
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It can be seen from the results that this optimization process leads to large positions in
single assets, which in turn leads to undesirable cluster risk. To prevent unwanted large
positions, we add a constraint (3.6) to limit the maximum size of a single position to 10%
of the portfolio. Restrictions such as this can also be found to be regulatory limits for
mutual funds in many markets. The constraint inevitably leads to a greater number of
positions from which the portfolio is composed. In our example, the number of positions
increased from 14 to 18, with the four largest positions being capped at 10% weighting.

We have already proven that optimization carried out in this way achieves excellent in-
sample results. We now put our routines to the test using the weights calculated from
the given in-sample historical data to calculate the out-of-sample performance. The years
2018 and 2019 show two different market phases and can provide valuable insights. We
therefore define these two periods as our out-of-sample periods. For the second out-
of-sample period (2019), the returns from the previous period (2018) were included in-
sample, which is equal to an annual rebalancing.

Table 5.9: Out-of-sample results for two different market phases.

Index Optimized
2018 2019 2018 2019

Annual Return -8.46% 31.50% -8.34% 24.14%
Annual Volatility 13.96% 10.23% 11.17% 6.01%
Sharpe Ratio 3.08 4.01
1-Year 95% VaR: 22.80% 16.72% 19.70% 7.70%
1-Year 95% CVaR: 32.04% 22.29% 26.15% 11.14%

The results in Table 5.9 are consistent with the performance measured for a larger number
of periods. The CVaR of the optimized portfolio was reduced in all cases compared to the
benchmark. Only in 10 out of 16 cases, the return of the optimized portfolio was higher.
However, in 14 out of 16 cases, the Sharpe Ratio of the optimized portfolio was higher.

5.5.1 Remarks
We end this section with some general remarks. Though rooted directly in our work, these
observations may have implications beyond the field of asset allocation. Nevertheless,
they serve as a complement to the quantitative findings noted in this chapter.

Diversification The classic Markowitz mean-variance model is primarily based on the
premise that because of different correlations between assets, the portfolio’s overall volatil-
ity can be reduced by combining assets. However, we found limitations to diversification
within our data set because of the high average correlation among the different assets.
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Figure 5.8: 30-Day average pairwise correlation for all 85 assets in the data
set compared to the cumulative return for the years 2011 - 2019.

It can be seen in Figure 5.8 that the average correlation in our data set rose to levels above
50% during market phases with extreme downwardmovements. However, also under nor-
mal conditions, correlation stayed at high levels. A recent study by S&P Global [CL16,
p. 4] has shown that the rolling 12-Month average correlation increased from around 25%
before the turn of the millennium to around 45% for the years following the financial cri-
sis. This increase can also be seen among other asset classes. One explanation is the
development in basket trading and Exchange Traded Funds. Large baskets that make up
or reflect benchmark indices are traded simultaneously, regardless of expert recommen-
dations for their relative performance. In the light of these developments, the possibilities
of diversification ”à la Markowitz” must be evaluated carefully for each model.

Short Positions Another finding from the empirical analysis is that being able to en-
ter short positions is much more beneficial when optimizing for maximum return than it
is when seeking to mitigate the overall risk. Naturally, any constraint limits the set of
feasible assets or portfolios; therefore, in principle, only an unconstrained optimization
would yield a real Pareto optimum. In reality, however, many investors are bound by
some long-only constraint. When optimizing for minimum variance with a return target
or a given Conditional Value at Risk, the results obtained without a constraint on short
positions were only slightly better. In reality, this effect would often be canceled out by
the adverse consequences of short positions, such as a greater amount of smaller positions
or the obligation to deposit cash or assets as collateral.
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6 Discussion

We have found that many models leave room for interpretation and argumentation. More-
over, the models evolve based on scientific research and practical experience. For exam-
ple, many of the risk models used over the past decade were found to be inadequate after
the financial crisis. In this section, we briefly discuss some of the variations, challenges,
and developments that did not fit into the scope of previous chapters.

6.1 Estimation of Inputs
The estimation of input parameters, particularly the vector of total expected returnsM and
the corresponding covariance matrix of returns S, is one of the most critical and challeng-
ing steps in the use of mean-variance models. FollowingMeucci’s recipe of ten sequential
steps [Meu11], we point out some of the key insights that were applied when setting up the
user-defined functions for this thesis. When estimating the distribution of the considered
invariants, which in the case of equities are the compounded returns, an appropriate time
frequency has to be chosen. As it can be seen in Figure 6.1 and Figure 6.2, different time
frequencies also have different distributions. Since the mean-variance model assumes nor-
mal distribution, longer intervals would be a better fit because the distribution of monthly
returns is closer resembled by the normal distribution.
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Figure 6.1: Probability density function for monthly and weekly returns
(Data: Thomson Reuters)
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Figure 6.2: QQ Plot for monthly and weekly returns (Data: Thomson
Reuters)

On the other hand, a greater number of observations is more desirable since it is more rep-
resentative of the population and limits the influence of extreme observations. Another
challenge arises when attempting to project the invariants to the investment horizon: The
projection of the returns leads to the inevitable choice between mean returns calculated
using logarithmic returns and those calculated using simple returns. From the academic
literature consulted, it appears that the advantages of using logarithmic returns have been
widely accepted. Primarily because using logarithmic returns is beneficial when consid-
ering multi-period returns as the continuously compounded multi-period return is simply
the sum of continuously compounded single period returns.

Nevertheless, as Hudson and Gregoriou [HG15, p. 7] point out, there is no direct rela-
tionship between mean logarithmic and mean simple returns. It becomes clear from their
empirical examples [HG15, p. 16] that the return under consideration in any research exer-
cise could be defined as either the logarithmic return or the simple return, and each of these
would give an internally consistent logical framework to address the problem. Nonethe-
less, in the context of investigations into the terminal wealth of investors, it seems clear
that the simple return is the most appropriate measure to use.

Going back to the previously mentioned projection of the invariant’s distribution to the
investment horizon, another pitfall has to be avoided. As Meucci points out [Meu10], it
is incorrect to estimate the means µi of the compounded returns and then project them to
the investment horizon T such as µ(T) = Tµ. This procedure would lead to sub-optimal
allocations; among other consequences, the efficient frontier would not depend on the
investment horizon. The solution to this is to aggregates the logarithmic returns across
time, establish the distribution, and project it to the investment horizon T. Only after the
distribution at the investment horizon is established the compounded returns Ri(T) can
be mapped to linear returns:
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eRi(T) − 1 = ri(T) (6.1)

Therefore Meucci’s [Meu10] approach is to estimate the horizon means and covariances
M(T) and Σ(T) of the linear returns and use these as inputs to the mean-variance opti-
mization. We incorporated these findings into the projection of invariants for this thesis.

6.1.1 Factor Models
Another challenge that might arise when estimating inputs to the mean-variance model
comes from the number of available assets. That is because for n available assets there are
1
2n(n+ 3) parameters to estimate. The problem does not occur when n is a small number,
such as in the examples in this thesis, but it becomes unfeasible in security selection from
a basket of thousands of securities. A solution to this is offered by factor models. Single
factor models go back to Sharpe’s finding that every asset return can be decomposed into
two components. The first component correlates with the market return by a factor β,
the second component, called residual return is uncorrelated with the market. Multiple-
factor models take this principle and assume that each return can be explained by a small
number of different factors k. Factors usually represent economic groups such as countries
or industrial sectors. For example, a ”telecommunications factor” would have an exposure
of 1 for telecommunications stocks and 0 for assets in other sectors. The respective factor
exposures can be found by analysis of historical data and is usually sold to institutional
investors by third-party analytic firms. Mathematically, the multiple-factor covariance
estimate ΣF is calculated as follows:

ΣF = BΣ̂BT + D (6.2)

With B the factor exposure matrix and Σ̂ an estimate of the covariance of the vector of
factor returns. The non-negative diagonal matrix D accounts for the additional variance
in individual asset returns beyond that predicted by the factor model, also known as id-
iosyncratic risk.

Table 6.1: Single thread time used by cvxpy (with OSQP) for 3000 assets
or 50 factors; Leverage limit: 2.0 applied. Source: [Boy+17].

covariance solve time
single matrix 173.30 s
factor model 0.85 s
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When factor models are used, the required soling time can be reduced substantially. The
increase in solving speed can be seen in Table 6.1 with a reduction achieved by the factor
model from n to k of 60:1, the solver is more than 200 times faster.

6.2 Estimation Risk
One of the major challenges of mean-variance models is their sensitivity to input parame-
ters. If an asset has desirable properties for the optimization goal, the optimization routine
will try to exploit this advantage by overweighting this position. Unfortunately, the actual
sample mean, and sample covariance are challenging to estimate and will inevitably con-
tain estimation errors amplified by the mean-variance optimizer. Nevertheless, there are
approaches to mitigate this problem.

6.2.1 Black-Litterman Model
TheBlack-Littermanmodel [BL91] takes a Bayesian approach to asset allocation. Bayesian-
ism introduces the concept of a priori probability, which summarizes prior knowledge to-
gether with data into a probability distribution. In the case of the Black-Litterman model,
knowledge has the form of investor’s views on the expected returns. The views can either
be absolute (Asset A will rise by 15%) or relative (Asset C will outperform Asset B by
20%). The views must be specified in the k x 1 vector Q and are mapped to the basket of
available assets via the k x n matrix P. The prior, according to Black and Litterman, is the
market’s estimate of returns:

Π = ψΣwM (6.3)

Here we calculate the total amount of risk contributed of each asset by weighting Σ with
wM , the relative market capitalization. Then by multiplying it with the market’s risk pre-
mium, we obtain Π the market-implied return vector. The market-implied risk premium
is quantified by the market’s excess return divided by its variance:

ψ =
rM − r f

σ2
M

(6.4)

The variances of each view, that is the amount of confidence the investor expresses in
his or her views, are written in a k x k diagonal covariance matrix called the confidence
matrix Ω. Following Idzorek’s formulation [Idz19], the Black-Litterman formula for the
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posterior estimate of the return is expressed as:

E(r)BL = [Σ−1 + PTΩ−1P]−1[Σ−1Π + PTΩ−1Q] (6.5)

with Σ the n x n covariance matrix of asset returns. And as follows for the posterior
estimate of the covariance matrix:

ΣBL = Σ + [Σ−1 + PTΩ−1P]−1 (6.6)

The estimated return is the Bayesianweighted-average of the prior and the views. Whereas
the weighting is achieved according to the given confidence. This process can be intu-
itively understood from Figure 6.3.
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Figure 6.3: Arbitrary illustration of input and output of the Black-Litterman
model.

The Bayesian estimates derived from the Black-Litterman model can then be used as
expected means and covariance for the convex optimization problem. Alternatively, as
Meucci [Meu05, p. 432] suggests, the Black-Litterman formulas can be incorporated into
the optimizationmodel voiding the two-step process. The advantage of the Black-Litterman
approach is that it can rely solely on prior information, but it can also be based on historical
information. When the confidence in the investor’s views increases, the distribution shifts
away from the market-implied model. In this way the Black-Litterman model addresses
some of the difficulties in estimating samplemean and sample covariance and tries to solve
them. However, Black and Litterman did not detail how they obtained the formula or what
the different parameters mean. Thus, the model is left with a few unintuitive parameters
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that are difficult to use. For this reason, the described model does not suit the purpose of
this thesis.

6.2.2 Shrinkage
Another method to reduce estimation error, especially from the sample covariance matrix,
is called shrinkage. The general method of shrinkage in statistics was introduced by Stein
[EM77] as early as 1955 and was not related to portfolio theory. In this context however it
is used for covariance estimation. The shrinkage constant provides a weighted average of
the sample covariance matrix and a highly structured estimator whose diagonal elements
are the sample variances.

Since the sample covariance is unbiased and relatively easy to calculate, it has become an
integral part of the mean-variance framework. Nevertheless, it is also well known that it
contains estimation error, especially when the number of observations is comparable to
the number of considered assets. On the other hand, a highly structured estimator needs to
be chosen carefully and is susceptible to bias. Therefore, ideally a compromise between
the two has to be found. Ledoit and Wolf [LW03a] approach this challenge as follows:
They consider the sample covariance matrix S and a highly structured estimator, denoted
by F. The authors then attempt to find a compromise between the two by computing the
following convex linear combination:

δF+ (1δ)S (6.7)

Where δ is a number between 0 and 1, referred to as the shrinkage constant. Regarding
the shrinkage target Ledoit and Wolf propose either a single-index matrix [LW03a] or the
constant correlation model [LW03b] which proves to be more accurate for optimization
problems with larger (N≥ 225) number of assets. In the first case, the shrinkage target is
obtained from Sharpe’s single-index model [Sha64] in the second case, by assuming that
each pair of stocks has the same correlation.

The greater challenge lies in finding the optimal shrinkage constant δ∗ that minimizes the
expected distance between the shrinkage estimator and the true covariance matrix. The
parameter depends on the mean and the sphericity of the eigenvalues of the covariance ma-
trix. The mathematical derivation of the formula proposed by Ledoit and Wolf [LW03b,
p. 12] for estimating δ∗ can be found in the appendix of the corresponding paper. This
thesis does not go into further detail on this task. The calculation of the optimal shrinkage
constant following the method proposed by the authors is part of the scikit-learn [Ped+11]
Python library. Since the library only supports the one shrinkage target, namely the diag-
onal covariance matrix, the other shrinkage targets had to be set up additionally. A Python
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adaptation of theMatlab code [LW14a] [LW14b], made available by Ledoit andWolf, was
found in different open source projects [Str11][tM19] available on Github.

Table 6.2: Optimization results obtained by different covariance matrices
for the out-of-sample period from Jan 2019 until Dec 2019

Sample Cov. Single Index Const. Corr.
Annual Return 20.68% 20.95% 21.22%
Annual Volatility 5.77% 5.63% 5.71%

The differently shrunk covariance matrices were applied to the data-set used throughout
this thesis. A minimum variance optimization problem such as (4.3) was set up, whereas
the constraint on the required return was slightly altered. The return was not set to be
equal to the index return (wTM = rP) but at least high as such (wTM ≥ rP). Therefore,
allowing the effects of the different covariance matrices to materialize.
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Figure 6.4: Cumulative returns of the portfolios obtained by different co-
variance matrices.

The results in Table 6.2 confirm the assumption that shrinking the sample covariance ma-
trix can increase the realized out-of-sample return compared to using the sample covari-
ance matrix as input to the optimization problem.

6.3 The Challenge of Convex Constraints
Formulating constraints in a way that ensures convexity is one of the challenges in con-
vex optimization. This can be seen in the formulation of a convex minimum holding size
constraint. Following Cornuejols et al. [CPT18, p. 167] we threat w as a semi-continuous
variable, meaning that is must take a value between its minimum and maximum or zero
and reformulate our constraint. By employing the (binary) boolean variable d we can im-
plement the constraint in the form of d×min_arr ≤ w ≤ d×max_arr where min_arr
and max_arr are arrays containing the lower and upper bounds respectively.
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1 constraints = [ ret == get_mu(df_index),
2 cp.sum(w) == 1,
3 w >= 0,
4 w >= cp.multiply(d, min_arr),
5 w <= cp.multiply(d, max_arr)
6 ]

Listing 6.1: Cvxpy implementation of the minimum holding size constraint.

Now the problem becomes a Mixed-Integer Quadratic Programming problem. Within
cvxpy, only ECOS [DJ14] which is an embedded conic solver, was able to solve the prob-
lem successfully, although with long solving times. It is to be assumed that commercial
solvers such as CPLEX or MOSEK would tackle this problem more efficiently. Never-
theless, the usage of a commercial solver for this thesis is foregone.

6.4 Multi Period Models
The classic Markowitz mean-variance model only considers single-period optimization
problems. The basic assumption is that an investor calculates the optimal weights for
each asset, invests his or her wealth in fractions according to the weights, and then holds
this portfolio for an undefined time. This assumption does not seem to be realistic for most
investment cases. Many investors are obliged to have some portfolio rebalancing or want
to do justice to changing market dynamics over time.

A first approach to creating a more dynamic model is to construct a multi-period opti-
mization model by cascading multiple single periods. In practice this means that if we
previously considered one year for our single-period model, we would now take the same
model and supply it with the updated information, that is, the asset returns from the past
year, to calculate the weights for the coming year. In this way, the model gets more dy-
namic because, for each period, it can adapt to the information collected in the previous
period.

To test the validity of this approach, we took the return optimization problem (4.4) and
employed the following backtesting: At the end of each calendar year, the past returns and
distributions were used to calculate the optimal weights. These weights were then used
to rebalance the portfolio for the following year. In this way, the optimized out-of-sample
returns shown in Figure 6.5 were obtained. Even though we were able to achieve out-of-
sample excess returns for various optimization goals and with different constraints, this
is still a very primitive approach. Two significant factors that are not being considered
in this approach are transaction costs and time-varying forecasts. These parameters are
better dealt with in an actual multi-period setting, such as the approach proposed by Boyd
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Figure 6.5: Cumulative returns form single period optimization for consec-
utive annual periods.

et al. [Boy+17]. The authors optimize the post-trade portfolio (h+t ), which depends on
the dollar values of the trades (ut) and the total value of the portfolio from the previous
period (ht). In this way they can incorporate transaction and holding costs directly into
the optimization model.
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7 Conclusion

The main focus of this thesis was to engineer practical tools for asset allocation and im-
plement them with Python. We approached this by first outlining a general understanding
of the basic mean-variance model. Further, a discussion on developments in asset alloca-
tion with analytical and numerical examples has been provided. We took the two primary
goals of keeping the routines simple but still obtaining precise results into account at all
stages of the process.

The historical data was processed and projected to the investment horizon in a way that
maintained the distribution of the underlying invariants. This thesis provides a convex
formulation of the most common optimization objectives: Reducing volatility, enhanc-
ing returns, and improving Sharpe ratio; we also optimized for different objectives while
accounting for risk aversion and Expected Shortfall. The problems implemented in this
thesis include various equality and inequality constraints. Estimation error was success-
fully reduced for many problems by shrinking the sample covariance matrix toward a
structured estimate. The proposed and implemented routines work reliably and solve with
short computation times using open-source solvers for linear programming and convex
optimization. Several custom-built functions support the comprehensibility of inputs and
results through visualizations that can be plotted right from the code. In particular, we
proposed to optimize for Expected Shortfall rather than variance. We were able to verify
this approach analytically and numerically. Combining many of the findings and tools,
we successfully constructed a portfolio of Swiss stocks which beat its benchmark index
over eight consecutive years, regarding Conditional Value at Risk, in out-of-sample back-
testing.

We addressed the problem of lacking openly accessible, efficient routines by creating a
set of Python functions around the embedded modeling language cvxpy. In the next step,
a general user interface could be built on top of these functions to ensure usability for
an even broader audience. Moreover, the models could be further refined by evaluating
results from larger, more heterogeneous data sets or by including other asset classes. From
this, a multi-period model that takes transaction costs into account could be built.

This thesis has shown two strong points: First, most optimization problems can be ex-
pressed in convex form. They can be implemented and solved efficiently using different
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Python modules to create portfolios from real-world data. Secondly, that even in an envi-
ronment with high correlation within and among asset classes, it is still possible to achieve
a competitive return with a lower expected shortfall and lower excess risk than the market
over multiple periods.
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A Mathematical Formulation

A.1 Maximizing Sharpe Ratio
The Sharpe [Sha66] ratio of a given portfolio w is the ratio of its expected return to
its volatility (standard deviation) of returns. Following the formulation thought in the
Columbia University IEOR E4500 Course we reformulate the natural formulation of the
Sharpe Ratio as a standard convex quadratic program.

The natural formulation for this problem is the following:

maximize wTM√
wTΣw

subject to wT1m = 1

wi ≥ 0

(A.1)

Notice that in this case unless the risk-free rate is 0M is not the vector of expected absolute
returns but vector of expected relative returns.

The assumption we make is: wTM > 0, satisfying all constraints.

Since ∑N
i=1 wi = 1,

f (w) =
wTM√
wTΣw

=
wTM ∑N

i=1 wi√
wTΣw

(A.2)

We observe that for any vector w with ∑N
i=1 wi = 1, and any scalar λ > 0, f (λw) =

f (w). Further the assumption that wTM > 0 for some feasible w implies that we can
choose κ > 0 such that zTM = 1. Using this together with first second assumption, we
consider the problem:
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maximize 1√
zTΣz

subject to zTM = 1
N

∑
i=1

zi = κ

κ ≥ 0

wi =
zi
κ

(A.3)

which is equivalent to this standard quadratic program.:

minimize zTΣz

subject to zTM = 1
N

∑
i=1

zi = κ

κ ≥ 0

wi =
zi
κ

(A.4)
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B Python Code

This appendix provides a list of the most important user-defined functions and optimiza-
tion routines created for this thesis. For convenience the helper functions listed in B.2 are
located in a separate module which is imported for every optimization routine.

B.1 Datareader

1 def eikon_datareader_TR(RICs, Start, End, Frequency):
2 """
3 Extracts Total Return Data from the Thomson Reuters API for
4 a List of RICs. Data for individual assets is stored in
5 separate columns and returned as DataFrame.
6 RICs : List of Thomson Reuters Instrument Code
7 Start: Last day of requested time series yyy-mm-dd
8 End: First day of requested time series yyy-mm-dd
9 Frequency: D, W, M, Q, Y

10 """
11

12 df, err = ek.get_data([RICs[0]],fields=[
13 "TR.TotalReturn(SDate={},EDate={},Frq={}).date"
14 .format(Start, End, Frequency)])
15 df_store = pd.DataFrame(df["Date"].str[:10])
16

17 for i in range(len(RICs)):
18 df, err = ek.get_data([RICs[i]],fields=[
19 "TR.TotalReturn(SDate={},EDate={},Frq={}).date"
20 .format(Start, End, Frequency),
21 "TR.TotalReturn(SDate={},EDate={},Frq={})"
22 .format(Start, End, Frequency)])
23

24 df_returns_temp = pd.DataFrame(df["Total Return"])
25 df_returns_temp.columns = [df.iloc[1][0]]
26 df_store = pd.concat([df_store, df_returns_temp], axis=1)
27 i += 1
28

29 return df_store
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B.2 Helper Functions

1 import numpy as np
2 import pandas as pd
3 import cvxpy as cp
4 import cvxopt
5 import matplotlib.pyplot as plt
6 import copy
7

8 def process_csv(path,log=False):
9 """

10 Loads CSV into DataFrame and formats with Date as Index
11 path: Path of csv file with simple net returns;
12 First Column are dates; Index are RIC
13 """
14 df = pd.read_csv (path)
15 df["Date"] = pd.to_datetime(df["Date"], format="\%Y-\%m-\%d")
16 #Fotmat Dates as Datetime
17 df = df.set_index("Date") #Set Dates Column as DataFrame Index
18 if log:
19 df = np.log1p(df) #Simple Net Returns to Log total Return
20 df = df.sort_values(by='Date')
21 df = df.dropna(axis=0, how="any")
22

23 return df
24

25 def get_mu(timeseries):
26 """
27 Calculates annualized mean according to Meucci's proposal for
28 the projection of invariants (https://ssrn.com/abstract=1586656).
29 Returns the annualized mean of the input
30 timeseries: pandas DataFrame containing daily returns
31 """
32 return np.exp(np.log1p(timeseries).mean()*252)-1
33

34 def _mu(timeseries):
35 """
36 Local performance function; equivalent to get_mu.
37 Returns the annualized mean of the input
38 timeseries: pandas dataframe containing daily returns
39 """
40 return np.exp(np.log1p(timeseries).mean()*252)-1
41

42 def get_cov(timeseries, annualized = True):
43 """
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44 Calculates annualized covariance (Matrix).
45 timeseries: pandas DataFrame containing daily returns
46 annualized: defaults to 252 (number of trading days per year)
47 """
48 S = timeseries.cov()
49 if annualized:
50 S = S * 252
51

52 return S
53

54 def get_std(timeseries, annualized = True):
55 """
56 Calculates annualized standard deviation.
57 timeseries: pandas DataFrame containing daily returns
58 annualized: defaults to 252 (number of trading days per year)
59 """
60 std = timeseries.std()
61 if annualized:
62 std = std * np.sqrt(252)
63

64 return std
65

66 def get_var(timeseries, annualized = True):
67 """
68 Calculates annualized variance.
69 timeseries: pandas DataFrame containing daily returns
70 annualized: defaults to 252 (number of trading days per year)
71 """
72 var = timeseries.var()
73 if annualized:
74 var = var * 252
75

76 return var
77

78 def get_hist_VaR(timeseries, alpha=5):
79 """
80 Calculates (negative) historic Value at Risk
81 timeseries: pandas DataFrame containing daily returns
82 alpha: Confidence
83 """
84

85 return -np.percentile(timeseries, alpha)
86

87 def get_hist_CVaR(timeseries, alpha=5):
88 """
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89 Calculates (negative) historic Conditional Value at Risk.
90 timeseries: pandas DataFrame containing daily returns
91 alpha: Confidence
92 """
93 belowVaR = timeseries <= np.percentile(timeseries, alpha)
94 return -timeseries[belowVaR].mean()
95

96 def get_weighted_returns(assets, weights):
97 """
98 Calculates returns relative to given weights.
99 assets: pandas DataFrame containing daily returns

100 weights: vector of weights; has to be same length as number of assets
101 """
102 portfolio_rets = assets@weights
103 return portfolio_rets
104

105 def get_mvp_weights(timeseries):
106 """
107 Calculates weights of the (optimized) MVP.
108 timeseries: pandas DataFrame containing daily returns
109 """
110 w = cp.Variable(len(timeseries.columns),)
111 ret = w.T@_mu(timeseries)
112 sigma_square = cp.quad_form(w, get_cov(timeseries))
113 objective = cp.Minimize(sigma_square)
114 constraints = [
115 cp.sum(w) == 1,
116 w >= 0]
117

118 prob = cp.Problem(objective, constraints)
119 prob.solve()
120 w_mvp = w.value
121

122 return w_mvp
123

124 def get_max_ret_weights(timeseries):
125 """
126 Returns a vector of weights with the same length as the timeseries,
127 where all the weight is allocated to the asset with the maximum mean.
128 timeseries: pandas DataFrame containing daily returns
129 """
130 w_max = np.zeros(len(timeseries.columns))
131 w_max[_mu(timeseries).argmax()] = 1
132

133 return w_max
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134

135 def get_summary(weights, timeseries, pct=True):
136 """
137 Returns selected summary statistics on the portfolio.
138 weights: vector of (portfolio) weights
139 timeseries: pandas DataFrame containing daily returns
140 """
141 w_opt = weights
142 if pct:
143 d = [
144 ["### Portfolio Summary ###",""],
145 ["","" ],
146 ["Number of Assets:", "{:}"
147 .format(np.count_nonzero(weights.round(6)+0.0))],
148 ["Expected Annual Return:", "{:.3f}\%"
149 .format((w_opt.T@_mu(timeseries))*100)],
150 ["Annual Volatility:", "{:.3f}\%".format(np.sqrt(
151 w_opt.T@get_cov(timeseries)@w_opt)*100)],
152 ["Sharpe Ratio:", (w_opt.T@_mu(timeseries)/np.sqrt(
153 w_opt.T@get_cov(timeseries)@w_opt)).round(3)],
154 ["Portfolio Leverage:",
155 get_port_leverage(weights).round(3)],
156 ["1-Year 95\% VaR:", "{:.3f}\%".format(100*np.sqrt(252)*
157 get_hist_VaR(get_weighted_returns(timeseries, weights)))],
158 ["1-Year 95\% CVaR:", "{:.3f}\%".format(100*np.sqrt(252)*
159 get_hist_CVaR(get_weighted_returns(timeseries, weights)))],
160 ["1-Day 95\% VaR:", "{:.3f}\%".format(100*
161 get_hist_VaR(get_weighted_returns(timeseries, weights)))],
162 ["1-Day 95\% CVaR:", "{:.3f}\%".format(100*
163 get_hist_CVaR(get_weighted_returns(timeseries, weights)))],
164 ["","" ],
165 ]
166

167 for v in d:
168 title, value = v
169 print ("{:<25} {:<30}".format( title, value))
170

171 def get_top_weights(number, timeseries, weights):
172 """
173 Returns n(umber) of the assets with the biggest weights.
174 number: Integer value defining the number of weights to be returned
175 timeseries: pandas DataFrame containing daily returns
176 weights: vector of (portfolio) weights
177 """
178 for _ in range(number):
179 print(timeseries.iloc[:, (-weights).argsort()[_]]



Appendix B. Python Code 72

180 .name,weights[(-weights).argsort()[_]].round(5))
181

182 def get_bot_weights(number, timeseries, weights):
183 """
184 Returns n(umber) of the assets with the smallest weights.
185 number: Integer value defining the number of weights to be returned
186 timeseries: pandas DataFrame containing daily returns
187 weights: vector of (portfolio) weights
188 """
189 number = number-1
190 for _ in range(number+1):
191 print(timeseries.iloc[:, (weights).argsort()[number-_]]
192 .name,weights[(weights).argsort()[number-_]].round(5))
193

194 def get_port_leverage(weights):
195 """
196 Calculates leverage measured in excess of 1
197 weights: vector of (portfolio) weights
198 """
199 return np.abs(weights).sum().round(5) -1

B.3 Generate Random Portfolios

1 def gen_weights(n,long_only = True):
2 """
3 Returns a vector of n weights.
4 n: Number of weights (portfolios).
5 """
6 if long_only:
7 #rand for only positive values
8 r = np.random.rand(n)
9 return r / sum(r)

10 else:
11 #randn for positive and negative
12 r = np.random.randn(n)
13 return r / sum(r)
14

15 def random_portfolio(timeseries):
16 """
17 Returns mean, standard deviation and asset weights
18 for a random portfolio.
19 timeseries: pandas DataFrame containing daily returns
20 """
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21 M = pd.DataFrame(timeseries.mean()) #Return Vector (3x1)
22 w = pd.DataFrame(gen_weights(timeseries.shape[1],0),
23 index=['A', 'B', 'C']) #Weight Vector (3x1)
24 S = pd.DataFrame(timeseries.cov()) #CovMatrix
25

26 mu = w.T@M
27 sigma = np.sqrt(w.T@S@w)
28

29 if sigma.iloc[0,0] > 5: #cleaning up outliers for plotting
30 return random_portfolio(timeseries)
31 return mu, sigma , w
32

33 def random_portfolio_long(timeseries):
34 """
35 Returns mean, standard deviation and asset weights
36 for a random (long-only) portfolio.
37 timeseries: pandas DataFrame containing daily returns for 3 assets
38 """
39 M = pd.DataFrame(timeseries.mean()) #Return Vector (3x1)
40 w = pd.DataFrame(gen_weights(timeseries.shape[1],1),
41 index=['A', 'B', 'C']) #Weight Vector (3x1)
42 S = pd.DataFrame(timeseries.cov()) #CovMatrix
43

44 mu = w.T@M
45 sigma = np.sqrt(w.T@S@w)
46

47 if sigma.iloc[0,0] > 5: #cleaning up outliers for plotting
48 return random_portfolio(timeseries)
49 return mu, sigma , w

B.4 Variance Optimization Problem

1 # Minimize portfolio variance for given return (ret)
2 w = cp.Variable(len(df_assets.columns),)
3 ret = w.T@get_mu(df_assets)
4 sigma_square = cp.quad_form(w, get_cov(df_assets))
5 objective = cp.Minimize(sigma_square)
6 constraints = [
7 ret == get_mu(df_index).mean(),
8 cp.sum(w) == 1,
9 w >= 0

10 ]
11



Appendix B. Python Code 74

12 prob = cp.Problem(objective, constraints)
13 prob.solve(verbose = False)
14 get_summary(w.value,df_assets)

B.5 Return Optimization Problem

1 # Maximize portfolio return for given variance limit (sigma_square)
2 w = cp.Variable(len(df_assets.columns),)
3 ret = w.T@get_mu(df_assets)
4 sigma_square = cp.quad_form(w, get_cov(df_assets))
5 objective = cp.Maximize(ret)
6 constraints = [
7 sigma_square <= get_var(df_index),
8 cp.sum(w) == 1,
9 w >= 0

10 ]
11

12 prob = cp.Problem(objective, constraints)
13 prob.solve(verbose = False)
14 get_summary(w.value,df_assets)

B.6 Sharpe Optimization Problem

1 # Minimize portfolio Sharpe for given return (ret)
2 z = cp.Variable(len(df_assets.columns),) #transformed variable
3 k = cp.Variable() #scalar (variable)
4 ret = z.T@get_mu(df_assets)
5 sigma_square = cp.quad_form(z, get_cov(df_assets))
6 objective = cp.Minimize(sigma_square)
7 constraints = [
8 ret == 1 #adjustable return target constraint
9 cp.sum(z) == k,

10 z >= 0,
11 k >= 0
12 ]
13

14 prob = cp.Problem(objective, constraints)
15

16 prob.solve(verbose = False)
17 w = (z.value / k.value)
18 get_summary(w,df_assets)
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B.7 Minimum CVaR

1 # Minimize absolute portfolio CVaR
2 w = cp.Variable(len(df_assets.columns),)
3 alpha = cp.Variable()
4 u = cp.Variable(len(df_assets)) #auxiliary var. (see Rockafellar & Uryasev)
5 beta = 0.95 #adjustable parameter (confidence)
6

7 objective = cp.Minimize(alpha + 1.0 / (len(df_assets) *
8 (1 - beta)) * cp.sum(u))
9 constraints = [

10 cp.sum(w) == 1,
11 u >= 0.0,
12 w >= 0.0,
13 df_assets.values@w + alpha + u >= 0.0,
14 ]
15

16 prob = cp.Problem(objective, constraints)
17 prob.solve(verbose = False)
18 get_summary(w.value,df_assets)

B.8 Minimum CVaR for Return Target

1 # Minimize portfolio CVaR for given return limit (ret)
2 w = cp.Variable(len(df_assets.columns),)
3 alpha = cp.Variable()
4 u = cp.Variable(len(df_assets)) #auxiliary var. (see Rockafellar & Uryasev)
5 beta = 0.95 #adjustable parameter (confidence)
6

7 return_target = get_mu(df_index)
8 ret = w.T@get_mu(df_assets)
9

10 objective = cp.Minimize(alpha + 1.0 / (len(df_assets) *
11 (1 - beta)) * cp.sum(u))
12 constraints = [
13 cp.sum(w) == 1,
14 u >= 0.0,
15 w >= 0.0,
16 df_assets.values@w + alpha + u >= 0.0,
17 ret >= return_target
18 ]
19

20 prob = cp.Problem(objective, constraints)
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21 prob.solve(verbose = False)
22 get_summary(w.value,df_assets)

B.9 Maximum Return for CVaR Target

1 # Maximize portfolio Return for given CVaR limit (cvar_target)
2 w = cp.Variable(len(df_assets.columns),)
3 alpha = cp.Variable()
4 u = cp.Variable(len(df_assets)) #auxiliary var. (see Rockafellar & Uryasev)
5 beta = 0.95 #adjustable parameter (confidence)
6 cvar = alpha + 1.0 / (len(df_assets) * (1 - beta)) * cp.sum(u)
7 cvar_target = 0.008 #adjustable parameter
8

9 objective = cp.Maximize(w.T@get_mu(df_assets))
10 constraints = [
11 cp.sum(w) == 1,
12 u >= 0.0,
13 w >= 0.0,
14 df_assets.values@w + alpha + u >= 0.0,
15 cvar <= cvar_target
16 ]
17

18 prob = cp.Problem(objective, constraints)
19 prob.solve(verbose = False)
20 get_summary(w.value,df_assets)

B.10 Risk Aversion Optimization

1 # Minimize portfolio risk adjusted return.
2 w = cp.Variable(len(df_assets.columns),)
3 ret = w.T@get_mu(df_assets)
4 sigma_square = cp.quad_form(w, get_cov(df_assets))
5 gamma = cp.Parameter(nonneg=True) #cvxpy parameter; modified later
6 objective = cp.Maximize(ret - gamma*sigma_square)
7 constraints = [
8 cp.sum(w) == 1,
9 w >= 0

10 ]
11

12 prob = cp.Problem(objective, constraints)
13
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14 prob.solve(verbose = False)
15 get_summary(w.value,df_assets)

B.11 Efficient Frontier

1 # Calculates efficient frontier from any optimization problem.
2 gamma.value = 0
3 w_opt = np.ones(len(df_assets.columns))
4 mu_front = []
5 sigma_front = []
6 gamma_front = []
7 weight_front = pd.DataFrame()
8

9 # Iterate as long as variance is more than 5*10^-4 away from MVP
10 while (np.sqrt((w_opt.T@get_cov(df_assets)@w_opt)) -
11 np.sqrt((get_mvp_weights(df_assets).T@get_cov(df_assets)
12 @get_mvp_weights(df_assets)))) > .0005:
13 prob.solve()
14 #cvxpy problem defined outside
15 w_opt = w.value
16 gamma_front.append(round(gamma.value,1))
17 #save current gamma value
18 mu_front.append(w.value.T@get_mu(df_assets))
19 #save mu for current gamma value
20 sigma_front.append(np.sqrt(w.value.T@get_cov(df_assets)@w.value))
21 #save sigma for current gamma value
22 weight_front = pd.concat([weight_front,
23 pd.DataFrame(w_opt.reshape((len(w_opt), 1)),
24 columns=[round(gamma.value,1)])], axis=1)
25 #save weights for current gamma value
26 gamma.value += .1

B.12 Rolling Single Period Optimization

1 # Cascading SPO simulating MPO (Max. return for 0.01
2 # 1-day CVaR); Last years opt weights (in-sample) are used
3 # to calculate returns for the "current" year (out-of-sample)
4 w_optP = {}
5 start_dict = {}
6 end_dict = {}
7 end_value = {}
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8 #Setup dictionaries to store opt values
9 df_combined = pd.DataFrame()

10

11 d_start = df_assets.index[0]+pd.offsets.YearBegin(-1)
12 #Set first Date of dataframe as start of the opt period
13 start_dict[0] = d_start
14 d_end = d_start+pd.offsets.YearEnd(0)
15 #Set end of opt period 1 year from start
16 end_dict[0] = d_start
17 df_assetsP = df_assets.loc[d_start:d_end]
18 df_indexP = df_index.loc[d_start:d_end]
19 #Create dataframe for current period
20

21 w = cp.Variable(len(df_assetsP.columns),)
22 alpha = cp.Variable()
23 u = cp.Variable(len(df_assetsP)) #auxiliary var. from CVaR opt
24 beta = 0.95
25 cvar = alpha + 1.0 / (len(df_assetsP) * (1 - beta)) * cp.sum(u)
26 cvar_target = 0.01
27

28 objective = cp.Maximize(w.T@get_mu(df_assetsP))
29 constraints = [
30 cp.sum(w) == 1,
31 u >= 0.0,
32 w >= 0.0,
33 w <= 0.10,
34 df_assetsP.values@w + alpha + u >= 0.0,
35 cvar <= cvar_target
36 ]
37

38 prob = cp.Problem(objective, constraints)
39 prob.solve()
40 #Standard CVaR problem; see max. return for CVaR
41 w_optP[0] = copy.copy(w.value)
42 i = 0
43

44 #Iterations over all 1-year periods of the given timeseries
45 while i < len(pd.date_range(df_assets.index[0],
46 df_assets.index[-1], freq='1Y')):
47 d_start = df_assets.index[0]+pd.offsets.YearBegin(i+1)
48 start_dict[i+1] = d_start
49 d_end = d_start+pd.offsets.YearEnd(0)
50 end_dict[i+1] = d_end
51 df_assetsP = df_assets.loc[d_start:d_end]
52 df_indexP = df_index.loc[d_start:d_end]
53
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54 w = cp.Variable(len(df_assetsP.columns),)
55 alpha = cp.Variable()
56 u = cp.Variable(len(df_assetsP))
57 beta = 0.95 #confidence; if adjusted here, adjust below
58 cvar = alpha + 1.0 / (len(df_assetsP) * (1 - beta)) * cp.sum(u)
59 cvar_target = 0.01 #if adjusted here, adjust below
60

61 objective = cp.Maximize(w.T@get_mu(df_assetsP))
62 constraints = [
63 cp.sum(w) == 1,
64 u >= 0.0,
65 w >= 0.0,
66 w <= 0.10,
67 df_assetsP.values@w + alpha + u >= 0.0,
68 cvar <= cvar_target
69 ]
70

71 prob = cp.Problem(objective, constraints)
72 prob.solve()
73 w_optP[i+1] = copy.copy(w.value)
74 _temp_rets = (df_assets.loc[start_dict[i+1]:end_dict[i+1]])@w_optP[i]
75 #Calculate weighted returns for current period
76 df_temp_rets = pd.DataFrame(_temp_rets)
77 df_combined = df_combined.append(df_temp_rets)
78 #Append current weighted returns to DataFrame with previous returns
79 i += 1

B.13 Plotting Returns

1 def plt_retuns(returns,weights,benchmark,save=False):
2 """
3 Plots time-series of returns in 2-dimensional
4 plot with dates on the x-axis. Visualizing return variance.
5 returns: pandas DataFrame containing daily returns
6 weights: vector of weights; has to be same length as number of assets
7 benchmark: pandas DataFrame containing daily returns of a benchmark
8 """
9 fig = plt.figure()

10 ax = fig.add_subplot(111)
11 plt.plot(get_weighted_returns(returns,weights),
12 label='Optimized', alpha=0.5, color="steelblue")
13 plt.plot(benchmark, label='Index',alpha=0.3, color="lightslategray")
14 ax.legend()
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15

16 plt.ylabel('Return')
17 ax.legend()
18 plt.tight_layout() #more space for x and y labels
19 plt.grid(alpha=0.3)
20

21 if save:
22 plt.savefig('/Users/../_vola.pdf', dpi=500, format='pdf')
23

24 plt.show()

B.14 Plotting Cumulative Returns

1 def plt_cum_retuns(returns,weights,benchmark,save=False):
2 """
3 Plots time-series of cumulative returns in 2-dimensional
4 plot with dates on the x-axis.
5 returns: pandas DataFrame containing daily returns
6 weights: vector of weights; has to be same length as number of assets
7 benchmark: pandas DataFrame containing daily returns of a benchmark
8 """
9 fig = plt.figure()

10 ax = fig.add_subplot(111)
11 plt.plot((returns@weights).add(1).cumprod(),
12 label='Optimized', alpha=0.5, color="steelblue")
13 plt.plot(benchmark.add(1).cumprod(),
14 label='Index',alpha=0.3, color="lightslategray")
15

16 ax.legend()
17 plt.ylabel('Cumulative Return')
18 plt.tight_layout() #more space for x and y labels
19 plt.grid(alpha=0.3)
20

21 if save:
22 plt.savefig('/Users/../_opt_return.pdf', dpi=500, format='pdf')
23

24 plt.show()
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B.15 Plotting Efficient Frontier

1 def plt_frontier(mu_front, sigma_front, sharpe_front ,save=False):
2 """
3 Calculates and plots efficient frontier.
4 mu_front: array of efficient means
5 sigma_front: array of efficient standard deviations
6 sharpe_front: array of Sharpe ratios
7 """
8 fig = plt.figure()
9 ax = fig.add_subplot(111)

10

11 plt.plot(sigma_front, mu_front, color='steelblue',
12 linewidth=2,alpha=0.5, label='Efficient frontier') # Plot frontier
13 plt.plot(sigma_front[np.argmax(sharpe_front)],
14 mu_front[np.argmax(sharpe_front)], marker = '*',
15 color='steelblue', label="Maximum Sharpe portfolio",
16 markersize=12) #Highlight max Sharpe portfolio
17

18 v = [.1,1,2,3,5,10,20,30,50]
19 #levels of risk aversion to be highlighted on the frontier
20

21 for _ in range(len(v)):
22 plt.plot(sigma_front[gamma_front.index(v[_])],
23 mu_front[gamma_front.index(v[_])], marker = 'o', color='steelblue')
24 ax.annotate(r"$\gamma = \%.2f$" \% (v[_]),
25 xy=(sigma_front[gamma_front.index(v[_])]+.002,
26 mu_front[gamma_front.index(v[_])]-0.004))
27 #Annotate gamma value
28

29

30 ax.legend(loc = 4)
31 plt.grid(alpha = 0.3)
32 plt.xlabel('Standard Deviation (Volatility)')
33 plt.ylabel('Expected Annual Return')
34

35 plt.tight_layout()
36 if save:
37 plt.savefig('/Users/../_frontier.pdf', dpi=500, format='pdf')
38 plt.show()
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B.16 Plotting Efficient Frontier with Assets Scatter

1 def plt_frontier_scatter(mu_front, sigma_front, sharpe_front,
2 assets ,save=False):
3 """
4 Calculates and plots efficient frontier relative
5 to all assets of the portfolio.
6 mu_front: array of efficient means
7 sigma_front: array of efficient standard deviations
8 sharpe_front: array of Sharpe ratios
9 assets: pandas DataFrame containing daily returns

10 """
11 fig = plt.figure()
12 ax = fig.add_subplot(111)
13

14 plt.plot(sigma_front, mu_front, color='steelblue',
15 linewidth=2,alpha=0.5, label='Efficient frontier')
16 # Plot frontier
17 plt.plot(sigma_front[np.argmax(sharpe_front)],
18 mu_front[np.argmax(sharpe_front)], marker = '*',
19 color='steelblue', label="Maximum Sharpe portfolio",
20 markersize=10) #Higlight max sharpe portfolio
21 plt.scatter(get_std(assets),get_mu(assets), s=8 , label='Assets')
22

23 ax.legend(loc = 3)
24 plt.grid(alpha = 0.3)
25 plt.xlabel('Standard Deviation (Volatility)')
26 plt.ylabel('Expected Annual Return')
27

28 plt.tight_layout()
29

30 if save:
31 plt.savefig('/Users/../_scatter_front.pdf', dpi=500, format='pdf')
32 plt.show()

B.17 Plotting Correlation Matrix

1 def plot_corr(timeseries):
2 """
3 Plots the correlation matrix with a weighted color scheme.
4 timeseries: pandas DataFrame containing daily returns
5 """
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6 return timeseries.corr().style.background_gradient
7 (cmap='coolwarm', axis=None).set_precision(4)

B.18 Plotting Maximum Drawdown

1 def maximum_drawdown(timeseries, plot=False):
2 """
3 Calculates and plots the MDD over a given period.
4 timeseries: pandas DataFrame containing daily returns
5 """
6 if plot:
7 plt.plot(np.exp((w.value@np.log(timeseries+1).T).cumsum()))
8 prev_peak = np.exp((w.value@np.log(timeseries+1).T).cumsum()).cummax()
9 if plot:

10 plt.plot(prev_peak)
11 drawdown = (np.exp((w.value@np.log(timeseries+1).T)
12 .cumsum())-prev_peak)/prev_peak
13 if plot:
14 plt.plot(drawdown)
15 print("Maximum Drawdown: {:.3f}\%".format(drawdown.min()
16 *100),"on",drawdown.idxmin().strftime('\%d/\%m/\%Y'))
17

18 return None
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