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1 Introduction 
Machine learning methods find practical use in many modern-day scenarios, facilitating 

or improving the execution of tasks from simple to complex. While for some time the 

most prominent techniques were associated with algorithms solving problems through 

learning in a supervised or unsupervised manner, the paradigm of reinforcement learning 

has more recently also gained comparable fame, perhaps most notably through Google’s 

AlphaGo breakthrough wins against distinguished Go player Lee Sedol in 2016 

(DeepMind, n.d.). Owing to their generality and adaptability, reinforcement learning and 

its extension deep reinforcement learning can find use in a wide variety of fields including 

industrial automation, gaming, and healthcare (Chao, Jiming, & Nemati, 2020). This 

paper explores potential applications of deep reinforcement learning in the field of 

securities trading by analyzing the returns generated by variants of an agent acting 

autonomously in simplified trading environments. In particular, daily financial data for 

17 listed securities representing six major asset classes and the 11 Global Industry 

Classification Standard sectors (MSCI Inc., 2021) are fed into the agent’s environments 

to investigate how variating the neural network’s architecture and the lookback time 

horizon considered for making trading decisions affects cumulative returns for a specific 

security. 

 Motivation 
This study aims at establishing whether deep reinforcement learning techniques are 

suitable for applications in trading and the effects that some practical aspects such as the 

security being traded or implementation details have on the performance. The agents 

interacting with the trading environments consist of variants of a basic deep Q-network 

algorithm trained and tested on different timeseries of the same length. The entire 

software implementation is using the Python programming language. 

 Problem Statement and Research Question 
Data generation and collection practices have been increasing exponentially for some 

time and so has the availability of extensive data sets. Correctly leveraging these vast 

amounts of data to automate tasks or to inform decision-makers can be a competitive 

advantage in trading, where top-players typically have comparable access to securities 

data. Deep reinforcement learning methods can help in selecting the most promising 
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course of action solely based on the data they are fed, providing the basis for this paper’s 

research question: 

“Can deep reinforcement learning methods suggest profitable decisions for trading 

securities?” 

 Scope 
The broad spectrum of possible implementations, the fast pace of state-of-the-art 

research, and the limited computational resources available to the author impose 

limitations on the variety of aspects of reinforcement learning that can be investigated in 

this paper. The scope of the work presented in this study is broadly outlined by the points 

below: 

1. The software libraries the used for the empirical part are developed by third parties 

and not by the author. The author makes use of the software as provided by the 

respective distributors without altering the source code, but by creating programs 

that take advantage of the Python application programming interface of each 

library. The range of methods available to the author is therefore limited by the 

prepackaged software. 

2. The financial data is downloaded through the Yahoo Finance application 

programming interface and is assumed to be coherent and correct as of writing. 

3. This paper is the author’s master’s degree thesis for the curriculum in banking and 

finance with specialization in capital markets and data science at the Zurich 

University of Applied Sciences. The variety of and the degree of thoroughness 

with which the topics are explained and explored reflects the author’s level of 

skill, knowledge, and experience. 

 

 Structure of the Thesis 
This thesis consists of four chapters, each being a logical step towards answering the 

research question and drawing concluding considerations for the study. This introductory 

part is followed by the second chapter, which explains the theory and explores the 

literature underpinning the main concepts implemented in the practical part of the paper. 

The empirical procedure is exposed in the third chapter, where the data, algorithm 

variations, and intermediate results analyzed. The fourth and last chapter summarizes and 
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discusses the empirical results, exposes methodological limitations, provides 

recommendations for similar research, and explores potential real-world applications for 

the methods used in this paper. 

2 Theoretical Fundamentals 
Since the goal of the thesis is to establish how effective deep reinforcement learning can 

be in trading securities, some aspects of machine learning that are not central to the 

implemented methods are not examined in depth. The theory in this chapter should 

provide the reader with an understating of reinforcement learning within the field of 

machine learning and explain the key mechanics behind some of the most common 

algorithms. The referenced literature provides additional reading material for more 

thorough and rigorous explanations. 

  Machine Learning 
Machine learning is usually regarded as the sub-field of artificial intelligence concerned 

with studying computer algorithms that can solve specific problems by autonomously 

learning a set of rules from data. Besides the pure scientific interest for the role played by 

the various variables, often the goal is to obtain an algorithm that has a certain problem-

solving performance when applied to unseen data, an ability referred to as generalization. 

The versatility and power of machine learning methods often makes them attractive 

candidates for automating specific, relatively complex tasks that can be expressed in 

terms of data (Nguyen & Zeigerman, 2018, pp. 7–8). Machine learning can also be seen 

as new programming paradigm; in classical programming, detailed rules have to be 

programmed manually and the data fed to the program to receive answers, whereas with 

machine learning the rules constitute the main objective of the program. 

 

Figure 1: Machine learning as a new programming paradigm (Chollet, 2018, p. 5) 
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A common categorization of machine learning techniques is based on the type of learning 

that the algorithm is expected to go through, usually distinguishing between supervised, 

unsupervised, and reinforcement learning. Supervised learning is done by seeing 

examples of correct input-output pairs, as is the case for example in optical character 

recognition. By contrast, in unsupervised learning the algorithm is not fed the correct 

answers, as the notion of correct and incorrect answers is often not even included in 

problem, but rather the machine is expected to find patterns in the data and thus learn a 

representation of them; an example is customer segmentation based on a set of features. 

Reinforcement learning scenarios occur when agents ought to learn the actions that 

maximize a measure of reward from the environment with which they interact; an 

example is playing a videogame (Sutton & Barto, 2018, p. 2) 

 

Figure 2: Learning paradigms within machine learning (Bhatt, 2018) 

 Deep Learning 
Deep learning is a subset of machine learning concerned with using artificial neural 

networks to learn meaningful representations from data. Artificial neural networks are 

layers of artificial neurons organized in successive interconnected layers that make up the 

architecture. In general, every artificial neural network possesses an input layer, used for 

reading the data, one or more hidden layers where the representations are learned, and an 

output layer devoted to relaying the results. Deep learning as a field focuses on using 

artificial neural networks with multiple hidden layers (hence “deep”) to learn increasingly 

informative representations from complex and large sets of data (Chollet, 2018, pp. 8–

11). Figure 3 provides a good illustration of how the data representations could work in 

the case of a digit-classification model. 
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Figure 3: Layered representations as learned by a digit-classification model (Chollet, 2018, p. 9) 

Learning in the context of deep learning means parametrizing the neurons in such a way 

that the artificial neural network reaches a certain measure of accuracy when mapping the 

inputs to the outputs. Each neuron typically has several parameters that can be changed 

to alter its output function: a bias 𝑏 and a weight 𝑤 for each of the inputs 𝑥 from the 

neurons in the preceding layer to which it is connected. The number of parameters to be 

learned is therefore usually very high. It is common practice for neurons to have a non-

linear activation function that is applied to the linear combination of it inputs such as the 

sigmoid function before the neuron’s output is send to the next layer. This allows the 

network to model non-linearly behaving patterns found in the data; without non-linearity, 

an equivalent network without hidden units can be found that has the same modeling 

capability (Bishop, 2006, p. 229). 

 

Figure 4: Inner workings of a hidden layer neuron (Skansi, 2018, p. 80) 

Usually the parameters of the network are initialized with random values. Then, with each 

sample, the parameters are changed to reduce the error, calculated by a loss function, 
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between the network’s output and the correct solution. Intuitively one step of the 

network’s training can be explained as follows: the value of the error is calculated by a 

loss function; then, by applying the chain rule and partial derivation, a so-called 

backpropagation algorithm determines the role played by each parameter in the change 

of the loss function; finally, the adjustment necessary to reduce the error network is 

computed for each parameter (Bishop, 2006, p. 241). 

 Reinforcement Learning 
Reinforcement learning is the subfield of machine learning that studies how agents can 

learn to make decisions that maximize a quantitative reward through experience.  

 

Figure 5: Schematic representation of reinforcement learning (Sugiyama, 2015, p. 4) 

2.3.1 Main Characteristics of Reinforcement Learning 

Although some tasks may be benefit from approaches based on any or combinations of 

supervised, unsupervised, and reinforcement learning, usually only one type of learning 

algorithms is chosen to tackle the problem. Supervised learning’s requirement for correct 

and representative examples of correct behavior are often impractical; using chess as an 

example, it is difficult to imagine to have a complete training set that contains the ideal 

move of each piece for all possible chessboard configurations. Unsupervised learning on 

the other hand is not meant to directly suggest which action promises the most reward at 

each step. Since reinforcement learning does not suffer from the same limitations, it is 

usually the most suited for interactive tasks. 

Another distinctive characteristic of reinforcement learning is the exploration-

exploitation trade-off. The trade-off refers to the tension between repeating greedy actions 

that have proved to be profitable before, which is exploiting collected knowledge, and 

trying new nongreedy actions that may result in even better rewards, which is exploring 
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new behaviors. To succeed at a task, the agent has to strike a balance between exploration 

and exploitation. 

Finally, reinforcement learning is conceptually straightforward to adopt for many 

common problems, as it does not necessitate to break the task into smaller units to be 

analyzed and solved singularly, but rather the starting assumption is to train an agent to 

reach a goal while making decisions in and interacting with a stochastic environment 

(Sutton & Barto, 2018, pp. 1–4). 

2.3.2 Elements of Reinforcement Learning Systems 

The primary elements of an interactive problem are the agent and the environment. The 

agent is the entity that tries to learn to behave optimally through its actions 𝑎, and the 

environment is the domain with which the agent interacts and is typically characterized 

by some degree of unpredictability (from the agent’s perspective) of its states 𝑠. In many 

problems, the actions of the agent can have an effect of the future states of the 

environment, as is the case in many games. A reinforcement learning setting usually also 

includes four additional elements: a policy, a reward signal, a value function, and a model 

of the environment (Sutton & Barto, 2018, pp. 6–7). 

A policy π determines all of the agent’s decisions, therefore it can be seen as a state-

action mapping. Basic approaches for building the mapping include simple functions or 

tables, whereas more involved processes may include complex constructs such as neural 

networks. The state-action mapping is usually formulated in terms of probabilities for 

each action, thus it can be denoted as a stochastic policy. 

The reward signal 𝑟 is a quantity that the environment emits at each state and that the sum 

of which the agent attempts to maximize. The reward is logically the main driver of 

changes in the policy, as the latter decides the actions the agent should take for each state. 

The value function 𝑣∗(𝑠) or 𝑞∗(𝑠, 𝑎) (depending on the algorithm) can be described as the 

long-term equivalent of the reward signal. The value function maps the current state to 

the expected value of all future rewards, therefore quantifying how desirable a given state 

is in the long run. Although values are derived from rewards, it is values that matter for 

selecting actions, since only in this way can rewards be maximized over the long term. 

Given the indirect way a value function is estimated, their calculation has to be repeated 



Master Thesis Spring Semester 2021 

F. Bührer  Page 8 

regularly based on the states of the environment. Efficiently estimating value functions is 

of primary importance for every reinforcement learning algorithm. 

Model-based reinforcement learning methods also include a model of the environment 

𝑝(𝑠’ | 𝑠, 𝑎), which allows to infer future states of the environment before experiencing 

such situations, following a planning approach. Model-free methods on the other hand 

follow a trial-and-error approach. Current reinforcement learning methods cover a range 

between the extremes of trial-and-error and planning. 

2.3.3 Overview of Reinforcement Learning Problems 

In this part of the theory an overview of the reinforcement learning landscape is provided 

with the aim of helping the reader understand the classes of methods and the various types 

of formal problems that the methods attempt to solve. 

 Tabular Solution Methods 

Tabular solution methods apply to the simplest form of problems where both environment 

states and agent actions can be modeled by the value function in the form of tables with 

discrete entries, for example in the game of tic-tac-toe. 

The special case of a setting where the agent has to select an action out of 𝑘 possibilities 

for only one specific state is named a 𝑘-armed bandit problem. The main difficulty in 𝑘-

armed bandit problems is estimating the value 𝑞∗(𝑎) of each available action 𝑎 in order 

to make the correct choice at each step; if the agent only exploits known actions, it cannot 

update and improve the estimates and will keep on making the same safe choice, while if 

it explores new actions, it may incur a lower reward in the short-term compared to 

following a greedy behavior. Since only one behavior can be followed at any one step, 𝑘-

armed bandit problems offer a clear understanding of the exploration-exploitation trade-

off common to all reinforcement learning problems (Sutton & Barto, 2018, pp. 25–27). 

However, the general case of reinforcement learning problems can be described by 

Markov decision processes. In Markov decision processes, the value of each action 

depends both on the action and the current state 𝑠, therefore 𝑞∗(𝑠, 𝑎) has to be estimated; 

an alternative is estimating the value of the state provided that the optimal actions have 

been selected, 𝑣∗(𝑠). In the case of Finite Markov decision processes, where the spaces 

of states 𝑆, actions 𝐴, and rewards 𝑅 are finite, the problem is usually solved by recurring 
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to any or a combination of dynamic programming, Monte Carlo methods, and temporal-

difference methods (Sutton & Barto, 2018, p. 23). 

Dynamic programming is a collection of techniques for iteratively determining the 

optimal policy given a perfect model of the environment. This means that the probability 

distributions 𝑝(𝑠’, 𝑟 | 𝑠, 𝑎), which determine the transitions from the current situation 

(𝑠, 𝑎) to the new situation with state 𝑠’ and reward 𝑟, are known for all 𝑠 ∈ 𝐴, 𝑎 ∈ 𝐴, and 

𝑟 ∈ 𝑅. This constraint and the computational overhead are the main reasons why classical 

dynamic programming algorithms alone find limited use in reinforcement learning 

(Sutton & Barto, 2018, p. 73). 

Monte Carlo methods try to overcome the limiting assumption about perfect modeling of 

the environment in dynamic programming by using agent experience to estimate the 

values of specific states. In simple terms, the estimation is done by sampling and 

averaging the total discounted returns 𝐺𝑡 = ∑ γ𝑘∞
𝑘=0 𝑅𝑡+𝑘+1 (where γ ∈ [0,1] is a factor 

for determining the preference for returns near in the future) for each state-action pair and 

the rewards for each action. Monte Carlo methods rely on the completion of the task, 

called an episode, to update the estimates (Sutton & Barto, 2018, p. 91). 

Temporal-difference methods can conceptually be seen as an attempt to unite desirable 

qualities from both Monte Carlo and dynamic programming methods. Like for Monte 

Carlo, temporal-difference learns from experience and does not require a model of the 

environment’s dynamics, and like dynamic programming, it can update the estimates 

before the conclusion of each episode (Sutton & Barto, 2018, p. 119) . 

 Approximate Solution Methods 

Many reinforcement learning problems do not adhere to or cannot be feasibly translated 

into tabular form, since the state space may be too extensive, like in the case of a robot 

having to decide how to move. These problems often present the dual hurdle of too large 

tables to store all states, and the impossibility or impracticality of visiting all states to fill 

out the tables. Such cases require approximations that allow the algorithm to generalize 

its experience starting from a limited subset of all possible states. The generalization 

property is obtained from methods borrowed from supervised learning, including linear 

function approximations or artificial neural networks. (Sutton & Barto, 2018, p. 195). 
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 Deep Reinforcement Learning 
Deep reinforcement learning is an extension of classical reinforcement learning 

algorithms that exploits neural networks’ ability to model non-linear relationship for 

approximating learnable functions of the reinforcement learning system. 

2.4.1 Classifying Deep Reinforcements Learning Algorithms 

Modern reinforcement learning algorithms are usually classified by what part of the 

reinforcement learning system they try to learn (Graesser & Wah Loon, 2020, pp. 12–14). 

Policy-based methods try to maximize the expected cumulative discounted rewards by 

learning the ideal policy. The generality of this type of algorithms means that they can be 

used for problems where the action space is discrete, continuous or both. An additional 

advantage is that they are guaranteed to converge to locally optimal policy. The main 

disadvantages are high model variance and the inefficient use of the samples, which 

means that these algorithms need comparatively more samples to reach a certain level of 

performance. 

Value-based algorithms attempt to learn the value function 𝑣∗(𝑠) or 𝑞∗(𝑠, 𝑎) to select the 

action that maximize the rewards. These algorithms are typically more sample-efficient 

than their policy-based counterparts, owing to their lower variance and thus make better 

use of information collected from the environment. 

Model-based algorithms learn a model function 𝑝(𝑠’ | 𝑠, 𝑎) of how the environment 

transitions from one state to the next or are provided with a known dynamics model. At 

each step, the agent tries to make various predictions of future states basing on the current 

state and a sequence of hypothetical actions. The attractiveness of a model-based 

algorithm resides in the fact that the agent is provided with predictive ability, making it a 

good candidate for situations where collecting sufficient experience is carries great 

expense in time or money. The predictive ability makes such an algorithm also very 

sample efficient: it can learn both from true experiences as well as through hypothetical 

scenarios. However, for many problems, including trading securities as treated in this 

thesis, the transition probabilities are unknown or not sufficiently accurate to model the 

environment several steps into the future. 
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In addition to the three main classes above, some algorithms combine approaches. A good 

overview of the various classes and corresponding algorithms is provided in Figure 6. 

 

Figure 6: Classification of common deep reinforcement learning algorithms (Graesser & Wah Loon, 2020, p. 12) 

Another distinction that is made when describing deep reinforcement algorithms is 

whether they are on-policy or off-policy. On-policy methods learn from the policy they 

are using as of training, making prior versions of the policy unusable and therefore being 

sample inefficient. Off-policy methods on the other hand do not learn directly on the 

current policy but use a separate, more exploratory policy called a behavior policy to 

collect experiences, therefore they are more sample efficient (Sutton & Barto, 2018, p. 

103). 

2.4.2 Overview of Common Deep Reinforcement Learning Algorithms 

This sub-section provides an overview of the most widely known and implemented deep 

reinforcement learning algorithms that may be relevant and feasible candidates for 

implementation in the empirical part of this thesis.  

 SARSA 

SARSA (short for State-Action-Reward-State-Action) is a value-based, on-policy 

algorithm that tries to estimate the value function for the current policy 𝑄π(𝑠, 𝑎) through 

a neural network, using the temporal difference technique and selecting the next action 𝑎’ 

using the current policy. These properties may make is suitable for situations where risky 

behavior should be avoided already at training time, for example when reinforcement 

learning is applied to expensive, physical systems (Graesser & Wah Loon, 2020, pp. 53–

58). 
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 DQN 

DQN, which stands for deep Q-network, is a value-based, off-policy algorithm that 

roughly employs the same techniques as SARSA with the crucial difference that it uses 

the action that would maximize the expected future returns to estimate 𝑄π(𝑠, 𝑎). 

Compared to SARSA, DQN being off-policy and the fact that it can resample past 

experiences from a replay buffer makes it an attractive candidate for problems where 

efficient, stable training is important and where an exploratory behavior during training 

is not a disadvantage. One key disadvantage of DQN is that it can only be applied to 

environments with discrete action spaces, which however holds true in the case of this 

thesis as explained in the methodology (Graesser & Wah Loon, 2020, pp. 81–83). 

 REINFORCE 

REINFORCE is a policy-based, on-policy algorithm that is based on the idea that actions 

leading to good outcomes should become more likely, and the opposite should occur for 

actions leading to less desirable outcomes. REINFORCE uses neural networks to 

approximate the policy function, and in fact the same neural network is able to 

approximate various policies simply by changing its parameters. In the context of 

learning, the goal of REINFORCE is to find a set of parameter values that produce a good 

policy, which it pursues by following a gradient ascent approach called policy gradient 

(Graesser & Wah Loon, 2020, pp. 25–28). 

 A2C 

A2C, short for advantage actor-critic, are algorithms that combines the concept of the 

learned value function from DQN and the policy gradient of REINFORCE. The key 

components of A2C are the actor, which learns the parametrized policy as explained for 

REINFORCE, and the critic, which approximates the value function as in DQN. A new 

concept in A2C is also that of advantage: how better a specific action is compared to other 

available actions, 𝐴π(𝑠, 𝑎) = 𝑄π(𝑠, 𝑎) − 𝑉π(𝑠). The motivation is that using the learned 

advantage can be more informative compared to the rewards provided by the 

environment, for example in tasks where rewards are only given when the agent reach a 

certain goal (Graesser & Wah Loon, 2020, pp. 135–136). 
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 Python Libraries 
The programming part of this thesis makes extensive use of Python libraries. The most 

important (and required) are listed here. 

2.5.1 Pandas 

Pandas is used for manipulating data structures, typically in the context of quantitative 

research and data analysis. Pandas is developed to help the user work with potentially 

large data structures in a flexible and intuitive way using DataFrame and Series objects 

(pandas, 2021). 

2.5.2 NumPy 

NumPy is a package for scientific computing that is meant to provide high-performance 

numerical objects through the Python interface. NumPy has a high-level syntax that 

allows it to be used by anyone and can be used to store arbitrary generic data (The NumPy 

community, 2021).  

2.5.3 Matplotlib 

Matplotlib is a Python package for producing customizable, high-quality plots, that can 

be extended through functionalities of third-party packages (The Matplotlib development 

team, 2021). 

2.5.4 Seaborn 

Seaborn is a Python visualization library that works on top of Matplotlib. It provides a 

high-level interface for generating statistical plots (Waskom, 2020). 

2.5.5 PyArrow 

The PyArrow library provides a Python API for handling Apache Arrow objects. The 

author leverages the Apache parquet file format for storing various data (Apache Software 

Foundation, 2019). 

2.5.6 Stable Baselines3 

Stable Baselines3 is the PyTorch re-implementation of Stable Baselines, a popular library 

for reinforcement learning. Most notably, it has a unified structure for accessing each 

algorithm and follows the Gym application programming interface for creating 



Master Thesis Spring Semester 2021 

F. Bührer  Page 14 

environments (Stable-Baselines3 Docs - Reliable Reinforcement Learning 

Implementations, 2020). 

3 Methodology 
This chapter exposes the empirical methods used to investigate the answer to the research 

question and provides some interesting intermediate results. Following the 

methodological steps implemented in the computer program, this chapter is divided into 

two subchapters. In the first subchapter, an overview of the procedures applied to the data 

is given. In the second subchapter, the empirical research part to address the research 

question is exposed. 

 Data Procedures 
In this subchapter, the author illustrates the steps the lead to the data used for the 

application of the reinforcement learning methods and provides some descriptive 

statistics. 

3.1.1 Data Selection and Procurement 

The data used in this thesis is selected to cover a good variety of assets classes and 

economic activity sectors to investigate how a trained reinforcement learning agent may 

perform trading various securities. Specifically, the selected securities are chosen to 

represent six major asset classes: equity, commodities, fixed income, foreign exchange, 

infrastructure, and real estate. Within the equity asset class, all 11 GICS (Global Industry 

Classification Standard) (MSCI Inc., 2021) sectors are represented. It should be noted 

that some of the selected securities represent a proxy for an investment in the respecting 

asset class; for example, traditionally real estate investments are not done via publicly 

listed securities. The following table provides an overview of the securities selected: 

Table 1: Overview of the selected securities 

Ticker Name Asset Class (GICS Sector) 

AAPL Apple Inc. Equity (Information Technology) 

AMT American Tower Corporation 

(REIT) 

Equity (Real Estate) 

AMZN Amazon.com, Inc. Equity (Consumer Discretionary) 

BA The Boeing Company Equity (Industrials) 



Master Thesis Spring Semester 2021 

F. Bührer  Page 15 

Ticker Name Asset Class (GICS Sector) 

CL=F Crude Oil Aug 21 Commodities [Future] 

EURUSD=X EUR/USD Foreign Exchange 

GOOGL Alphabet Inc. Equity (Communication Services) 

IGF iShares Global Infrastructure ETF Infrastructure [ETF] 

IVV iShares Core S&P 500 ETF Equity (Index)  

JNJ Johnson & Johnson Equity (Health Care) 

JPM JPMorgan Chase & Co. Equity (Financials) 

LIN Linde plc Equity (Materials) 

NEE NextEra Energy, Inc. Equity (Utilities) 

PG The Procter & Gamble Company Equity (Consumer Staples) 

VNQ Vanguard Real Estate Index Fund 

ETF Share 

Real Estate [ETF] 

XOM Exxon Mobil Corporation Equity (Energy) 

ZN=F 10-Year T-Note Futures,Sep-2021 Fixed Income [Future] 

 

Daily data for the period spanning approximately ten years between December 31, 2010, 

and December 30, 2020 (both dates inclusive) is queried and downloaded for the 

securities listed above using the Python library yfinance, which requests the data from 

Yahoo Finance. The library allows to download data for a variety of fields, but in the 

scope of this thesis, the financial data downloaded for each ticker is limited to the 

following columns five columns, explained below: 

1. Open: day’s opening price; 

2. High: day’s high price; 

3. Low: day’s low price; 

4. Close: day’s closing price; and 

5. Volume: day’s total volume of traded securities. 

The downloaded data points for the four price columns are already adjusted for events 

like stock splits or dividends. 
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3.1.2 Data Cleaning 

The data set obtained the previous step is cleaned by removing rows where not all 

columns have an entry for each column. While this step arguably removes some 

information from the data, it allows an easier and homogenous handling of all securities 

data. The cleaned data set spans the same period as originally but contains 141 rows less 

(2468 vs. 2609 before removal). 

3.1.3 Descriptive Statistics 

In this subchapter some securities are inspected in detail and compared on the basis of 

visualizations and financial considerations. These cursory analysis may be helpful in 

explaining potential differences in performance in the application of deep reinforcement 

learning for trading the securities. The final chart compares all securities’ cumulative 

returns over the 10-year period. 

 

Figure 7: Price evolution and histogram of daily returns for the iShares Core S&P 500 ETF—own illustration 

The S&P500 Index is often considered a good indicator of the status of the US economy 

(McFarlane, 2021), as it includes 500 of the largest publicly traded companies quoted on 

American stock exchanges and comprises about 80% of available market capitalization 

(S&P Dow Jones Indices, 2021). The quoted exchange traded fund (ETF) of the index is 

therefore a good reference point for comparing the other securities and having an idea of 

how the algorithm would “trade” the broader exchange-listed economy. It can be seen 

that over the period considered, the S&P500 ETF had an almost steady increase in price 

with a sharp drop around the beginning of the Covid-19 pandemic, and that daily returns 

are perhaps slightly positively skewed. 
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Figure 8: Price evolution and histogram of daily returns for Amazon.com, Inc.—own illustration 

The stock price of Amazon.com Inc. followed and accelerating path towards the peak, 

with some rather volatile phases and a minor drop at the beginning of 2020. Daily returns 

reached up to 15% and are more likely to be slightly positive. These characteristics make 

this security a good buy-and-hold choice. 

 

Figure 9: Price evolution and histogram of daily returns for the crude oil futures—own illustration 

The crude oil future in Figure 9 illustrates a compelling case where trading the security 

successfully may prove extremely difficult. The persistent swinging of the price makes it 

difficult to identify promising entry points for a position, and a clear trend is not visible. 

Additionally, daily returns cover extreme values going as low as -300%, which can nullify 

even years of carefully cumulated profits. 



Master Thesis Spring Semester 2021 

F. Bührer  Page 18 

 

Figure 10: Price evolution and histogram of daily returns for US Treasury note futures—own illustration 

Another intuitively difficult security to trade would be the futures on the ten-year US 

Treasury note. The price goes through very volatile phases and witnesses some sharp 

drops. A single, great entry period materializes towards the end of 2018, which however 

would be difficult to predict considering the price alone, since the subsequent growth  

does not follow a trend consistent with the rest of the chart. Daily returns are restricted to 

a very narrow range and follow an almost triangular distribution. 

 

Figure 11: Cumulative returns visualized for all securities—own illustration 

Figure 11 shows a comparison of all securities’ cumulative returns over the entire period. 

Based on this comparison, it can be seen that a trading strategy more oriented towards 

entering long positions would generally be the safer choice. 

3.1.4 Data Split and Normalization 

As is common practice in the field of machine learning, the data is split into a training set 

used by the algorithm for learning and a test set on which the trained algorithm is tested; 
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the split following 80%-20% training-test proportions, respectively. Additionally, before 

usage with neural networks, some level of rescaling of the data to facilitate learning is 

applied. The author chooses a classical approach with a min-max scaler that forces each 

feature to have the normalized range [0, 1]. Care is taken to avoid normalizing the training 

data using parameters partially derived from the test data, as this data leakage could 

unduly improve the algorithm’s performance out of sample. 

 Reinforcement Learning for Trading Securities 
This subchapter exposes the steps of the empirical research part that is used to answer the 

research question formulated at the start of the thesis. 

3.2.1 Planning the Implementation 

The choice of algorithm to use has to be made before starting the actual computer 

implementation. Out of the numerous methods that fall within the scope of deep 

reinforcement learning, only some can be reasonably expected to deliver sensible results, 

given the author’s limited resources and data. For example, all else being equal methods 

that are sample efficient are able to learn more with the same amount of training data 

compared to sample inefficient method. Another consideration for choosing the algorithm 

is whether it has limitations in terms of possible action and state spaces (Stable 

Baselines3, 2020). Software aspects also play a major role: some algorithms are available 

only in specific libraries, and the agent has to be compatible with environment it interacts 

with, therefore the pieces of software used to implement the two have to be compatible 

with one another. Finally, there is also the fundamental question whether the algorithm is 

well-suited for tackling the problem. After reviewing various literature (Zhang, Zohren, 

& Roberts, 2020) and software source (Stable Baselines3, 2020), the author decides to 

implement the analysis using the DQN algorithm from the Stable Baselines3 library, 

which uses a multi-layer perceptron (feed-forward) network with rectified linear unit 

activation, and the recommended environment setup to implement the reinforcement 

learning system. 

3.2.2 Specification of the Environment 

While implementing a custom environment using the Gym library interface is relatively 

easy from a development standpoint, it requires a sound understanding of how the agent 

should interact with the environment. The author opts for a model where at each step, the 
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environment reveals the financial data (open, high, low, close, and volume) of the security 

for a certain number of days leading up to the current day (the lookback window). Based 

on this, the agent has to decide what its position regarding the security should be: neutral, 

short, or long. The price at which the agent enters a long or short position is recorded each 

time the agent’s position changes, and the profits from that position are realized only 

when the agent closes it. The reward (if any) at each step are the profits realized by closing 

the position. A schematic example can be: 

1. The agent starts with a neutral position and no cumulative profits; 

2. The agent decides to enter a long position, the current price of 0.5 is recorded; 

3. The agent decides to be neutral, the current price of 0.6 is used to calculate the 

reward 𝑟 = 0.6 − 0.5 = 0.1; 

4. The agent decides to enter a short position, the current price of 0.7 is recorded; 

5. The agent decides to enter a long position, the current price of 0.9 is used to 

calculate the reward 𝑟 = −(0.9 − 0.7) = −0.2 and recorded; 

6. The environment reaches the end of the episode (the last day in the data set), 

therefore potential profits or losses from the open long position are not assigned. 

The algorithm is trained and tested within the environment using three different settings 

for the lookback window: five, 10, and 20 days, the latter approximately corresponding 

to the average number of trading days in  a month (SwingTradeSystems.com, 2021). 

3.2.3 Considerations for Choosing Algorithm Variants 

The setting of the algorithm that may make a difference in how well the agent performs 

is the architecture of the neural networks devoted to approximating the value functions. 

It should be noted that the task of the networks is not to abstract or gain useful 

representations of the data as in the case of supervised learning, therefore it does not make 

sense to use very deep architectures, but rather to explore a few simple variants. In this 

thesis, three architecture variants are used: 

1. Two hidden layers of 16 neurons each, denoted DQN[16, 16]; 

2. Two hidden layers of 32 neurons each, denoted DQN[32, 32]; and 

3. Two hidden layers of 64 neurons each, denoted DQN[64, 64]. 



Master Thesis Spring Semester 2021 

F. Bührer  Page 21 

3.2.4 General Setup and Parametrization of the DQN Algorithm 

Since the Stable Baselines3 DQN implementation does not support hyperparameter 

tuning as of writing (Raffin, 2021), the author recurs to tuning the hyperparameters 

manually by trial and error. The final non-default parameters as tuned by the author are 

reported in the table below: 

Table 2: DQN parameters set by the author 

Hyperparameter 

Name 

Explanation Value 

learning_starts Number of steps of the 

model to sample before 

learning starts 

Number of steps in an episode 

(depends on 

lookback_window) 

batch_size The batch size for each 

gradient update 

lookback_window 

train_freq Number of steps between 

each of the model’s 

updates 

loockback_window 

target_update_interval Number of steps between 

each of the target 

network’s updates 

Number of steps in an episode 

(depends on 

lookback_window) 

exploration_fraction Portion of steps over 

which the exploration rate 

is reduced 

0.5 

exploration_final_eps Final value of the 

exploration rate 

0.001 

 

3.2.5 Training of the Algorithm 

The author has established through iterative trials that training the algorithm for a number 

of steps equivalent to 40 episodes is a good compromise to avoid excessive fitting to the 

training data and too long training times, while still achieving some measure of 

convergence during training. 
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3.2.6 Trading Securities with DQN Variations 

The next three subsections analyze the in-sample and out-of-sample results of each 

algorithm variant used with all three lookback windows. 

 Trading securities with DQN[16, 16] 

3.2.6.1.1 5-Day Lookback Period 

With a five-day lookback period, some degree of convergence of the episode mean reward 

is visible for some securities. 

 

Figure 12: Training and test information for iShares Core S&P 500 ETF (DQN[16, 16], lookback 5)—own 
illustration 

In the left figure above, for example, the episode mean reward seems to stabilize with 

each additional episode; however, the trend is decaying and not growing as would be 

desired. The trained algorithm for the same security also performs badly out of sample, 

as shown right, where the position at each step is also visible. 

 

Figure 13: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 5)—own illustration 

The total cumulative loss for all securities at the end of the test episode is of 1.734. 
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3.2.6.1.2 10-Day Lookback Period 

In the next run, the agent is able to observe the data of the previous 10 days. 

  

Figure 14: Training and test information for NextEra Energy, Inc. (DQN[16, 16], lookback 10)—own illustration 

Figure 15 demonstrates that, for some securities, training can improve out-of-sample 

performance. 

 

Figure 15: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 10)—own illustration 

With the longer 10-day lookback window, DQN[16, 16] is able to perform much better 

with a total cumulative profit of 4.466. 

3.2.6.1.3 20-Day Lookback Period 

In the final run for the [16, 16]-neuron DQN, 20 days of daily data are visible to the agent. 
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Figure 16: Training and test information for The Procter & Gamble Company (DQN[16, 16], lookback 20)—own 
illustration 

The last figure displays an interesting case. The first half of training shows a high variance 

not seen with the other securities, then the improvement in score occurs. The right picture 

indicates that the training enabled the agent to make profits. 

 

Figure 17:Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 20)—own illustration 

The algorithm realizes an overall loss of 0.103. 

 Trading securities with DQN[32, 32] 

3.2.6.2.1 5-Day Lookback Period 

The same procedure outlined in the preceding subchapter is followed from here. 
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Figure 18: Training and test information for Amazon.com, Inc. (DQN[32, 32], lookback 5)—own illustration 

What is rather surprising about Figure 18 is that we recall from the descriptive statistics 

that the underlying security for Amazon.com, Inc. has the best total returns over the entire 

period. This however does not seem to have been recognized by the algorithm on this 

occasion.  

 

Figure 19: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 5)—own illustration 

In this case, DQN[32, 32] is able to generate an overall profit of 2.985. 

3.2.6.2.2 10-Day Lookback Period 

Next is a highlight from the 10-day lookback window environment. In Figure 20 below 

we can observe a desirable training progress obtained on the real estate security Vanguard 

Real Estate Index Fund ETF Shares. The positive effect of training effectively translates 

to the test data. 



Master Thesis Spring Semester 2021 

F. Bührer  Page 26 

  

Figure 20: Training and test information for Vanguard Real Estate Index Fund ETF Shares (DQN[32, 32], lookback 
10)—own illustration 

 

Figure 21: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 10)—own illustration 

The total profit over al securities realized by this DQN variant with a lookback window 

of 10 days is 1.165. 

3.2.6.2.3 20-Day Lookback Period 

 

Figure 22: Training and test information for American Tower Corporation (REIT) (DQN[32, 32], lookback 20)—
own illustration 

The above figure is another case of large variance persisting in the model over a good 

part of the training phase, with a gradual improvement happening relatively late. 
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Unfortunately, the is not a positive transfer of the training knowledge to the out-of-sample 

situation. 

 

Figure 23: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 20)—own illustration 

As can be seen from the image, in this case the algorithm generates overall very good 

profits; the sum of cumulative profit at the end of the training episode is 3.610. 

 Trading securities with DQN[64, 64] 

3.2.6.3.1 5-Day Lookback Period 

 

Figure 24: Training and test information for Crude Oil Aug 21 (DQN[64, 64], lookback 5)—own illustration 

Training on the crude oil future in Figure 24 above displays an almost ideal shape. 

However, the algorithm incurs losses out of sample. 
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Figure 25: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 5)—own illustration 

Also in this case, the agent obtains a good result with a total cumulative profits at 2.213. 

3.2.6.3.2 10-Day Lookback Period 

Next is a case for the 10-day lookback window. 

 

Figure 26: Training and test information for JPMorgan Chase & Co. (DQN[64, 64], lookback 10)—own illustration 

Figure 26 shows a good training progress on the JPMorgan Chase & Co. stock. Out of 

sample, the agent escapes initial losses and is able to generate a small profit. 
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Figure 27: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 10)—own illustration 

Notwithstanding the single large loss visible in Figure 27, the algorithm generates a total 

profit of 3.105. 

3.2.6.3.3 20-Day Lookback Period 

 

Figure 28: Training and test information for Johnson & Johnson (DQN[64, 64], lookback 20)—own illustration 

Although not ideal, since the initial improvement is not sustained, Figure 28 displays 

some appreciable degree of convergence in training. However, the algorithm incurs losses 

for the same security during testing. 
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Figure 29: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 20)—own illustration 

The algorithm generates an out-of-sample profit over all securities of 1.432. 

4 Discussion and Outlook 
The results obtained in the empirical part of this thesis are summarized, explained, and 

discussed in the first part of this chapter, where the answer to research question is also 

stated. The second part is concerned with identifying the limitations of the study. The 

third part contains recommendations by the author for similar research. The fourth and 

conclusive part highlights the relevance of this thesis for practical application. 

 Summary and Discussion of Empirical Results 
The following table presents a detailed view of all empirical results. Entries marked in 

green are the best results in the respective row. 

Table 3: Empirical results by security, algorithm variant, and lookback window 

 
Algorithm 

Environment Lookback Window 
 DQN[16, 16] DQN[32, 32] DQN[64, 64] 
Security 5 10 20 5 10 20 5 10 20 
10-Year T-Note Futures,Sep-2021 0.379 0.652 -0.268 -0.134 -0.681 -0.088 -0.015 0.238 -0.211 
Alphabet Inc. 0.236 -0.296 0.036 0.059 0.574 1.063 -0.720 0.243 0.842 
Amazon.com, Inc. 0.198 0.618 -0.120 -0.340 -0.159 0.121 0.013 -0.355 0.771 
American Tower Corporation (REIT) -1.059 0.341 -0.035 0.869 -0.211 -0.021 0.013 0.571 -0.563 
Apple Inc. 0.547 0.339 -0.418 0.042 0.092 0.311 0.897 1.507 -0.363 
Crude Oil Aug 21 0.165 0.413 -0.091 0.250 -0.042 -0.222 -0.028 -1.480 1.500 
EUR/USD -0.156 0.185 -0.006 0.001 0.288 0.209 -0.201 0.147 0.543 
Exxon Mobil Corporation 0.394 -0.477 0.005 0.150 -1.085 0.452 -0.332 0.615 -0.363 
iShares Core S&P 500 ETF -0.506 0.252 -0.136 0.094 0.359 0.828 0.133 0.012 -0.692 
iShares Global Infrastructure ETF -0.650 0.269 -0.127 -0.430 0.515 0.335 0.712 -0.604 1.491 
Johnson & Johnson -0.097 0.438 -0.096 0.264 -0.032 -0.222 0.447 0.325 -0.107 
JPMorgan Chase & Co. -1.072 0.093 -0.195 -0.327 1.046 0.861 -0.517 0.004 0.452 
Linde plc 0.458 0.546 0.275 0.538 -0.645 0.001 0.876 0.779 0.606 
NextEra Energy, Inc. -1.157 0.180 0.502 0.498 -0.378 -0.063 -0.202 -0.011 -0.617 
The Boeing Company 1.118 0.019 0.093 0.743 0.583 0.038 0.823 -0.208 -0.879 
The Procter & Gamble Company -0.326 0.786 0.317 0.669 0.562 -0.028 0.342 0.690 -0.787 
Vanguard Real Estate Index Fund ETF Shares -0.206 0.107 0.163 0.038 0.380 0.036 -0.029 0.633 -0.189 
Total -1.734 4.466 -0.103 2.985 1.165 3.610 2.213 3.105 1.432 
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Before stating the answer to the research question, it can be interesting to explore the 

table above. As could already be inferred at the end of chapter three, almost every DQN 

variant is able to generate total positive cumulative profits out-of-sample with any of the 

three lookback window parametrizations. The only exception is DQN[16, 16], which 

generated both the best overall performance and the two worst losses. DQN[32, 32] and 

DQN[64, 64] take respectively the second and third place for single performances. If the 

average performance of the totals across the three environments is taken to judge each 

algorithm, DQN[16, 16] is actually by far the worst performer, and DQN[32, 32] the best. 

Although the above results do not clearly indicate that the role of neural network 

architecture in the DQN algorithm relates directly with the agent’s cumulative profit, the 

overall performance from the DQN[32, 32] and DQN[64, 64] variants suggest that their 

learned approximations tend to have a better baseline thanks to more neurons in the 

artificial neural networks. This can also be seen if we count the number of green cells in 

the table for each algorithm, excluding the total row: while DQN[16, 16] and DQN[32, 

32] each have four such entries, the remaining nine are produced by DQN[64, 64] This 

means that DQN[64, 64] is best-in-class for more than half of the cases when it comes to 

trading securities. This empirical “proof” and the fact that despite the same amount of 

training data received, DQN[64, 64] seems to match or even beat the performance of the 

two contestants under certain aspects, it seems safe to assume that, provided adequate 

training, more complex (perhaps not exaggeratingly so) network architectures in DQN 

algorithms can overall produce as good if not better results than their simpler 

counterparts. Another criterium that could be measured is the number of positive returns, 

where DQN[32, 32] wins as the “safest” algorithm, followed by DQN[16, 16]. One more 

consideration for the performances of the algorithms can be the variability between the 

various environments. In this regard, DQN[64, 64] has the most stable total performance, 

and DQN[32, 32] is a far second. Analyzing the role played by the lookback window does 

not give much insight, as there does not seem to be a strong preference common among 

the algorithms. An additional source for analysis are the securities: if we take the average 

of all columns for each algorithm, we build an idea of how difficult it was for the 

algorithm to interact with that security. The only commonality is Linde plc, where both 

DQN[16, 16], and DQN[64, 64] have their best average results. 

When considering the above results, the answer to the research  question “Can deep 

reinforcement learning methods suggest profitable decisions for trading securities?” is 
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yes. The positive answer however has to be balanced by the acknowledgement that, while 

deep reinforcement learning methods, as demonstrated here and in the literature, are able 

to engage profitably in securities trading, they usually do so in sufficiently simple 

environments where many of the notions of real-world trading, like risk management, are 

not realistically reproduced. To investigate whether a reinforcement learning algorithm 

would do well enough to be acceptable in a production role in finance, it would first have 

to be trained and tested in a sufficiently complex environment. The author also highlights 

the fact that while the totals in the table above are mostly positive, the algorithms still 

incur relatively large losses for single securities, which means that while the agent would 

to discretely well on a portfolio level, it would likely still not be very profitable with 

single positions. 

 Limitations of this Study 
This thesis’s investigation on whether deep reinforcement learning methods are viable for 

trading securities provides a good analysis and overview of some core concepts needed 

for applying reinforcement learning to many tasks. While the research question could be 

answered empirically, some relevant methodological and technical constraints can be 

identified.  

One limitation is the fact that only DQN algorithms were implemented; other advanced 

algorithms exist that could be more performant or have desirable properties to tackle the 

problem of interacting with a trading environment. A further factor that may have reduced 

the potential for better empirical results is the limited way in which hyperparameter tuning 

was executed due to software library limitations. Another methodological constraint is 

the aforementioned simplification of the environment. To answer as to how concretely 

deep learning methods can help in trading securities, many variables have to be included 

in the agent’s environment. 

Technically, this thesis is limited by the computational resources and data available to the 

author. Using specialized equipment and industry-grade data sets would facilitate the 

training of the algorithms and in turn allow for more variety in the methods adopted. 

 Recommendations for Further Research 
The main recommendations for further research rotate around the technical limitations. 

With the right resources, many different algorithms can be trained, sometimes even 
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parallelly, to determine what factors affect which method’s performance. In this case, it 

would be interesting to attempt to implement state-of-the-art algorithms. 

From a methodological standpoint, one key option for improving a study in deep 

reinforcement learning is making the environment as realistic as possible. In the case of 

trading securities, this could mean including notions of real finance professionals into the 

agent’s environment. Some of these notions are risk management, liquidity concerns, 

transaction costs, the effect that a trader has on the market, and managing resources in the 

context of a portfolio. 

 Implications for Practice 
Deep reinforcement learning has a multitude of application and perhaps some are yet to 

be discovered. Nonetheless, the findings made in this thesis confirm the utility that deep 

reinforcement learning can have in finance and specifically with applications to trading. 

At least one such concrete application has already been investigated by IBM (Srinivasan, 

2018). One hypothetical use case would be to feed the agent’s actions to a broader system 

that incorporates many inputs, such as centralized risk management system, to try to 

gauge how some financial industry entities would act. Another way of bringing deep 

reinforcement learning to use in the financial industry could be as bots used in simulated 

applications to improve employees’ skills. 
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