

Zurich University of Applied Sciences ZHAW

School of Management and Law

Master in Banking and Finance

Module: Master Thesis

Deep Reinforcement Learning for Trading Securities

Submitted by:

Fabio Bührer

Supervisor:

Dr. Bledar Fazlija

Department of Quantitative Finance

Submitted on:

Thursday, July 1, 2021

Master Thesis Spring Semester 2021

F. Bührer Page I

I. Table of Contents

II. LIST OF FIGURES ... III

III. LIST OF TABLES ... V

1 INTRODUCTION .. 1

 Motivation ... 1

 Problem Statement and Research Question ... 1

 Scope .. 2

 .. 2

 Structure of the Thesis .. 2

2 THEORETICAL FUNDAMENTALS .. 3

 Machine Learning ... 3

 Deep Learning ... 4

 Reinforcement Learning ... 6
2.3.1 Main Characteristics of Reinforcement Learning .. 6
2.3.2 Elements of Reinforcement Learning Systems ... 7
2.3.3 Overview of Reinforcement Learning Problems ... 8

 Tabular Solution Methods .. 8
 Approximate Solution Methods .. 9

 Deep Reinforcement Learning .. 10
2.4.1 Classifying Deep Reinforcements Learning Algorithms ... 10
2.4.2 Overview of Common Deep Reinforcement Learning Algorithms .. 11

 SARSA .. 11
 DQN .. 12
 REINFORCE ... 12
 A2C ... 12

 Python Libraries ... 13
2.5.1 Pandas... 13
2.5.2 NumPy .. 13
2.5.3 Matplotlib ... 13

Master Thesis Spring Semester 2021

F. Bührer Page II

2.5.4 Seaborn ... 13
2.5.5 PyArrow ... 13
2.5.6 Stable Baselines3 .. 13

3 METHODOLOGY ... 14

 Data Procedures .. 14
3.1.1 Data Selection and Procurement .. 14
3.1.2 Data Cleaning.. 16
3.1.3 Descriptive Statistics ... 16
3.1.4 Data Split and Normalization ... 18

 Reinforcement Learning for Trading Securities .. 19
3.2.1 Planning the Implementation ... 19
3.2.2 Specification of the Environment ... 19
3.2.3 Considerations for Choosing Algorithm Variants ... 20
3.2.4 General Setup and Parametrization of the DQN Algorithm ... 21
3.2.5 Training of the Algorithm .. 21
3.2.6 Trading Securities with DQN Variations .. 22

 Trading securities with DQN[16, 16] .. 22
 Trading securities with DQN[32, 32] .. 24
 Trading securities with DQN[64, 64] .. 27

4 DISCUSSION AND OUTLOOK ... 30

 Summary and Discussion of Empirical Results .. 30

 Limitations of this Study ... 32

 Recommendations for Further Research ... 32

 Implications for Practice... 33

5 REFERENCES... 34

Master Thesis Spring Semester 2021

F. Bührer Page III

II. List of Figures
Figure 1: Machine learning as a new programming paradigm (Chollet, 2018, p. 5) 3

Figure 2: Learning paradigms within machine learning (Bhatt, 2018) 4

Figure 3: Layered representations as learned by a digit-classification model (Chollet,

2018, p. 9) ... 5

Figure 4: Inner workings of a hidden layer neuron (Skansi, 2018, p. 80) 5

Figure 5: Schematic representation of reinforcement learning (Sugiyama, 2015, p. 4) ... 6

Figure 6: Classification of common deep reinforcement learning algorithms (Graesser &

Wah Loon, 2020, p. 12) .. 11

Figure 7: Price evolution and histogram of daily returns for the iShares Core S&P 500

ETF—own illustration .. 16

Figure 8: Price evolution and histogram of daily returns for Amazon.com, Inc.—own

illustration ... 17

Figure 9: Price evolution and histogram of daily returns for the crude oil futures—own

illustration ... 17

Figure 10: Price evolution and histogram of daily returns for US Treasury note

futures—own illustration... 18

Figure 11: Cumulative returns visualized for all securities—own illustration 18

Figure 12: Training and test information for iShares Core S&P 500 ETF (DQN[16, 16],

lookback 5)—own illustration ... 22

Figure 13: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback

5)—own illustration .. 22

Figure 14: Training and test information for NextEra Energy, Inc. (DQN[16, 16],

lookback 10)—own illustration ... 23

Figure 15: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback

10)—own illustration .. 23

Figure 16: Training and test information for The Procter & Gamble Company (DQN[16,

16], lookback 20)—own illustration .. 24

Figure 17:Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback

20)—own illustration .. 24

Figure 18: Training and test information for Amazon.com, Inc. (DQN[32, 32], lookback

5)—own illustration .. 25

Master Thesis Spring Semester 2021

F. Bührer Page IV

Figure 19: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback

5)—own illustration .. 25

Figure 20: Training and test information for Vanguard Real Estate Index Fund ETF

Shares (DQN[32, 32], lookback 10)—own illustration .. 26

Figure 21: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback

10)—own illustration .. 26

Figure 22: Training and test information for American Tower Corporation (REIT)

(DQN[32, 32], lookback 20)—own illustration ... 26

Figure 23: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback

20)—own illustration .. 27

Figure 24: Training and test information for Crude Oil Aug 21 (DQN[64, 64], lookback

5)—own illustration .. 27

Figure 25: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback

5)—own illustration .. 28

Figure 26: Training and test information for JPMorgan Chase & Co. (DQN[64, 64],

lookback 10)—own illustration ... 28

Figure 27: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback

10)—own illustration .. 29

Figure 28: Training and test information for Johnson & Johnson (DQN[64, 64],

lookback 20)—own illustration ... 29

Figure 29: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback

20)—own illustration .. 30

Master Thesis Spring Semester 2021

F. Bührer Page V

III. List of Tables
Table 1: Overview of the selected securities .. 14

Table 2: DQN parameters set by the author ... 21

Table 3: Empirical results by security, algorithm variant, and lookback window 30

Master Thesis Spring Semester 2021

F. Bührer Page 1

1 Introduction
Machine learning methods find practical use in many modern-day scenarios, facilitating

or improving the execution of tasks from simple to complex. While for some time the

most prominent techniques were associated with algorithms solving problems through

learning in a supervised or unsupervised manner, the paradigm of reinforcement learning

has more recently also gained comparable fame, perhaps most notably through Google’s

AlphaGo breakthrough wins against distinguished Go player Lee Sedol in 2016

(DeepMind, n.d.). Owing to their generality and adaptability, reinforcement learning and

its extension deep reinforcement learning can find use in a wide variety of fields including

industrial automation, gaming, and healthcare (Chao, Jiming, & Nemati, 2020). This

paper explores potential applications of deep reinforcement learning in the field of

securities trading by analyzing the returns generated by variants of an agent acting

autonomously in simplified trading environments. In particular, daily financial data for

17 listed securities representing six major asset classes and the 11 Global Industry

Classification Standard sectors (MSCI Inc., 2021) are fed into the agent’s environments

to investigate how variating the neural network’s architecture and the lookback time

horizon considered for making trading decisions affects cumulative returns for a specific

security.

 Motivation
This study aims at establishing whether deep reinforcement learning techniques are

suitable for applications in trading and the effects that some practical aspects such as the

security being traded or implementation details have on the performance. The agents

interacting with the trading environments consist of variants of a basic deep Q-network

algorithm trained and tested on different timeseries of the same length. The entire

software implementation is using the Python programming language.

 Problem Statement and Research Question
Data generation and collection practices have been increasing exponentially for some

time and so has the availability of extensive data sets. Correctly leveraging these vast

amounts of data to automate tasks or to inform decision-makers can be a competitive

advantage in trading, where top-players typically have comparable access to securities

data. Deep reinforcement learning methods can help in selecting the most promising

Master Thesis Spring Semester 2021

F. Bührer Page 2

course of action solely based on the data they are fed, providing the basis for this paper’s

research question:

“Can deep reinforcement learning methods suggest profitable decisions for trading

securities?”

 Scope
The broad spectrum of possible implementations, the fast pace of state-of-the-art

research, and the limited computational resources available to the author impose

limitations on the variety of aspects of reinforcement learning that can be investigated in

this paper. The scope of the work presented in this study is broadly outlined by the points

below:

1. The software libraries the used for the empirical part are developed by third parties

and not by the author. The author makes use of the software as provided by the

respective distributors without altering the source code, but by creating programs

that take advantage of the Python application programming interface of each

library. The range of methods available to the author is therefore limited by the

prepackaged software.

2. The financial data is downloaded through the Yahoo Finance application

programming interface and is assumed to be coherent and correct as of writing.

3. This paper is the author’s master’s degree thesis for the curriculum in banking and

finance with specialization in capital markets and data science at the Zurich

University of Applied Sciences. The variety of and the degree of thoroughness

with which the topics are explained and explored reflects the author’s level of

skill, knowledge, and experience.

 Structure of the Thesis
This thesis consists of four chapters, each being a logical step towards answering the

research question and drawing concluding considerations for the study. This introductory

part is followed by the second chapter, which explains the theory and explores the

literature underpinning the main concepts implemented in the practical part of the paper.

The empirical procedure is exposed in the third chapter, where the data, algorithm

variations, and intermediate results analyzed. The fourth and last chapter summarizes and

Master Thesis Spring Semester 2021

F. Bührer Page 3

discusses the empirical results, exposes methodological limitations, provides

recommendations for similar research, and explores potential real-world applications for

the methods used in this paper.

2 Theoretical Fundamentals
Since the goal of the thesis is to establish how effective deep reinforcement learning can

be in trading securities, some aspects of machine learning that are not central to the

implemented methods are not examined in depth. The theory in this chapter should

provide the reader with an understating of reinforcement learning within the field of

machine learning and explain the key mechanics behind some of the most common

algorithms. The referenced literature provides additional reading material for more

thorough and rigorous explanations.

 Machine Learning
Machine learning is usually regarded as the sub-field of artificial intelligence concerned

with studying computer algorithms that can solve specific problems by autonomously

learning a set of rules from data. Besides the pure scientific interest for the role played by

the various variables, often the goal is to obtain an algorithm that has a certain problem-

solving performance when applied to unseen data, an ability referred to as generalization.

The versatility and power of machine learning methods often makes them attractive

candidates for automating specific, relatively complex tasks that can be expressed in

terms of data (Nguyen & Zeigerman, 2018, pp. 7–8). Machine learning can also be seen

as new programming paradigm; in classical programming, detailed rules have to be

programmed manually and the data fed to the program to receive answers, whereas with

machine learning the rules constitute the main objective of the program.

Figure 1: Machine learning as a new programming paradigm (Chollet, 2018, p. 5)

Master Thesis Spring Semester 2021

F. Bührer Page 4

A common categorization of machine learning techniques is based on the type of learning

that the algorithm is expected to go through, usually distinguishing between supervised,

unsupervised, and reinforcement learning. Supervised learning is done by seeing

examples of correct input-output pairs, as is the case for example in optical character

recognition. By contrast, in unsupervised learning the algorithm is not fed the correct

answers, as the notion of correct and incorrect answers is often not even included in

problem, but rather the machine is expected to find patterns in the data and thus learn a

representation of them; an example is customer segmentation based on a set of features.

Reinforcement learning scenarios occur when agents ought to learn the actions that

maximize a measure of reward from the environment with which they interact; an

example is playing a videogame (Sutton & Barto, 2018, p. 2)

Figure 2: Learning paradigms within machine learning (Bhatt, 2018)

 Deep Learning
Deep learning is a subset of machine learning concerned with using artificial neural

networks to learn meaningful representations from data. Artificial neural networks are

layers of artificial neurons organized in successive interconnected layers that make up the

architecture. In general, every artificial neural network possesses an input layer, used for

reading the data, one or more hidden layers where the representations are learned, and an

output layer devoted to relaying the results. Deep learning as a field focuses on using

artificial neural networks with multiple hidden layers (hence “deep”) to learn increasingly

informative representations from complex and large sets of data (Chollet, 2018, pp. 8–

11). Figure 3 provides a good illustration of how the data representations could work in

the case of a digit-classification model.

Master Thesis Spring Semester 2021

F. Bührer Page 5

Figure 3: Layered representations as learned by a digit-classification model (Chollet, 2018, p. 9)

Learning in the context of deep learning means parametrizing the neurons in such a way

that the artificial neural network reaches a certain measure of accuracy when mapping the

inputs to the outputs. Each neuron typically has several parameters that can be changed

to alter its output function: a bias 𝑏 and a weight 𝑤 for each of the inputs 𝑥 from the

neurons in the preceding layer to which it is connected. The number of parameters to be

learned is therefore usually very high. It is common practice for neurons to have a non-

linear activation function that is applied to the linear combination of it inputs such as the

sigmoid function before the neuron’s output is send to the next layer. This allows the

network to model non-linearly behaving patterns found in the data; without non-linearity,

an equivalent network without hidden units can be found that has the same modeling

capability (Bishop, 2006, p. 229).

Figure 4: Inner workings of a hidden layer neuron (Skansi, 2018, p. 80)

Usually the parameters of the network are initialized with random values. Then, with each

sample, the parameters are changed to reduce the error, calculated by a loss function,

Master Thesis Spring Semester 2021

F. Bührer Page 6

between the network’s output and the correct solution. Intuitively one step of the

network’s training can be explained as follows: the value of the error is calculated by a

loss function; then, by applying the chain rule and partial derivation, a so-called

backpropagation algorithm determines the role played by each parameter in the change

of the loss function; finally, the adjustment necessary to reduce the error network is

computed for each parameter (Bishop, 2006, p. 241).

 Reinforcement Learning
Reinforcement learning is the subfield of machine learning that studies how agents can

learn to make decisions that maximize a quantitative reward through experience.

Figure 5: Schematic representation of reinforcement learning (Sugiyama, 2015, p. 4)

2.3.1 Main Characteristics of Reinforcement Learning

Although some tasks may be benefit from approaches based on any or combinations of

supervised, unsupervised, and reinforcement learning, usually only one type of learning

algorithms is chosen to tackle the problem. Supervised learning’s requirement for correct

and representative examples of correct behavior are often impractical; using chess as an

example, it is difficult to imagine to have a complete training set that contains the ideal

move of each piece for all possible chessboard configurations. Unsupervised learning on

the other hand is not meant to directly suggest which action promises the most reward at

each step. Since reinforcement learning does not suffer from the same limitations, it is

usually the most suited for interactive tasks.

Another distinctive characteristic of reinforcement learning is the exploration-

exploitation trade-off. The trade-off refers to the tension between repeating greedy actions

that have proved to be profitable before, which is exploiting collected knowledge, and

trying new nongreedy actions that may result in even better rewards, which is exploring

Master Thesis Spring Semester 2021

F. Bührer Page 7

new behaviors. To succeed at a task, the agent has to strike a balance between exploration

and exploitation.

Finally, reinforcement learning is conceptually straightforward to adopt for many

common problems, as it does not necessitate to break the task into smaller units to be

analyzed and solved singularly, but rather the starting assumption is to train an agent to

reach a goal while making decisions in and interacting with a stochastic environment

(Sutton & Barto, 2018, pp. 1–4).

2.3.2 Elements of Reinforcement Learning Systems

The primary elements of an interactive problem are the agent and the environment. The

agent is the entity that tries to learn to behave optimally through its actions 𝑎, and the

environment is the domain with which the agent interacts and is typically characterized

by some degree of unpredictability (from the agent’s perspective) of its states 𝑠. In many

problems, the actions of the agent can have an effect of the future states of the

environment, as is the case in many games. A reinforcement learning setting usually also

includes four additional elements: a policy, a reward signal, a value function, and a model

of the environment (Sutton & Barto, 2018, pp. 6–7).

A policy π determines all of the agent’s decisions, therefore it can be seen as a state-

action mapping. Basic approaches for building the mapping include simple functions or

tables, whereas more involved processes may include complex constructs such as neural

networks. The state-action mapping is usually formulated in terms of probabilities for

each action, thus it can be denoted as a stochastic policy.

The reward signal 𝑟 is a quantity that the environment emits at each state and that the sum

of which the agent attempts to maximize. The reward is logically the main driver of

changes in the policy, as the latter decides the actions the agent should take for each state.

The value function 𝑣∗(𝑠) or 𝑞∗(𝑠, 𝑎) (depending on the algorithm) can be described as the

long-term equivalent of the reward signal. The value function maps the current state to

the expected value of all future rewards, therefore quantifying how desirable a given state

is in the long run. Although values are derived from rewards, it is values that matter for

selecting actions, since only in this way can rewards be maximized over the long term.

Given the indirect way a value function is estimated, their calculation has to be repeated

Master Thesis Spring Semester 2021

F. Bührer Page 8

regularly based on the states of the environment. Efficiently estimating value functions is

of primary importance for every reinforcement learning algorithm.

Model-based reinforcement learning methods also include a model of the environment

𝑝(𝑠’ | 𝑠, 𝑎), which allows to infer future states of the environment before experiencing

such situations, following a planning approach. Model-free methods on the other hand

follow a trial-and-error approach. Current reinforcement learning methods cover a range

between the extremes of trial-and-error and planning.

2.3.3 Overview of Reinforcement Learning Problems

In this part of the theory an overview of the reinforcement learning landscape is provided

with the aim of helping the reader understand the classes of methods and the various types

of formal problems that the methods attempt to solve.

 Tabular Solution Methods

Tabular solution methods apply to the simplest form of problems where both environment

states and agent actions can be modeled by the value function in the form of tables with

discrete entries, for example in the game of tic-tac-toe.

The special case of a setting where the agent has to select an action out of 𝑘 possibilities

for only one specific state is named a 𝑘-armed bandit problem. The main difficulty in 𝑘-

armed bandit problems is estimating the value 𝑞∗(𝑎) of each available action 𝑎 in order

to make the correct choice at each step; if the agent only exploits known actions, it cannot

update and improve the estimates and will keep on making the same safe choice, while if

it explores new actions, it may incur a lower reward in the short-term compared to

following a greedy behavior. Since only one behavior can be followed at any one step, 𝑘-

armed bandit problems offer a clear understanding of the exploration-exploitation trade-

off common to all reinforcement learning problems (Sutton & Barto, 2018, pp. 25–27).

However, the general case of reinforcement learning problems can be described by

Markov decision processes. In Markov decision processes, the value of each action

depends both on the action and the current state 𝑠, therefore 𝑞∗(𝑠, 𝑎) has to be estimated;

an alternative is estimating the value of the state provided that the optimal actions have

been selected, 𝑣∗(𝑠). In the case of Finite Markov decision processes, where the spaces

of states 𝑆, actions 𝐴, and rewards 𝑅 are finite, the problem is usually solved by recurring

Master Thesis Spring Semester 2021

F. Bührer Page 9

to any or a combination of dynamic programming, Monte Carlo methods, and temporal-

difference methods (Sutton & Barto, 2018, p. 23).

Dynamic programming is a collection of techniques for iteratively determining the

optimal policy given a perfect model of the environment. This means that the probability

distributions 𝑝(𝑠’, 𝑟 | 𝑠, 𝑎), which determine the transitions from the current situation

(𝑠, 𝑎) to the new situation with state 𝑠’ and reward 𝑟, are known for all 𝑠 ∈ 𝐴, 𝑎 ∈ 𝐴, and

𝑟 ∈ 𝑅. This constraint and the computational overhead are the main reasons why classical

dynamic programming algorithms alone find limited use in reinforcement learning

(Sutton & Barto, 2018, p. 73).

Monte Carlo methods try to overcome the limiting assumption about perfect modeling of

the environment in dynamic programming by using agent experience to estimate the

values of specific states. In simple terms, the estimation is done by sampling and

averaging the total discounted returns 𝐺𝑡 = ∑ γ𝑘∞
𝑘=0 𝑅𝑡+𝑘+1 (where γ ∈ [0,1] is a factor

for determining the preference for returns near in the future) for each state-action pair and

the rewards for each action. Monte Carlo methods rely on the completion of the task,

called an episode, to update the estimates (Sutton & Barto, 2018, p. 91).

Temporal-difference methods can conceptually be seen as an attempt to unite desirable

qualities from both Monte Carlo and dynamic programming methods. Like for Monte

Carlo, temporal-difference learns from experience and does not require a model of the

environment’s dynamics, and like dynamic programming, it can update the estimates

before the conclusion of each episode (Sutton & Barto, 2018, p. 119) .

 Approximate Solution Methods

Many reinforcement learning problems do not adhere to or cannot be feasibly translated

into tabular form, since the state space may be too extensive, like in the case of a robot

having to decide how to move. These problems often present the dual hurdle of too large

tables to store all states, and the impossibility or impracticality of visiting all states to fill

out the tables. Such cases require approximations that allow the algorithm to generalize

its experience starting from a limited subset of all possible states. The generalization

property is obtained from methods borrowed from supervised learning, including linear

function approximations or artificial neural networks. (Sutton & Barto, 2018, p. 195).

Master Thesis Spring Semester 2021

F. Bührer Page 10

 Deep Reinforcement Learning
Deep reinforcement learning is an extension of classical reinforcement learning

algorithms that exploits neural networks’ ability to model non-linear relationship for

approximating learnable functions of the reinforcement learning system.

2.4.1 Classifying Deep Reinforcements Learning Algorithms

Modern reinforcement learning algorithms are usually classified by what part of the

reinforcement learning system they try to learn (Graesser & Wah Loon, 2020, pp. 12–14).

Policy-based methods try to maximize the expected cumulative discounted rewards by

learning the ideal policy. The generality of this type of algorithms means that they can be

used for problems where the action space is discrete, continuous or both. An additional

advantage is that they are guaranteed to converge to locally optimal policy. The main

disadvantages are high model variance and the inefficient use of the samples, which

means that these algorithms need comparatively more samples to reach a certain level of

performance.

Value-based algorithms attempt to learn the value function 𝑣∗(𝑠) or 𝑞∗(𝑠, 𝑎) to select the

action that maximize the rewards. These algorithms are typically more sample-efficient

than their policy-based counterparts, owing to their lower variance and thus make better

use of information collected from the environment.

Model-based algorithms learn a model function 𝑝(𝑠’ | 𝑠, 𝑎) of how the environment

transitions from one state to the next or are provided with a known dynamics model. At

each step, the agent tries to make various predictions of future states basing on the current

state and a sequence of hypothetical actions. The attractiveness of a model-based

algorithm resides in the fact that the agent is provided with predictive ability, making it a

good candidate for situations where collecting sufficient experience is carries great

expense in time or money. The predictive ability makes such an algorithm also very

sample efficient: it can learn both from true experiences as well as through hypothetical

scenarios. However, for many problems, including trading securities as treated in this

thesis, the transition probabilities are unknown or not sufficiently accurate to model the

environment several steps into the future.

Master Thesis Spring Semester 2021

F. Bührer Page 11

In addition to the three main classes above, some algorithms combine approaches. A good

overview of the various classes and corresponding algorithms is provided in Figure 6.

Figure 6: Classification of common deep reinforcement learning algorithms (Graesser & Wah Loon, 2020, p. 12)

Another distinction that is made when describing deep reinforcement algorithms is

whether they are on-policy or off-policy. On-policy methods learn from the policy they

are using as of training, making prior versions of the policy unusable and therefore being

sample inefficient. Off-policy methods on the other hand do not learn directly on the

current policy but use a separate, more exploratory policy called a behavior policy to

collect experiences, therefore they are more sample efficient (Sutton & Barto, 2018, p.

103).

2.4.2 Overview of Common Deep Reinforcement Learning Algorithms

This sub-section provides an overview of the most widely known and implemented deep

reinforcement learning algorithms that may be relevant and feasible candidates for

implementation in the empirical part of this thesis.

 SARSA

SARSA (short for State-Action-Reward-State-Action) is a value-based, on-policy

algorithm that tries to estimate the value function for the current policy 𝑄π(𝑠, 𝑎) through

a neural network, using the temporal difference technique and selecting the next action 𝑎’

using the current policy. These properties may make is suitable for situations where risky

behavior should be avoided already at training time, for example when reinforcement

learning is applied to expensive, physical systems (Graesser & Wah Loon, 2020, pp. 53–

58).

Master Thesis Spring Semester 2021

F. Bührer Page 12

 DQN

DQN, which stands for deep Q-network, is a value-based, off-policy algorithm that

roughly employs the same techniques as SARSA with the crucial difference that it uses

the action that would maximize the expected future returns to estimate 𝑄π(𝑠, 𝑎).

Compared to SARSA, DQN being off-policy and the fact that it can resample past

experiences from a replay buffer makes it an attractive candidate for problems where

efficient, stable training is important and where an exploratory behavior during training

is not a disadvantage. One key disadvantage of DQN is that it can only be applied to

environments with discrete action spaces, which however holds true in the case of this

thesis as explained in the methodology (Graesser & Wah Loon, 2020, pp. 81–83).

 REINFORCE

REINFORCE is a policy-based, on-policy algorithm that is based on the idea that actions

leading to good outcomes should become more likely, and the opposite should occur for

actions leading to less desirable outcomes. REINFORCE uses neural networks to

approximate the policy function, and in fact the same neural network is able to

approximate various policies simply by changing its parameters. In the context of

learning, the goal of REINFORCE is to find a set of parameter values that produce a good

policy, which it pursues by following a gradient ascent approach called policy gradient

(Graesser & Wah Loon, 2020, pp. 25–28).

 A2C

A2C, short for advantage actor-critic, are algorithms that combines the concept of the

learned value function from DQN and the policy gradient of REINFORCE. The key

components of A2C are the actor, which learns the parametrized policy as explained for

REINFORCE, and the critic, which approximates the value function as in DQN. A new

concept in A2C is also that of advantage: how better a specific action is compared to other

available actions, 𝐴π(𝑠, 𝑎) = 𝑄π(𝑠, 𝑎) − 𝑉π(𝑠). The motivation is that using the learned

advantage can be more informative compared to the rewards provided by the

environment, for example in tasks where rewards are only given when the agent reach a

certain goal (Graesser & Wah Loon, 2020, pp. 135–136).

Master Thesis Spring Semester 2021

F. Bührer Page 13

 Python Libraries
The programming part of this thesis makes extensive use of Python libraries. The most

important (and required) are listed here.

2.5.1 Pandas

Pandas is used for manipulating data structures, typically in the context of quantitative

research and data analysis. Pandas is developed to help the user work with potentially

large data structures in a flexible and intuitive way using DataFrame and Series objects

(pandas, 2021).

2.5.2 NumPy

NumPy is a package for scientific computing that is meant to provide high-performance

numerical objects through the Python interface. NumPy has a high-level syntax that

allows it to be used by anyone and can be used to store arbitrary generic data (The NumPy

community, 2021).

2.5.3 Matplotlib

Matplotlib is a Python package for producing customizable, high-quality plots, that can

be extended through functionalities of third-party packages (The Matplotlib development

team, 2021).

2.5.4 Seaborn

Seaborn is a Python visualization library that works on top of Matplotlib. It provides a

high-level interface for generating statistical plots (Waskom, 2020).

2.5.5 PyArrow

The PyArrow library provides a Python API for handling Apache Arrow objects. The

author leverages the Apache parquet file format for storing various data (Apache Software

Foundation, 2019).

2.5.6 Stable Baselines3

Stable Baselines3 is the PyTorch re-implementation of Stable Baselines, a popular library

for reinforcement learning. Most notably, it has a unified structure for accessing each

algorithm and follows the Gym application programming interface for creating

Master Thesis Spring Semester 2021

F. Bührer Page 14

environments (Stable-Baselines3 Docs - Reliable Reinforcement Learning

Implementations, 2020).

3 Methodology
This chapter exposes the empirical methods used to investigate the answer to the research

question and provides some interesting intermediate results. Following the

methodological steps implemented in the computer program, this chapter is divided into

two subchapters. In the first subchapter, an overview of the procedures applied to the data

is given. In the second subchapter, the empirical research part to address the research

question is exposed.

 Data Procedures
In this subchapter, the author illustrates the steps the lead to the data used for the

application of the reinforcement learning methods and provides some descriptive

statistics.

3.1.1 Data Selection and Procurement

The data used in this thesis is selected to cover a good variety of assets classes and

economic activity sectors to investigate how a trained reinforcement learning agent may

perform trading various securities. Specifically, the selected securities are chosen to

represent six major asset classes: equity, commodities, fixed income, foreign exchange,

infrastructure, and real estate. Within the equity asset class, all 11 GICS (Global Industry

Classification Standard) (MSCI Inc., 2021) sectors are represented. It should be noted

that some of the selected securities represent a proxy for an investment in the respecting

asset class; for example, traditionally real estate investments are not done via publicly

listed securities. The following table provides an overview of the securities selected:

Table 1: Overview of the selected securities

Ticker Name Asset Class (GICS Sector)

AAPL Apple Inc. Equity (Information Technology)

AMT American Tower Corporation

(REIT)

Equity (Real Estate)

AMZN Amazon.com, Inc. Equity (Consumer Discretionary)

BA The Boeing Company Equity (Industrials)

Master Thesis Spring Semester 2021

F. Bührer Page 15

Ticker Name Asset Class (GICS Sector)

CL=F Crude Oil Aug 21 Commodities [Future]

EURUSD=X EUR/USD Foreign Exchange

GOOGL Alphabet Inc. Equity (Communication Services)

IGF iShares Global Infrastructure ETF Infrastructure [ETF]

IVV iShares Core S&P 500 ETF Equity (Index)

JNJ Johnson & Johnson Equity (Health Care)

JPM JPMorgan Chase & Co. Equity (Financials)

LIN Linde plc Equity (Materials)

NEE NextEra Energy, Inc. Equity (Utilities)

PG The Procter & Gamble Company Equity (Consumer Staples)

VNQ Vanguard Real Estate Index Fund

ETF Share

Real Estate [ETF]

XOM Exxon Mobil Corporation Equity (Energy)

ZN=F 10-Year T-Note Futures,Sep-2021 Fixed Income [Future]

Daily data for the period spanning approximately ten years between December 31, 2010,

and December 30, 2020 (both dates inclusive) is queried and downloaded for the

securities listed above using the Python library yfinance, which requests the data from

Yahoo Finance. The library allows to download data for a variety of fields, but in the

scope of this thesis, the financial data downloaded for each ticker is limited to the

following columns five columns, explained below:

1. Open: day’s opening price;

2. High: day’s high price;

3. Low: day’s low price;

4. Close: day’s closing price; and

5. Volume: day’s total volume of traded securities.

The downloaded data points for the four price columns are already adjusted for events

like stock splits or dividends.

Master Thesis Spring Semester 2021

F. Bührer Page 16

3.1.2 Data Cleaning

The data set obtained the previous step is cleaned by removing rows where not all

columns have an entry for each column. While this step arguably removes some

information from the data, it allows an easier and homogenous handling of all securities

data. The cleaned data set spans the same period as originally but contains 141 rows less

(2468 vs. 2609 before removal).

3.1.3 Descriptive Statistics

In this subchapter some securities are inspected in detail and compared on the basis of

visualizations and financial considerations. These cursory analysis may be helpful in

explaining potential differences in performance in the application of deep reinforcement

learning for trading the securities. The final chart compares all securities’ cumulative

returns over the 10-year period.

Figure 7: Price evolution and histogram of daily returns for the iShares Core S&P 500 ETF—own illustration

The S&P500 Index is often considered a good indicator of the status of the US economy

(McFarlane, 2021), as it includes 500 of the largest publicly traded companies quoted on

American stock exchanges and comprises about 80% of available market capitalization

(S&P Dow Jones Indices, 2021). The quoted exchange traded fund (ETF) of the index is

therefore a good reference point for comparing the other securities and having an idea of

how the algorithm would “trade” the broader exchange-listed economy. It can be seen

that over the period considered, the S&P500 ETF had an almost steady increase in price

with a sharp drop around the beginning of the Covid-19 pandemic, and that daily returns

are perhaps slightly positively skewed.

Master Thesis Spring Semester 2021

F. Bührer Page 17

Figure 8: Price evolution and histogram of daily returns for Amazon.com, Inc.—own illustration

The stock price of Amazon.com Inc. followed and accelerating path towards the peak,

with some rather volatile phases and a minor drop at the beginning of 2020. Daily returns

reached up to 15% and are more likely to be slightly positive. These characteristics make

this security a good buy-and-hold choice.

Figure 9: Price evolution and histogram of daily returns for the crude oil futures—own illustration

The crude oil future in Figure 9 illustrates a compelling case where trading the security

successfully may prove extremely difficult. The persistent swinging of the price makes it

difficult to identify promising entry points for a position, and a clear trend is not visible.

Additionally, daily returns cover extreme values going as low as -300%, which can nullify

even years of carefully cumulated profits.

Master Thesis Spring Semester 2021

F. Bührer Page 18

Figure 10: Price evolution and histogram of daily returns for US Treasury note futures—own illustration

Another intuitively difficult security to trade would be the futures on the ten-year US

Treasury note. The price goes through very volatile phases and witnesses some sharp

drops. A single, great entry period materializes towards the end of 2018, which however

would be difficult to predict considering the price alone, since the subsequent growth

does not follow a trend consistent with the rest of the chart. Daily returns are restricted to

a very narrow range and follow an almost triangular distribution.

Figure 11: Cumulative returns visualized for all securities—own illustration

Figure 11 shows a comparison of all securities’ cumulative returns over the entire period.

Based on this comparison, it can be seen that a trading strategy more oriented towards

entering long positions would generally be the safer choice.

3.1.4 Data Split and Normalization

As is common practice in the field of machine learning, the data is split into a training set

used by the algorithm for learning and a test set on which the trained algorithm is tested;

Master Thesis Spring Semester 2021

F. Bührer Page 19

the split following 80%-20% training-test proportions, respectively. Additionally, before

usage with neural networks, some level of rescaling of the data to facilitate learning is

applied. The author chooses a classical approach with a min-max scaler that forces each

feature to have the normalized range [0, 1]. Care is taken to avoid normalizing the training

data using parameters partially derived from the test data, as this data leakage could

unduly improve the algorithm’s performance out of sample.

 Reinforcement Learning for Trading Securities
This subchapter exposes the steps of the empirical research part that is used to answer the

research question formulated at the start of the thesis.

3.2.1 Planning the Implementation

The choice of algorithm to use has to be made before starting the actual computer

implementation. Out of the numerous methods that fall within the scope of deep

reinforcement learning, only some can be reasonably expected to deliver sensible results,

given the author’s limited resources and data. For example, all else being equal methods

that are sample efficient are able to learn more with the same amount of training data

compared to sample inefficient method. Another consideration for choosing the algorithm

is whether it has limitations in terms of possible action and state spaces (Stable

Baselines3, 2020). Software aspects also play a major role: some algorithms are available

only in specific libraries, and the agent has to be compatible with environment it interacts

with, therefore the pieces of software used to implement the two have to be compatible

with one another. Finally, there is also the fundamental question whether the algorithm is

well-suited for tackling the problem. After reviewing various literature (Zhang, Zohren,

& Roberts, 2020) and software source (Stable Baselines3, 2020), the author decides to

implement the analysis using the DQN algorithm from the Stable Baselines3 library,

which uses a multi-layer perceptron (feed-forward) network with rectified linear unit

activation, and the recommended environment setup to implement the reinforcement

learning system.

3.2.2 Specification of the Environment

While implementing a custom environment using the Gym library interface is relatively

easy from a development standpoint, it requires a sound understanding of how the agent

should interact with the environment. The author opts for a model where at each step, the

Master Thesis Spring Semester 2021

F. Bührer Page 20

environment reveals the financial data (open, high, low, close, and volume) of the security

for a certain number of days leading up to the current day (the lookback window). Based

on this, the agent has to decide what its position regarding the security should be: neutral,

short, or long. The price at which the agent enters a long or short position is recorded each

time the agent’s position changes, and the profits from that position are realized only

when the agent closes it. The reward (if any) at each step are the profits realized by closing

the position. A schematic example can be:

1. The agent starts with a neutral position and no cumulative profits;

2. The agent decides to enter a long position, the current price of 0.5 is recorded;

3. The agent decides to be neutral, the current price of 0.6 is used to calculate the

reward 𝑟 = 0.6 − 0.5 = 0.1;

4. The agent decides to enter a short position, the current price of 0.7 is recorded;

5. The agent decides to enter a long position, the current price of 0.9 is used to

calculate the reward 𝑟 = −(0.9 − 0.7) = −0.2 and recorded;

6. The environment reaches the end of the episode (the last day in the data set),

therefore potential profits or losses from the open long position are not assigned.

The algorithm is trained and tested within the environment using three different settings

for the lookback window: five, 10, and 20 days, the latter approximately corresponding

to the average number of trading days in a month (SwingTradeSystems.com, 2021).

3.2.3 Considerations for Choosing Algorithm Variants

The setting of the algorithm that may make a difference in how well the agent performs

is the architecture of the neural networks devoted to approximating the value functions.

It should be noted that the task of the networks is not to abstract or gain useful

representations of the data as in the case of supervised learning, therefore it does not make

sense to use very deep architectures, but rather to explore a few simple variants. In this

thesis, three architecture variants are used:

1. Two hidden layers of 16 neurons each, denoted DQN[16, 16];

2. Two hidden layers of 32 neurons each, denoted DQN[32, 32]; and

3. Two hidden layers of 64 neurons each, denoted DQN[64, 64].

Master Thesis Spring Semester 2021

F. Bührer Page 21

3.2.4 General Setup and Parametrization of the DQN Algorithm

Since the Stable Baselines3 DQN implementation does not support hyperparameter

tuning as of writing (Raffin, 2021), the author recurs to tuning the hyperparameters

manually by trial and error. The final non-default parameters as tuned by the author are

reported in the table below:

Table 2: DQN parameters set by the author

Hyperparameter

Name

Explanation Value

learning_starts Number of steps of the

model to sample before

learning starts

Number of steps in an episode

(depends on

lookback_window)

batch_size The batch size for each

gradient update

lookback_window

train_freq Number of steps between

each of the model’s

updates

loockback_window

target_update_interval Number of steps between

each of the target

network’s updates

Number of steps in an episode

(depends on

lookback_window)

exploration_fraction Portion of steps over

which the exploration rate

is reduced

0.5

exploration_final_eps Final value of the

exploration rate

0.001

3.2.5 Training of the Algorithm

The author has established through iterative trials that training the algorithm for a number

of steps equivalent to 40 episodes is a good compromise to avoid excessive fitting to the

training data and too long training times, while still achieving some measure of

convergence during training.

Master Thesis Spring Semester 2021

F. Bührer Page 22

3.2.6 Trading Securities with DQN Variations

The next three subsections analyze the in-sample and out-of-sample results of each

algorithm variant used with all three lookback windows.

 Trading securities with DQN[16, 16]

3.2.6.1.1 5-Day Lookback Period

With a five-day lookback period, some degree of convergence of the episode mean reward

is visible for some securities.

Figure 12: Training and test information for iShares Core S&P 500 ETF (DQN[16, 16], lookback 5)—own
illustration

In the left figure above, for example, the episode mean reward seems to stabilize with

each additional episode; however, the trend is decaying and not growing as would be

desired. The trained algorithm for the same security also performs badly out of sample,

as shown right, where the position at each step is also visible.

Figure 13: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 5)—own illustration

The total cumulative loss for all securities at the end of the test episode is of 1.734.

Master Thesis Spring Semester 2021

F. Bührer Page 23

3.2.6.1.2 10-Day Lookback Period

In the next run, the agent is able to observe the data of the previous 10 days.

Figure 14: Training and test information for NextEra Energy, Inc. (DQN[16, 16], lookback 10)—own illustration

Figure 15 demonstrates that, for some securities, training can improve out-of-sample

performance.

Figure 15: Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 10)—own illustration

With the longer 10-day lookback window, DQN[16, 16] is able to perform much better

with a total cumulative profit of 4.466.

3.2.6.1.3 20-Day Lookback Period

In the final run for the [16, 16]-neuron DQN, 20 days of daily data are visible to the agent.

Master Thesis Spring Semester 2021

F. Bührer Page 24

Figure 16: Training and test information for The Procter & Gamble Company (DQN[16, 16], lookback 20)—own
illustration

The last figure displays an interesting case. The first half of training shows a high variance

not seen with the other securities, then the improvement in score occurs. The right picture

indicates that the training enabled the agent to make profits.

Figure 17:Out-of-sample cumulative profit for all securities (DQN[16, 16], lookback 20)—own illustration

The algorithm realizes an overall loss of 0.103.

 Trading securities with DQN[32, 32]

3.2.6.2.1 5-Day Lookback Period

The same procedure outlined in the preceding subchapter is followed from here.

Master Thesis Spring Semester 2021

F. Bührer Page 25

Figure 18: Training and test information for Amazon.com, Inc. (DQN[32, 32], lookback 5)—own illustration

What is rather surprising about Figure 18 is that we recall from the descriptive statistics

that the underlying security for Amazon.com, Inc. has the best total returns over the entire

period. This however does not seem to have been recognized by the algorithm on this

occasion.

Figure 19: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 5)—own illustration

In this case, DQN[32, 32] is able to generate an overall profit of 2.985.

3.2.6.2.2 10-Day Lookback Period

Next is a highlight from the 10-day lookback window environment. In Figure 20 below

we can observe a desirable training progress obtained on the real estate security Vanguard

Real Estate Index Fund ETF Shares. The positive effect of training effectively translates

to the test data.

Master Thesis Spring Semester 2021

F. Bührer Page 26

Figure 20: Training and test information for Vanguard Real Estate Index Fund ETF Shares (DQN[32, 32], lookback
10)—own illustration

Figure 21: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 10)—own illustration

The total profit over al securities realized by this DQN variant with a lookback window

of 10 days is 1.165.

3.2.6.2.3 20-Day Lookback Period

Figure 22: Training and test information for American Tower Corporation (REIT) (DQN[32, 32], lookback 20)—
own illustration

The above figure is another case of large variance persisting in the model over a good

part of the training phase, with a gradual improvement happening relatively late.

Master Thesis Spring Semester 2021

F. Bührer Page 27

Unfortunately, the is not a positive transfer of the training knowledge to the out-of-sample

situation.

Figure 23: Out-of-sample cumulative profit for all securities (DQN[32, 32], lookback 20)—own illustration

As can be seen from the image, in this case the algorithm generates overall very good

profits; the sum of cumulative profit at the end of the training episode is 3.610.

 Trading securities with DQN[64, 64]

3.2.6.3.1 5-Day Lookback Period

Figure 24: Training and test information for Crude Oil Aug 21 (DQN[64, 64], lookback 5)—own illustration

Training on the crude oil future in Figure 24 above displays an almost ideal shape.

However, the algorithm incurs losses out of sample.

Master Thesis Spring Semester 2021

F. Bührer Page 28

Figure 25: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 5)—own illustration

Also in this case, the agent obtains a good result with a total cumulative profits at 2.213.

3.2.6.3.2 10-Day Lookback Period

Next is a case for the 10-day lookback window.

Figure 26: Training and test information for JPMorgan Chase & Co. (DQN[64, 64], lookback 10)—own illustration

Figure 26 shows a good training progress on the JPMorgan Chase & Co. stock. Out of

sample, the agent escapes initial losses and is able to generate a small profit.

Master Thesis Spring Semester 2021

F. Bührer Page 29

Figure 27: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 10)—own illustration

Notwithstanding the single large loss visible in Figure 27, the algorithm generates a total

profit of 3.105.

3.2.6.3.3 20-Day Lookback Period

Figure 28: Training and test information for Johnson & Johnson (DQN[64, 64], lookback 20)—own illustration

Although not ideal, since the initial improvement is not sustained, Figure 28 displays

some appreciable degree of convergence in training. However, the algorithm incurs losses

for the same security during testing.

Master Thesis Spring Semester 2021

F. Bührer Page 30

Figure 29: Out-of-sample cumulative profit for all securities (DQN[64, 64], lookback 20)—own illustration

The algorithm generates an out-of-sample profit over all securities of 1.432.

4 Discussion and Outlook
The results obtained in the empirical part of this thesis are summarized, explained, and

discussed in the first part of this chapter, where the answer to research question is also

stated. The second part is concerned with identifying the limitations of the study. The

third part contains recommendations by the author for similar research. The fourth and

conclusive part highlights the relevance of this thesis for practical application.

 Summary and Discussion of Empirical Results
The following table presents a detailed view of all empirical results. Entries marked in

green are the best results in the respective row.

Table 3: Empirical results by security, algorithm variant, and lookback window

Algorithm

Environment Lookback Window
 DQN[16, 16] DQN[32, 32] DQN[64, 64]
Security 5 10 20 5 10 20 5 10 20
10-Year T-Note Futures,Sep-2021 0.379 0.652 -0.268 -0.134 -0.681 -0.088 -0.015 0.238 -0.211
Alphabet Inc. 0.236 -0.296 0.036 0.059 0.574 1.063 -0.720 0.243 0.842
Amazon.com, Inc. 0.198 0.618 -0.120 -0.340 -0.159 0.121 0.013 -0.355 0.771
American Tower Corporation (REIT) -1.059 0.341 -0.035 0.869 -0.211 -0.021 0.013 0.571 -0.563
Apple Inc. 0.547 0.339 -0.418 0.042 0.092 0.311 0.897 1.507 -0.363
Crude Oil Aug 21 0.165 0.413 -0.091 0.250 -0.042 -0.222 -0.028 -1.480 1.500
EUR/USD -0.156 0.185 -0.006 0.001 0.288 0.209 -0.201 0.147 0.543
Exxon Mobil Corporation 0.394 -0.477 0.005 0.150 -1.085 0.452 -0.332 0.615 -0.363
iShares Core S&P 500 ETF -0.506 0.252 -0.136 0.094 0.359 0.828 0.133 0.012 -0.692
iShares Global Infrastructure ETF -0.650 0.269 -0.127 -0.430 0.515 0.335 0.712 -0.604 1.491
Johnson & Johnson -0.097 0.438 -0.096 0.264 -0.032 -0.222 0.447 0.325 -0.107
JPMorgan Chase & Co. -1.072 0.093 -0.195 -0.327 1.046 0.861 -0.517 0.004 0.452
Linde plc 0.458 0.546 0.275 0.538 -0.645 0.001 0.876 0.779 0.606
NextEra Energy, Inc. -1.157 0.180 0.502 0.498 -0.378 -0.063 -0.202 -0.011 -0.617
The Boeing Company 1.118 0.019 0.093 0.743 0.583 0.038 0.823 -0.208 -0.879
The Procter & Gamble Company -0.326 0.786 0.317 0.669 0.562 -0.028 0.342 0.690 -0.787
Vanguard Real Estate Index Fund ETF Shares -0.206 0.107 0.163 0.038 0.380 0.036 -0.029 0.633 -0.189
Total -1.734 4.466 -0.103 2.985 1.165 3.610 2.213 3.105 1.432

Master Thesis Spring Semester 2021

F. Bührer Page 31

Before stating the answer to the research question, it can be interesting to explore the

table above. As could already be inferred at the end of chapter three, almost every DQN

variant is able to generate total positive cumulative profits out-of-sample with any of the

three lookback window parametrizations. The only exception is DQN[16, 16], which

generated both the best overall performance and the two worst losses. DQN[32, 32] and

DQN[64, 64] take respectively the second and third place for single performances. If the

average performance of the totals across the three environments is taken to judge each

algorithm, DQN[16, 16] is actually by far the worst performer, and DQN[32, 32] the best.

Although the above results do not clearly indicate that the role of neural network

architecture in the DQN algorithm relates directly with the agent’s cumulative profit, the

overall performance from the DQN[32, 32] and DQN[64, 64] variants suggest that their

learned approximations tend to have a better baseline thanks to more neurons in the

artificial neural networks. This can also be seen if we count the number of green cells in

the table for each algorithm, excluding the total row: while DQN[16, 16] and DQN[32,

32] each have four such entries, the remaining nine are produced by DQN[64, 64] This

means that DQN[64, 64] is best-in-class for more than half of the cases when it comes to

trading securities. This empirical “proof” and the fact that despite the same amount of

training data received, DQN[64, 64] seems to match or even beat the performance of the

two contestants under certain aspects, it seems safe to assume that, provided adequate

training, more complex (perhaps not exaggeratingly so) network architectures in DQN

algorithms can overall produce as good if not better results than their simpler

counterparts. Another criterium that could be measured is the number of positive returns,

where DQN[32, 32] wins as the “safest” algorithm, followed by DQN[16, 16]. One more

consideration for the performances of the algorithms can be the variability between the

various environments. In this regard, DQN[64, 64] has the most stable total performance,

and DQN[32, 32] is a far second. Analyzing the role played by the lookback window does

not give much insight, as there does not seem to be a strong preference common among

the algorithms. An additional source for analysis are the securities: if we take the average

of all columns for each algorithm, we build an idea of how difficult it was for the

algorithm to interact with that security. The only commonality is Linde plc, where both

DQN[16, 16], and DQN[64, 64] have their best average results.

When considering the above results, the answer to the research question “Can deep

reinforcement learning methods suggest profitable decisions for trading securities?” is

Master Thesis Spring Semester 2021

F. Bührer Page 32

yes. The positive answer however has to be balanced by the acknowledgement that, while

deep reinforcement learning methods, as demonstrated here and in the literature, are able

to engage profitably in securities trading, they usually do so in sufficiently simple

environments where many of the notions of real-world trading, like risk management, are

not realistically reproduced. To investigate whether a reinforcement learning algorithm

would do well enough to be acceptable in a production role in finance, it would first have

to be trained and tested in a sufficiently complex environment. The author also highlights

the fact that while the totals in the table above are mostly positive, the algorithms still

incur relatively large losses for single securities, which means that while the agent would

to discretely well on a portfolio level, it would likely still not be very profitable with

single positions.

 Limitations of this Study
This thesis’s investigation on whether deep reinforcement learning methods are viable for

trading securities provides a good analysis and overview of some core concepts needed

for applying reinforcement learning to many tasks. While the research question could be

answered empirically, some relevant methodological and technical constraints can be

identified.

One limitation is the fact that only DQN algorithms were implemented; other advanced

algorithms exist that could be more performant or have desirable properties to tackle the

problem of interacting with a trading environment. A further factor that may have reduced

the potential for better empirical results is the limited way in which hyperparameter tuning

was executed due to software library limitations. Another methodological constraint is

the aforementioned simplification of the environment. To answer as to how concretely

deep learning methods can help in trading securities, many variables have to be included

in the agent’s environment.

Technically, this thesis is limited by the computational resources and data available to the

author. Using specialized equipment and industry-grade data sets would facilitate the

training of the algorithms and in turn allow for more variety in the methods adopted.

 Recommendations for Further Research
The main recommendations for further research rotate around the technical limitations.

With the right resources, many different algorithms can be trained, sometimes even

Master Thesis Spring Semester 2021

F. Bührer Page 33

parallelly, to determine what factors affect which method’s performance. In this case, it

would be interesting to attempt to implement state-of-the-art algorithms.

From a methodological standpoint, one key option for improving a study in deep

reinforcement learning is making the environment as realistic as possible. In the case of

trading securities, this could mean including notions of real finance professionals into the

agent’s environment. Some of these notions are risk management, liquidity concerns,

transaction costs, the effect that a trader has on the market, and managing resources in the

context of a portfolio.

 Implications for Practice
Deep reinforcement learning has a multitude of application and perhaps some are yet to

be discovered. Nonetheless, the findings made in this thesis confirm the utility that deep

reinforcement learning can have in finance and specifically with applications to trading.

At least one such concrete application has already been investigated by IBM (Srinivasan,

2018). One hypothetical use case would be to feed the agent’s actions to a broader system

that incorporates many inputs, such as centralized risk management system, to try to

gauge how some financial industry entities would act. Another way of bringing deep

reinforcement learning to use in the financial industry could be as bots used in simulated

applications to improve employees’ skills.

Master Thesis Spring Semester 2021

F. Bührer Page 34

5 References
Apache Software Foundation. (2019). Python bindings. Retrieved from Apache Arrow:

https://arrow.apache.org/docs/python/index.html

Bhatt, S. (2018). Reinforcement Learning 101. Learn the essentials of Reinforcement

Learning! Retrieved from Towards Data Science:

https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292

Bishop, C. M. (2006). Pattern Recognition andMachine Learning. New York: Springer

Science+Business Media, LLC.

Chao, Y., Jiming, L., & Nemati, S. (2020). Reinforcement Learning in Healthcare: A

Survey.

Chollet, F. (2018). Deep Learningwith Python. Shelter Island: Manning Publications

Co.

DeepMind. (n.d.). AlphaGo. Retrieved from DeepMind:

https://deepmind.com/research/case-studies/alphago-the-story-so-far

Graesser, L., & Wah Loon, K. (2020). Foundations of Deep Reinforcement Learning:

Theory and Practice in Python. Upper Saddle River: Pearson Education, Inc.

McFarlane, G. (2021, June 21). The S&P 500: The Index You Need To Know. Retrieved

from Investopedia: https://www.investopedia.com/articles/investing/090414/sp-

500-index-you-need-know.asp

MSCI Inc. (2021). The Global Industry Classification Standard (GICS®). Retrieved

from MSCI: https://www.msci.com/gics

Nguyen, C. N., & Zeigerman, O. (2018). Machine Learning – kurz & gut. Heidelberg:

dpunkt.

pandas. (2021). About pandas. Retrieved from pydata: https://pandas.pydata.org/about/

Raffin, A. (2021). RL Baselines3 Zoo: A Training Framework for Stable Baselines3

Reinforcement Learning Agents. Retrieved from GitHub:

https://github.com/DLR-RM/rl-baselines3-zoo#hyperparameter-tuning

S&P Dow Jones Indices. (2021). S&P 500®. Retrieved from S&P Dow Jones Indices:

https://www.spglobal.com/spdji/en/indices/equity/sp-500/

Skansi, S. (2018). Introduction to Deep Learning: From Logical Calculus to Artificial

Intelligence. Cham: Springer International Publishing AG.

Master Thesis Spring Semester 2021

F. Bührer Page 35

Srinivasan, A. (2018, July 26). Reinforcement Learning: The Business Use Case, Part

2. Retrieved from Medium: https://medium.com/ibm-data-ai/reinforcement-

learning-the-business-use-case-part-2-c175740999

Stable Baselines3. (2020). Reinforcement Learning Tips and Tricks. Retrieved from

Stable Baselines3: https://stable-

baselines3.readthedocs.io/en/master/guide/rl_tips.html

Stable Baselines3. (2020). RL Algorithms. Retrieved from Stable Baselines3:

https://stable-baselines3.readthedocs.io/en/master/guide/algos.html

Stable-Baselines3 Docs - Reliable Reinforcement Learning Implementations. (2020).

Retrieved from Stable-Baselines3: https://stable-

baselines3.readthedocs.io/en/master/

Sugiyama, M. (2015). Statistical Reinforcement Learning. Boca Raton: CRC Press.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge: The MIT Press.

SwingTradeSystems.com. (2021, June 20). 2021 Trading Days Calendar. Retrieved

from SwingTradeSystems.com: http://www.swingtradesystems.com/trading-

days-calendars.html

The Matplotlib development team. (2021). Matplotlib: Visualization with Python.

Retrieved from matplotlib: https://matplotlib.org/

The NumPy community. (2021). What is NumPy? Retrieved from NumPy:

https://numpy.org/doc/stable/user/whatisnumpy.html

Waskom, M. (2020). seaborn: statistical data visualization. Retrieved from pydata:

https://seaborn.pydata.org/

Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep Reinforcement Learning for Trading.

The Journal of Financial Data Science, 25-40.

