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ABSTRACT18

Computing trajectory similarity is a fundamental operation in movement analytics,19

required in search, clustering, and classification of trajectories, for example. Yet the20

range of different but interrelated trajectory similarity measures can be bewildering21

for researchers and practitioners alike. This paper describes a systematic compari-22

son and methodical exploration of trajectory similarity measures. Specifically, this23

paper compares five of the most important and commonly used similarity measures:24

dynamic time warping (DTW), edit distance (EDR), longest common subsequence25

(LCSS), discrete Fréchet distance (DFD), and Fréchet distance (FD). The paper26

begins with a thorough conceptual and theoretical comparison. This comparison27

highlights the similarities and differences between measures in connection with six28

different characteristics, including their handling of a relative versus absolute time29

and space, tolerance to outliers, and computational efficiency. The paper further re-30

ports on an empirical evaluation of similarity in trajectories with contrasting prop-31

erties: data about constrained bus movements in a transportation network, and the32

unconstrained movements of wading birds in a coastal environment. A set of four33

experiments: a. creates a measurement baseline by comparing similarity measures34

to a single trajectory subjected to various transformations; b. explores the behav-35

ior of similarity measures on network-constrained bus trajectories, grouped based36

on spatial and on temporal similarity; c. assesses similarity with respect to known37

behavioral annotations (flight and foraging of oystercatchers); and d. compares bird38

and bus activity to examine whether they are distinguishable based solely on their39

movement patterns. The results show that in all instances both the absolute value40

and the ordering of similarity may be sensitive to the choice of measure. In general,41

all measures were more able to distinguish spatial differences in trajectories than42

temporal differences. The paper concludes with a high-level summary of advice and43

recommendations for selecting and using trajectory similarity measures in practice,44

with conclusions spanning our three complementary perspectives: conceptual, theo-45

retical, and empirical.46
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1. Introduction50

Trajectories—recording the evolving position of objects in geographic space and time—51

are fundamental building blocks of computational movement analysis (Laube, 2014).52

Trajectories have become ubiquitous in a wide range of applications, from analy-53

sis at the scale of micro-organisms in laboratory settings in the environmental sci-54

ences (Nathan et al., 2008) to global-scale species migrations and interactions (An-55

dersson et al., 2008; Horne et al., 2007). Trajectory analysis has been applied to the56

movement of “crisp” objects, such as the movement of birds, people, and vehicles (Ar-57

slan et al., 2019; Fritz et al., 2003; González et al., 2008; Liu et al., 2012), as well58

as ill-defined objects, such as hurricanes (Dodge et al., 2012). Trajectory analysis59

has also been applied to “unconstrained” movement, such as movement ships and60

aircraft (Kaluza et al., 2010; Varlamis et al., 2019), as well as movement within a61

transportation network, such as the movement of buses and cars (Gong et al., 2019;62

Tao et al., 2017).63

Irrespective of these different settings, a fundamental operation for comparing two64

trajectories is the measurement of trajectory similarity. Measuring trajectory simi-65

larity is key to analysis tasks including search (find the most similar trajectory in a66

collection to a given trajectory, e.g., Buchin et al., 2011), clustering (group trajectories67

with similar properties, e.g., Zhang et al., 2006), classification (identifying trajectories68

associated with a known set of properties, e.g., Bashir et al., 2007), and aggrega-69

tion and characterization (identifying representative trajectories and their properties,70

e.g., Buchin et al., 2013).71

In the context of this wide range of applications, a plethora of methods for mea-72

suring trajectory similarity has emerged in parallel, and sometimes in isolation, across73

diverse academic communities. These communities include (but are not limited to) ge-74

ographic information science (Dodge et al., 2012; Petry et al., 2019a), computational75

geometry (Buchin et al., 2011), knowledge discovery and databases (Pelekis et al.,76

2007), movement ecology (Demšar et al., 2015), and transport studies (Zhang et al.,77

2011).78

Our aim in this paper is to explore trajectory similarity measures systematically79

and from three complementary perspectives: conceptual, theoretical, and empirical.80

More specifically, in this paper we:81

• set out and explore a conceptual model of trajectory similarity, illustrated82

through a set of examples;83

• populate our conceptual model with a set of algorithms and explore their theo-84

retical properties from the perspective of computational geometry; and85

• explore experimentally the different properties of selected algorithms through86

two contrasting data sets (constrained movement of vehicles on a network, and87

quasi-unconstrained movement of birds in a 2D space).88

The analysis in this paper focuses on a representative subset of arguably the most89

well-known and commonly used of measures: dynamic time warping (Berndt and Clif-90

ford, 1994) (DTW), edit distance on real sequences (EDR) (Chen et al., 2005), Longest91

common subsequence (LCSS)(Vlachos et al., 2002), Fréchet distance (FD) (Alt and92
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Godau, 1995) and its discrete counterpart, the discrete Fréchet distance (DFD) (Eiter93

and Mannila, 1994). All of these measures are described further in detail in Section 4,94

with a full justification of their selection in Section 3 and following the review of95

the background literature in Section 2. The outcomes and conclusions of the work in96

Sections 7 and 8 aim to provide clear, useful, and generalizable recommendations for97

researchers and practitioners seeking to use trajectory similarity measures.98

2. Background99

To date, relatively few comparative studies have sought to reconnect the diverse com-100

munities that use trajectory similarity measures. Two welcome early exceptions in101

this regard include the work of Magdy et al. (2015) and of Wang et al. (2013), who102

explored in an empirical setting the effectiveness of a range of trajectory similarity103

measures. However, though the latter compared measures, their conclusions are based104

on a small number of trajectories in a constrained network space, and lack a theoreti-105

cal underpinning. The former paper briefly characterizes trajectories conceptually, but106

lacks empirical examples.107

Two more recent works also addressed the need to compare and analyze similarity108

measures for trajectories, in a spirit more similar to ours. Cleasby et al. (2019) ana-109

lyzed five different measures (four of which we also include) in order to understand110

how they compare to each other when applied to movement ecology. They carried111

out simulations with synthetic data and also included experiments with a real data112

set of northern gannet trajectories. The study was focused on ecology applications,113

but some of its conclusions are more broadly relevant too. The survey by Su et al.114

(2020) provides a computational comparison of an impressive selection of 15 simi-115

larity measures. The authors evaluated how capable are these measures of handling116

different transformations to the data (e.g., adding/deleting points, changing sampling117

rate, etc.). However, the comparison among these similarity measures emphasizes the118

computational rather than conceptual perspective, for example, experimenting with119

synthetic data rather than real data.120

Hence, our approach complements this work by Cleasby et al. (2019); Su et al.121

(2020), by adopting a GI science perspective that balances the more application-122

specific and more computational perspectives of this related recent work. Based on123

this holistic approach, this paper aims to not only explore the properties of the differ-124

ent trajectory similarity algorithms and measures, but also to characterize the different125

ways in which choice of algorithm and measure impacts on the results of analysis of126

real data.127

2.1. Similarity measures and algorithms128

Trajectory similarity measures have received considerable attention in several areas,129

with a large number of similarity measures proposed in the literature.130

Perhaps the simplest approach to measure how similar two trajectories are is to131

measure spatial distance between corresponding locations (i.e., the first two points132

of each trajectory, the second two points, and so on). This is what we call lock-step133

Euclidean distance. From there on, measures attempt to compare locations in more134

sophisticated ways.135

Several other similarity measures have been proposed, but most of them can be seen136

as extensions, generalizations, and improvements (e.g., in terms of computation time)137
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of the basic measures mentioned above. For instance, sequence weighted alignment138

(SWALE) (Morse and Patel, 2007) generalizes in a unified model EDR and LCSS.139

The edit distance with projections (EDwP) (Ranu et al., 2015) is a variant of EDR140

that uses projections to handle non-uniform sampling rates. The w-constrained discrete141

Fréchet distance (wDF) (Ding et al., 2008) is a variant of DFD where two points are142

matched only if their timestamps are within a given time distance. The uncertain143

movement similarity (UMS) (Furtado et al., 2018) replaces the fixed global threshold144

of the lock-step Euclidean distance by different ellipses that are used to associate145

points from both trajectories.146

While many of the measures proposed above can be generalized to higher-147

dimensional data, some have been adapted specifically to this setting, such as DTW148

for multi-dimensional time series (MD-DTW) (ten Holt et al., 2007). A particularly149

important case of multidimensional trajectories are semantic trajectories (Spaccapi-150

etra et al., 2008). These are trajectories that are enriched with additional semantic151

information.152

Several definitions and variations of semantic trajectories exist (see, e.g., Alvares153

et al. (2007); Bogorny et al. (2014); Parent et al. (2013)). In general, semantic trajecto-154

ries can be viewed as sequences of stops and moves between stops. The stops typically155

represent salient places visited; the moves represent purposeful motion between con-156

secutive stops. In contrast to these semantic trajectories, the “raw” space-time trajec-157

tories as defined above (called raw trajectories in the context of semantic trajectories)158

describe only movement, without identified stops or semantics for intervening moves159

implied by those salient stops.160

Naturally, the computation of similarity for semantic versus raw trajectories re-161

quires different methods that focus on different aspects. Some similarity measures162

designed for semantic trajectories focus specifically on stops and their semantic at-163

tributes, e.g., Kang et al. (2009); Liu and Schneider (2012); Ying et al. (2010). Others164

try to take into account the full breadth of aspects: time, space, and semantics (e.g.,165

Furtado et al. (2016); Lehmann et al. (2019); Petry et al. (2019b)).166

The focus of this paper is on similarity measures for “raw” space-time trajectories.167

However, it should be stressed that such “raw” measures are essential building blocks168

of similarity measures for semantic trajectories. To compare two semantic trajectories,169

one also needs to be able to compare two raw trajectories, for which methods like170

those studied in this paper are needed. In addition, some of the measures for semantic171

trajectories (e.g., MD-DTW) are based on fundamental similarity measures for raw172

trajectories (e.g., DTW).173

While trajectory similarity calculation is one of the major components for many174

trajectory analytics tasks, many popular similarity measures are readily available in175

various analysis toolkits.176

• Toohey and Duckham (2015) present an R package for trajectory similarity mea-177

sures, freely available on CRAN, which includes LCSS, Fréchet distance, DTW,178

and edit distance.179

• Guillouet and Van Hinsbergh (2018) offer a Python implementation of symmetric180

segment-path distance (SSPD), one-way distance (OWD), Hausdorff distance,181

FD (Fréchet distance), DFD (discrete Fréchet distance), DTW, EDR, LCSS,182

and edit distance with real penalty (ERP).183

• MoveTK (Mitra and Steenbergen, 2020) is a C++ library for movement ana-184

lytics, which covers algorithms for various types of movement analysis tasks,185

including clustering, simplification, segmentation, and so on. Specifically, it im-186

4



plements LCSS, Hausdorff, and FD for trajectory similarity calculation.187

This spread of open source implementations also suggest the popularity of some of188

the similarity measures. The similarity measures we chose to compare in this paper,189

while not as exhaustive as Su et al. (2020), represent a sample of the most widely avail-190

able and used measures today. Further, in addition to popularity, the selected measures191

cover the fundamental principles common to the wider range of more specialized trajec-192

tory similarity measures subsequently developed. This systematic evaluation of these193

fundamental similarity measures, thus, offers a solid start point for rapid development194

of further specialized similarity measures for various application scenarios.195

3. Conceptual modeling of trajectory similarity196

A trajectory represents the path of an object’s movement, in general as position in197

space as a continuous function of time. In practice, however, trajectories are usually198

captured as “fixes,” which are discrete, granular measurements of location at given199

times. In such cases, both position and time may be regularly or irregularly sampled. In200

addition to the imprecision introduced through sampling, it is important to remember201

that location in space and in time are usually also subject to inaccuracy. However, for202

reasons of scope and clarity, we make the simplifying assumption in this paper on that203

trajectory fixes are more-or-less accurate.204

Similarity measures aim to quantify the extent to which two trajectories resemble205

each other. Comparing two trajectories involves comparing at the same time their206

spatial and temporal aspects. Accordingly, three key characteristics are especially use-207

ful in classifying trajectory similarity measures: the measure’s metric properties, it’s208

handling of trajectory granularity, and its spatial and temporal reference frames.209

3.1. Metric versus non-metric measures210

An important property of a similarity measure is whether it is a metric or not. A211

metric is a function that is zero only when two compared objects are equal; is sym-212

metric (i.e., distance from A to B equals the distance from B to A); and satisfies the213

triangle inequality (i.e., for any three trajectories A, B, C, the distance from A to B214

plus the distance from B to C must be at least as large as the distance from A to215

C). Metric properties are important for certain trajectory applications, such as index-216

ing and clustering. However, not all distance measures are metric (e.g., travel time217

in transportation networks is a distance measure that is frequently not symmetric).218

Similarly, not all similarity measures are metric (e.g., A may be more similar to B219

than B is to A).220

3.2. Discrete versus continuous measures221

In cases where the trajectory representation is continuous, and takes into account all222

the (infinite) points along the trajectory, similarity may be measured continuously.223

However, similarity measures may often be discrete, in that they consider only a dis-224

crete subset of points in the trajectory, most commonly the measured data points225

(fixes). Hence, discrete measures use only the locations at certain times, ignoring the226

movement in-between. Continuous measures require interpolation between locations227

measured at a discrete set of times.228

5



3.3. Relative versus absolute measures229

In comparing two trajectories, one can consider space and time as either absolute230

(i.e., compared with an external spatial and/or temporal reference frame) or relative231

(i.e., intrinsic comparison, ignoring absolute times or positions). For example, the232

similarities of two commuter trajectories could be measured for two people living and233

working in the same buildings and on the same morning (absolute space and time);234

a single commuter’s trajectories on two different mornings (absolute space, relative235

time); two different commuters living and working in different buildings but traveling236

on the same morning (relative space and absolute time); or two commuters living in237

working in different buildings and traveling on different mornings (relative space and238

relative time). Different similarity measures behave differently when presented with239

such data. In addition, transformations or preprocessing may be applied to data to240

align trajectories spatially and/or temporally before similarity analysis.241

3.3.1. Absolute time and space242

Occasionally, it is desirable to compare trajectories that are proximal in both space and243

time. Such absolute trajectory comparison is quite restrictive, however, as it requires244

that two trajectories must have similar lengths and be occurring in approximately the245

same space at the same time. For example, comparing the similarity of the trajectories246

of two runners in a marathon may provide insights into their relative performance.247

In practice, though, applications that require measures of similarity only for such248

closely related trajectories are rare. Instead, most applications of trajectory similarity249

require measures that operate in relative time, relative space, or both. Returning to the250

example of commuting above, it is expected that in most cases we will be interested251

in similarities between different people’s commutes across space, and/or changes in252

patterns of commutes over time (i.e., in relative space and/or relative time).253

3.3.2. Relative time254

In most trajectory similarity applications, temporal references are less important than255

the spatial characteristics of trajectories. For example, in comparing an individual’s256

travel from home to work over the working week, differences in the day of the week,257

or even the exact time the journey began, may not be as important as the relative258

spatial configurations of routes taken. In such cases, similarity measures are desired259

that prioritize similarities in space between trajectories, and limit the influence of260

temporal differences.261

In practice, trajectories will usually differ not simply in start and end times, but also262

in local variations in time, e.g., due to traffic, and in granularity, e.g., in the frequency of263

fixes in discrete trajectories. Relative time refers to the property of a similarity measure264

to handle such local time differences. Similarity measures can be further differentiated265

as rigid (does not support relative time), flexible (evaluates spatial similarity, ignoring266

time shifts), and semi-flexible (evaluates spatial similarity as well as accounting for267

the degree of temporal shift). For instance, a pair of trajectories that are spatially268

identical but vary in speed profile along the trajectory will be expected to have a269

higher similarity score when compared using a flexible measure than a rigid or semi-270

flexible measure.271

However, even in the case of flexible measures, the sequence of fixes for a trajectory272

still strongly influences the results. Two trajectories that follow spatially identical273

paths but move in opposite directions (e.g., a route from home to work, versus the274
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same route from work to home) will be measured as dramatically different from each275

other, even by trajectory similarity measures that support local alignments in time.276

In cases where trajectories are known to be the “inverse” of each other (i.e., same277

spatial path in opposite directions), an option for comparing similarity could be a278

temporal transformation that reverses the order of points within the trajectory. Such279

a transformation is discussed in more detail Section 5.3, and is the temporal analog of280

spatial transformations, discussed in the following subsection.281

3.3.3. Relative space282

The requirement that trajectories be close in absolute space can also be rather strict283

for some applications aspiring to mine general patterns from trajectories. For example,284

two objects do not have to be moving in the same area or even in the same direction to285

be considered similar if they are engaging in essentially the same behavior. Migration286

patterns of animals, for example, may exhibit meaningfully similar patterns even if287

they occur at dramatically different times, locations, and even scales.288

Transformations in space can be performed to align distal trajectories together289

before similarity measures are applied. Possible spatial transformations include but290

are not limited to translation, rotation, and scaling. For example, a translation may291

align trajectories so that they begin at the same point. Rotation can be used to ensure292

that the direction from the start point to the end point is the same for each trajectory.293

Additional scaling may also be used to align the start and end points of the trajectories.294

The type of transformations that are applicable to a specific application are dependent295

on the specific behaviors of the observed trajectories.296

3.4. Selection of similarity measures297

For our analysis, we do not aim at a complete survey of similarity measures. Instead298

we chose five of the most widely-known and frequently cited trajectory similarity299

measures, plus a further sixth measure as a baseline. These are also the measures that300

are most readily available to practitioners, as they can be found in software libraries301

in languages like Python and R (e.g., Guillouet and Van Hinsbergh, 2018; Toohey302

and Duckham, 2015). It is also important to emphasize that we restrict our focus to303

measures where the spatial component of similarity is based on spatial distance. We do304

not consider spatial similarity based on shape features, such as curvature, or similarity305

measures solely using the direction of movement.306

Trajectory data sets are a special case of multivariate time series data. Kotsakos307

et al. (2013) survey commonly-used similarity measures for univariate and multivariate308

time-series clustering. In our comparison, we included all the measures highlighted in309

their survey. These measures are dynamic time warping, longest common subsequence,310

and edit distance, in addition to the lock-step Euclidean distance (termed Lp distance)311

as a baseline measure. We excluded methods for multidimensional subsequence match-312

ing, since these address a different problem.313

For spatiotemporal data sets, (Gunopulos and Trajcevski, 2012) additionally discuss314

the Fréchet distance. The Fréchet distance also has recently received considerable at-315

tention in geographic information science (Werner and Oliver, 2018), and we therefore316

included both Fréchet distance and its variant the discrete Fréchet distance.317

All the chosen measures support relative time, in the sense that the definition of each318

measure (below) fundamentally relies on the absolute spatial distance between ordered319

points in the trajectory, rather than the absolute time gap between points. Lock-320
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step Euclidean distance is the only measure covered here that implicitly assumes that321

trajectories occur at the same absolute times. However, even in the case of the lock-322

step Euclidean distance, the calculation of similarity usually depends on the spatial323

distance between temporally aligned fixes, not on the absolute timestamp values, as324

discussed further below in Section 4.1.325

At their core, all the similarity measures considered rely on a distance measure326

between two points. Throughout our comparison, we use Euclidean distance for this327

purpose. Depending on the application other attributes of the movement can be used328

as the distance measure, e.g., speed or direction of movement, cf. Konzack et al. (2017).329

A good choice of attributes to compare is important, but mostly orthogonal to the330

choice of the trajectory similarity measure and therefore not the focus of this paper.331

4. Theoretical analysis of similarity measures332

Throughout the remainder of this paper the following notation will be used. Let333

A and B be two trajectories consisting of n timestamped points and m times-334

tamped points (“fixes”), respectively. We write A = ((ta1, p
a
1), . . . , (tan, p

a
n)) and B =335

((tb1, p
b
1), . . . , (tbm, p

b
m)), where pai , p

b
j ∈ R2 are two-dimensional locations and tai , t

b
j ∈ R336

are the corresponding time stamps.1 For conciseness we will often use the notation ai337

and bj to refer to the ith or jth point in A or B (i.e., pai and pbj , respectively).338

Given a point p ∈ R2, we use x(p) and y(p) to denote the x and y coordinates of
point p, respectively. For two points p, q in 2 dimensions, we use

dist2(p, q) =
√

(x(p)− x(q))2 + (y(p)− y(q))2

to denote their Euclidean distance, and

dist∞(p, q) = max(|x(p)− x(q)|, |y(p)− y(q)|)

to denote their infinity or maximum norm. Finally, for a trajectory A, we use A[i,j] to339

refer to the sub-trajectory given by points ((pai , t
a
i ), . . . , (p

a
j , t

a
j )), for 1 ≤ i ≤ j ≤ n,340

and A[i] to refer to pai , the ith timestamped point (fix) in trajectory A.341

Each of the following subsections begins by presenting the basic definition of each342

similarity measure. Except for unifying notation, we have tried to keep the definitions343

as close as possible to the variants most widely adopted. Fig. 1 serves as a graphical344

summary of the computation of each measure.345

4.1. Lock-step Euclidean distance (LSED)346

Lock-step Euclidean distance measures the total distance between all pairs of cor-347

responding points in two trajectories. In the continuous setting, lock-step Euclidean348

distance requires that two trajectories are the same length. In the discrete setting,349

lock-step Euclidean distance requires two trajectories to contain the same number of350

points, or that we can interpolate along the length of the trajectories.351

More formally, if n = m we can interpret the trajectories as points in the Euclidean352

space R2n and take their Euclidean distance.353

1While our treatment focuses on the most widespread case of two-dimensional locations, many of the measures

can be applied to higher-dimensional data in a straightforward way.
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EDR = 
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5.39

FD = 3.04
monotone path in

 free space
 max(distance along )

LSED = 
SQRT(1.412 + 5.662 + 4.122) =
7.14

DTW = 
2 + 13 + 34 + 1 = 50
DTW (normalized) = 
SQRT(50/4) = 3.54

Dynamic time warping
DTW

Edit distance
EDR

Longest common subseq.
LCSS

Discrete Fréchet distance
DFD

Fréchet distance
FD

Lock-step Euclidean Dist.
LSED

a1

a2

a3
a1

a2

a3

b1
b

b3 b1
b2

b3

distances squared distances thresholded (edit distance) 

thresholded (LCSS) 

b4

a1

a2

a3

b1
b2

b3 b4

a1

a2

a3

b1
b2

b3 b4

a1

a2

a3

b1
b2

b3 b4

a1

a2

a3

b1
b2

b3 b4

ε = 4

ε = 4

distances

4

3

2

1

0

2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

4

3

2

1

0

4

3

2

1

0

a3

a2

a1

b1 b2 b3 b4

82 29 17 1

9 32 34 90

2 13 17 65

a3

a2

a1

b1 b2 b3 b4

1 1 1 0

0 1 1 1

0 0 1 1

a3

a2

a1

b1 b2 b3 b4

9.06 5.39 4.12 1

3 5.66 5.83 9.49

1.41 3.61 4.12 8.06

a3

a2

a1

b1 b2 b3 b4

0 0 0 1

1 0 0 0

1 1 0 0

a3

a2

a1

b1 b2 b3

9.06 5.39 4.12

3 5.66 5.83

1.41 3.61 4.12

b1 b2 b3 b4

a1

a3

a2

Figure 1. Demonstration of trajectory similarity measures, aligning two trajectories where n=3 and m=4

(except for LSED, where n=m=3) according to the various measures, along with a corresponding distance
matrix or free-space diagram. The distances relevant for computing the respective similarity measures are

added as dashed red lines in the figures and highlighted in red in the matrices, e.g., distance dist(a3, b2)
for DFD. Other relevant distances, included in the computation but not contributing to the final similarity

measure, are also highlighted in gray cells, and gray dashed lines in associated geometric figures (in cases

where associated distance is greater than zero). Further details of the precise computation of each measure are
contained in Sections 4.1–4.6 below.
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Definition 4.1. The lock-step Euclidean distance of A and B is defined as354

Eu(A,B) =

√√√√ n∑
i=1

dist2
2(ai, bi) .

A frequently used variant is the average distance between corresponding measure-355

ments:356

Eu′(A,B) =
1

n

n∑
i=1

dist2(ai, bi) . (1)

Alternatively, the maximum instead of the average distance can be used. For example,357

in Fig. 1 the two trajectories have an average-distance LSED of 3.73 and a maximum-358

distance LSED of 5.66.359

The definition above is most meaningful when there is a correspondence in time360

between the two trajectories. That is, if tai = tbi for all 1 ≤ i ≤ n = m, then LSED361

measures how far the trajectories are apart at corresponding times. In particular,362

Eu′(A,B) is then the average distance at corresponding times. If we assume uniform363

sampling in time, then the requirement n = m corresponds to both trajectories having364

the same duration, i.e., tan − ta1 = tbn − tb1. However, if both trajectories have the same365

duration but use different—possibly non-uniform—sampling, then we can generalize366

these measures using interpolation:367

Eu(A,B) =
1

n

∫ tan−ta1

0
dist2(A(ta1 + t), B(tb1 + t))dt , (2)

where A(t) and B(t) are the locations of A and B, respectively, obtained by interpo-368

lation. Most commonly linear interpolation is used for this, i.e., for tai ≤ t ≤ tai+1 we369

have:370

A(t) = ai
tai+1 − t
tai+1 − tai

+ ai+1
t− tai
tai+1 − tai

. (3)

This interpolation assumes that the object moves between two measurements with371

constant speed along a straight line; an alternative is to bound these distances only372

assuming an upper bound on the speed of movement (Buchin and Purves, 2013). All373

the distances above can be computed in O(n + m) time by scanning over the data374

once.375

The Euclidean distance between two trajectories and its variants are widely used376

(cf. Vlachos et al. (2002)). An implicit assumption underlying LSED is that the two377

trajectories are aligned in time. All of the following measures relax this condition: data378

points with different time stamps may be aligned as long as the alignment preserves379

the order of the points along the trajectories. For all of the measures the alignment is380

optimized according to certain criteria. The measures differ in the specific criteria.381
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4.2. Dynamic time warping (DTW)382

Dynamic time warping is a classical dynamic-programming algorithm, originally used383

for speech recognition. DTW has been successfully applied to time series data since384

the work by Berndt and Clifford (1994). Later, it became one of the most common385

methods for measuring similarity between trajectories. The following definition follows386

the one presented by Chen et al. (2005).387

Definition 4.2. The dynamic time warping distance from A to B is defined as388

DTW(A,B) =



0 if A and B are empty
∞ if A or B are empty (not both)
dist2

2(a1, b1) + min(
DTW(A[2,n], B[2,m]),
DTW(A,B[2,m]),
DTW(A[2,n], B)) otherwise

Matrix formulation For this algorithm and several of the following ones, it will be389

insightful to interpret the distance definitions in terms of paths in the distance matrix390

between the trajectory points, illustrated in Fig. 1, for two sample trajectories A and391

B. In the figure, the rows and columns of the matrix are laid out such that the squared392

distance between the first two points is at the lower left and the last two points at the393

upper right corner of the matrix.394

Dynamic time warping can be seen as selecting a minimum cost path in the distance395

matrix. More precisely, DTW selects a path from the lower left to the upper right396

corner of the distance matrix that minimizes the sum of squared distances. In the397

example, the resulting sum is 2 + 13 + 34 + 1 = 50. DTW is based on defining a cost398

for aligning two data points, namely the squared Euclidean distance between them.399

From the point of view of walking along this path, from the lower left to the upper400

right corner, at each step DTW considers three possible moves: horizontal, vertical or401

diagonal. More specifically, the options available are:402

(1) Match current pair of points, and move diagonally : the cost of this move is equal403

to the squared distance between the pair of points.404

(2) Match current pair of points, and move up: the cost is equal to the squared405

distance between the pair of points.406

(3) Match current pair of points, and move right : the cost is equal to the squared407

distance between the pair of points.408

Another useful way to visualize the DTW approach is in terms of alignments. Each409

path in the distance matrix considered by DTW corresponds to an alignment between410

the points of the two trajectories (red dashed lines, Fig. 1). Each cell in the path411

implicitly aligns one point of A with one of B, that is, a path through cell (i, j), for412

1 ≤ i ≤ n and 1 ≤ j ≤ m, is implicitly aligning ai with bj .413

What characterizes a similarity measure like DTW is how the cost of a path is414

defined, since the cost of a path represents how well the two trajectories are aligned415

in that path. Following Chen et al. (2005), in the definition above the cost of a path is416

the sum of the squared distances between all pairs of aligned points. In common with417

other measures using squared distance, this distance metric can help support tolerance418

to outliers, discussed further in Sections 5.6 and 8. However, DTW is also frequently419

used with other costs, e.g., turning angles, discussed in more detail at the end of this420
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section. It is also common to enforce additional constraints on the path, for instance421

enforcing similar time-stamps between aligned measurements (see, for example, Keogh422

and Ratanamahatana, 2005).423

Normalization The DTW distance corresponds to a sum of squared distances be-424

tween data points and depends on the number of data points used. This makes it425

difficult to compare DTW distances between different numbers of data points in each426

trajectory. In the experiments we therefore divide the DTW distance by max(m,n),427

which is (in the matrix formulation) the smallest number of cells that need to be vis-428

ited. To obtain a more comprehensible 1D-distance measure, we additionally take the429

square root, that is, as normalized DTW distance we use
√

DTW(A,B)/max(m,n),430

which produces
√

50/4 = 3.54 for the example in Fig. 1.431

It might seem natural to normalize using the number of values in the sum (in terms432

of the matrix formulation: the number of cells visited) instead of max(m,n). This433

approach would however make the normalized distance dependent on the path in the434

matrix, assigning relatively smaller normalized distances to longer paths.435

Algorithm The dynamic time warping distance is computed using dynamic program-436

ming, meaning that in terms of the formulation above one can compute for every cell437

(i, j) the cost of the best path to reach it. This computation requires constant time per438

cell, as a cell’s cost can be computed based on the cost of the cell left, below, and diag-439

onally (left-below), resulting in an overall quadratic, i.e., O(nm), computation time.440

In practice, this can often be reduced to linear time, by carefully avoiding the compu-441

tation for cells that have no influence on the final result (Keogh and Ratanamahatana,442

2005). To decrease the computation time further, deep neural network based models443

have been developed for the DTW measure, see for instance (Zhang et al., 2019).444

4.3. Edit distance (EDR)445

Originally proposed to measure how similar two strings of characters are, edit distances446

have been successfully used for trajectory similarity. Conceptually, edit distance mea-447

sures the changes (“edits”) to a trajectory—for instance, deleting a data point—needed448

to morph it into another trajectory. Every edit comes at a cost. Here we present the449

variant proposed by Chen et al. (2005), known as edit distance on real sequence (EDR).450

In this variant every edit has a unit cost, and the edit operations are either deleting a451

point, or aligning two dissimilar points.452

Definition 4.3. The edit distance on real sequence (EDR) of A and B is defined as453

EDR(A,B) =



n if B is empty
m if A is empty
min(
EDR(A[2,n], B[2,m]) + penalty(a1, b1),
EDR(A,B[2,m]) + 1,
EDR(A[2,n], B) + 1) otherwise

where penalty(a1, b1) is 0 if dist∞(a1, b1) < ε, or 1 otherwise.454

The definition uses a parameter ε as a matching threshold distance (i.e., two points455

12



closer than ε are considered to match).456

Matrix formulation Similar to DTW, EDR searches for a minimum cost path in457

the distance matrix, although it uses a matrix where the cost is defined differently. The458

cost of the path is the number of horizontal, vertical, and diagonal steps, excluding459

diagonal steps for which the corresponding pair of points are considered to match (i.e.,460

their distance is smaller than ε).461

It is important to note that in EDR costs are thresholded to 0 if the current pair of462

points match, whereas in all other situations the cost is 1, irrespective of the distance463

between the current pair of points. This results in the distance threshold matrix, a464

Boolean matrix as shown in Fig. 1. However, non-thresholded versions also exist. For465

instance, EDR itself is an adaptation of a measure proposed by Cai and Ng (2004)466

called edit distance with real penalty (ERP). Instead of penalizing by 1 every time467

two elements do not match, ERP penalizes with the squared distance between the468

non-matching elements.469

In terms of alignments, EDR defines the cost of a path as the number of aligned470

points that are not considered a match.471

Algorithm Computing edit distances can be implemented in the same way as DTW472

and therefore take quadratic time, O(nm), in the worst case.473

4.4. Longest common subsequence (LCSS)474

Longest common subsequence measures try to capture how well two trajectories match475

by measuring the length of the longest point sequence that they have in common. LCSS476

measures are closely related to edit distances, defined as follows after Vlachos et al.477

(2002).478

Definition 4.4. The length of the longest common subsequence between A and B is479

defined as480

LCSS(A,B) =


0 if A or B is empty
1 + LCSS(A[1,n−1], B[1,m−1]) if dist∞(an, bm) < ε and

|n−m| ≤ δ
max(LCSS(A[1,n−1], B),
LCSS(A,B[1,m−1])) otherwise

The definition uses two parameters, δ and ε. As in EDR, ε is a matching threshold481

distance (i.e., two points closer than ε are considered to match). Additionally, δ controls482

how far in time (specifically, in timesteps) two matching points can be, in order to483

align the trajectories in time. However, it should be noted that δ is not specific to484

LCSS, and could be added to any of the other measures.485

Matrix formulation LCSS also looks for a path in its distance matrix (Fig. 1),486

although with a few differences with respect to the previous measures. First, the path487

is searched in the opposite direction: from the upper right to the lower left corner.488

This is an arbitrary decision: it is easy to modify the formula to go in the same489

direction as DTW and EDR. But we preferred here to follow the original formulation490

from Vlachos et al. (2002). The salient difference in LCSS is that the goal is to find491
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a path of maximum score, with the objective to maximize the number of matched492

points. The score of a path is the number of diagonal steps, where diagonal steps are493

only allowed if points are similar.494

In common with to EDR, LCSS is thresholded, meaning whether the point pairs495

match or not matters, but not the magnitude of difference. In terms of alignments,496

LCSS defines the value of a path as the number of alignments considered a match,497

making LCSS a measure that is somewhat complementary to EDR. Indeed, ignoring498

that one measure minimizes a cost and the other maximizes a score, the difference499

between LCSS and EDR is subtle: EDR allows diagonal steps for dissimilar points (at500

a cost), while LCSS does not.501

Algorithm As before, LCSS can be implemented using dynamic programming, and502

therefore takes quadratic time, O(nm), in the worst case.503

4.5. Discrete Fréchet distance (DFD)504

Proposed by Eiter and Mannila (1994), DFD can be seen as a version of DTW that505

takes the maximum distance between aligned points along the path. This is in contrast506

to DTW, which considers the sum of all squared distances.507

Definition 4.5. The discrete Fréchet distance of A and B is defined as508

DFD(A,B) =



0 if A and B are empty
∞ if A or B are empty (not both)
max(dist2(a1, b1),min(
DFD(A[2,n], B[2,m]),
DFD(A,B[2,m]),
DFD(A[2,n], B)) otherwise

Matrix formulation Similar to DTW and EDR, DFD searches for a minimum cost509

path in the distance matrix, from the lower left to the upper right corner (Fig. 1). As510

in DTW, the cost of a pair is measured by taking the Euclidean distance.511

In terms of alignments, DFD defines the cost of a path as the maximum over the512

distances between all pairs of aligned points. Note that taking the squared distance513

instead of the distance would result in the same optimal paths. Essentially, DFD’s514

difference to DTW is that it takes the maximum instead of the sum of the distances515

between all pairs of aligned points.516

Algorithm As before, DFD can be implemented using dynamic programming, re-517

sulting in an O(nm)-time algorithm.518

4.6. Fréchet distance (FD)519

All the distance measures above are discrete, in the sense that they only align the520

measured locations ai, bi. This can potentially lead to problems for non-uniform sam-521

pling. In this section we present the Fréchet distance (Alt and Godau, 1995), which522

is also based on the maximum distance between the alignments, as DFD. However, in523

FD the alignments considered are continuous, meaning that they are taken between all524
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points in both trajectories, by using the interpolated trajectories A(s), B(t) (defined525

as in Formula 3).526

Definition 4.6. The Fréchet distance between A and B is defined as527

F (A,B) = inf
σ

max
t∈[s1,sn]

dist2(A(t), B(σ(t))),

where the infimum is taken over all continuous, strictly monotone-increasing functions528

σ : [s1, sn]→ [t1, tm] (i.e., all continuous alignments).529

Algorithm Algorithms to compute the Fréchet distance usually solve as a subroutine530

the decision problem: to decide whether the Fréchet distance is smaller than a given531

ε > 0. Given an algorithm for the decision problem, the Fréchet distance can be532

approximated by using a binary search over ε. A more complex search procedure, such533

as parametric search, can be used to compute the Fréchet distance exactly (Alt and534

Godau, 1995).535

The Fréchet decision problem can be solved by a dynamic programming algorithm.536

Consider the so-called free-space diagram in Fig. 1 (bottom right). The free-space537

diagram is the continuous analog to the distance threshold matrix used for the edit538

distance and LCSS. In the free-space diagram the vertical axis corresponds to the539

parameter space of A and the horizontal axis to the parameter space of B. Thus, the540

point (s, t) in the diagram corresponds to the pair of points (A(s), B(t)). The free541

space for a given ε > 0 is the set of points (s, t) with the property that the distance542

between A(s) and B(t) is at most ε.543

In Fig. 1, the free-space diagram for ε ≈ 3.04 is the white-colored region. The Fréchet544

distance is at most ε if and only if there is a path from the lower-left corner to the545

upper-right corner that goes through the free-space and is monotonically increasing546

in both coordinates (shown in light grey). To compute whether such a path exists547

we can incrementally compute the part of the free-space diagram that is reachable548

by such a path. This results in an O(mn)-time algorithm for the decision problem.549

Computing the exact Fréchet distance then requires an additional O(log(mn)) factor550

for the parametric search (Alt and Godau, 1995). In the example of Fig. 1 the exact551

Fréchet distance is approximately 3.04 as the white region would disconnect when ε is552

decreased any further. The corresponding alignment is shown as a dashed red line.553

5. Discussion of conceptual and theoretical analysis554

Following our pen-and-paper conceptual and theoretical analysis, and before moving on555

the the experimental exploration, this section summarizes the key differences between556

the similarity measures.557

5.1. Metric versus non-metric558

LSED, DFD, and FD are metrics. DTW, LCSS, and EDR are not metics because:559

• DTW does not obey the triangle inequality;560

• LCSS does not measure difference (instead measuring, to some extent, similar-561

ity), although variants that satisfy some weaker conditions can be defined (Vla-562

chos et al., 2002); and563
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• EDR does not fulfill two of the conditions of a metric, namely the identity of564

indiscernibles (D(A,B) = 0 if and only if A = B) and the triangle inequality565

(D(A,B) +D(B,C) ≥ D(A,C)).566

However, in general edit distance may be a metric, including some variants of edit567

distance used for time-series analysis, such as edit distance with real penalty (Cai and568

Ng, 2004).569

5.2. Discrete versus continuous570

Fréchet distance (FD) is the only one of the similarity measures considered here that571

is continuous. FD works by finding a continuous alignment: one between the complete572

path of both trajectories, not just between trajectory fixes. Continuous measures are573

more natural when the interpolated values between trajectory points are relevant.574

Moreover, continuous measures are better suited to handling trajectories with differing575

sampling rates and gaps.576

To illustrate, consider how the discrete versus continuous measures change in the577

presence of a data gap, leading to one long trajectory segment. Discrete measures will578

only consider the endpoints of that segment, producing an increase in the similarity579

measure. In the case of measures based on the sum of distances (e.g., LSED, DTW,580

EDR, LCSS), this increase may average out. However, measures that are based on581

the maximum distance (e.g., DFD) will drastically increase. In contrast, a continuous582

measure is likely to show the smallest effect in the presence of gaps or different sampling583

rates, as long as the points on the interior of long segments can be aligned to nearby584

points on the other trajectory.585

Implementing a continuous measure does present additional computational chal-586

lenges, as opposed to the relative simplicity of a discrete measure. However, the worst-587

case running time of the FD is only slightly worse than that of the other measures,588

O(mn log(mn)) as opposed to O(mn), see Section 4.6 and Alt and Godau (1995).589

Indeed, just as FD was described as a continuous version of the DFD, continuous590

versions of some other measures have also been defined. The so-called partial Fréchet591

distance (Buchin et al., 2009) is the continuous analogue of LCSS. For a given ε > 0,592

the partial Fréchet distance aligns two trajectories to maximize the parts that have593

distance at most ε, measuring the overall length of these parts. The summed or average594

Fréchet distance is a continuous version of dynamic time warping, and aligns the tra-595

jectories as to minimize the average distance between matched points (Buchin, 2007).596

Continuous versions of dynamic time warping using other measures for the pairwise597

distance between matched points have also been considered (Efrat et al., 2007).598

5.3. Relative versus absolute time599

LSED is the only similarity measure considered that expects measurements to be600

compared at corresponding times (possibly after an absolute time shift). Common to601

all of the other similarity measures discussed—DTW, ED, LCSS, DFD, and FD—602

is the principle of temporally aligning the two trajectories by aggregating the local603

costs (i.e., the cost of the temporal alignment between each pair of points). The key604

differences between measures often lie in the details of how this is done. For instance,605

DTW and DFD fundamentally differ only on whether to take the sum (DTW) or606

the maximum (DFD) of the local costs. This difference has knock-on impacts on how607

local time differences influence the measure. For instance, since DTW adds up the608
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distance values of the cells visited (in the matrix formulation), it is of advantage to609

visit fewer cells, and therefore to take diagonal steps unless there is a bigger gain in610

terms of the local cost by taking horizontal/vertical steps. For all the measures, how611

much local variation in time is allowed can be restricted by restricting the path in612

the distance matrix to cells close to the diagonal (or more generally, close to the path613

that corresponds to a perfect alignment in time). The extreme case where the path is614

completely restricted corresponds to LSED (or a variant thereof).615

As discussed in Section 3.3.2, all similarity measures encountered are sensitive to the616

order of points in trajectories. The in-built temporal alignment of trajectory measures,617

discussed above, will not aid in identifying similar but “inverse” trajectories, where618

the same spatial path is followed in the opposite direction (e.g., comparing home to619

work and work to home trajectories). However, it is possible to conceive of temporal620

transformations that would help in identifying such trajectory similarities.621

For example, when comparing two trajectories A and A′, where A′ traces the same
spatial path as A but in the opposite direction, it is possible to compare instead two
temporally transformed trajectories B and B′, such that:

B = ((pai , t
a
i − ta1), ..., (pan, t

a
n − ta1)) and B′ = ((pa

′

j , t
a′

m − ta
′

j ), ..., (pa
′

m, t
a′

m − ta
′

m))

where txk denotes the kth timestamp in trajectory X, as introduced in Section 4. In622

this case, computing the similarity of B and B′ will provide high levels of similarity623

corresponding to spatially coincident trajectories traversed in opposite directions A624

and A′.625

5.4. Relative versus absolute space626

The distance measures considered above align trajectories in time to minimize absolute627

Euclidean distances. However, depending on the application, relative distance may be628

more important. This is addressed in two different ways. The first approach is to take629

one of the measures above and optimize it under a suitable set of transformations, e.g.,630

translations. That is, if D(A,B) is a distance measure between trajectories A and B,631

one would consider min({d(A,B + τ) | τ ∈ T}), where T is the set of two-dimensional632

translations. This minimization problem is typically computationally expensive (see633

for example Vlachos et al., 2002), and often solved by sampling the space of trans-634

formations (Alt and Scharf, 2012). The second approach is much simpler. Instead of635

using Euclidean distances, an alternative measure that is invariant under a suitable636

set of transformations is used. Common choices for this alternative include heading637

(translation-invariant) and turning angle (translation- and rotation-invariant). For in-638

stance, one can use DTW with turning angles instead of squared Euclidean distances.639

Note that the use of measures such as heading or turning angle complicates the applica-640

tion of continuous similarity measures such as FD, since it would require to interpolate641

heading or turning angle between trajectory points.642

5.5. Computational efficiency643

Regarding efficiency, the simplest and fastest measure discussed is LSED, as it only644

requires processing the input trajectories once, which takes O(n + m) time. Fréchet645

distance is least efficient O(nm log(nm)), but also the subject of considerable recent646

efforts to improve efficiency (Bringmann et al., 2019). The dynamic programming-647
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based measures (DTW, EDR, LCSS and DFD) require O(nm) time in their standard648

formulations. The dynamic programming approach is also easy to implement, and is649

almost identical for all four measures. Theoretical improvements for some of these650

measures are possible (Agrawal and Dittrich, 2002; Buchin et al., 2014; Masek and651

Paterson, 1980). However, these are marginal improvements in practice and come652

at the cost of increased complexity of implementation. Approximating a similarity653

measure can also yield faster computation. For instance, limiting how much local654

time-shifting is allowed restricts the search to a smaller portion of the distance matrix655

(or free space diagram for the Fréchet distance) close to the diagonal.656

5.6. Tolerance to outliers657

One final important difference between the various measures is worth highlighting:658

tolerance to outliers. Generally, measures that use the maximum distance between659

matched points (such as FD and DFD) emphasize large distances and are therefore660

more sensitive to outliers than measures that use the sum of distances (or even the661

sum of squared distances). Thresholds (as used in the EDR and LCSS) can be useful662

for dealing with outliers as they allow for the assignment of a uniform cost to pairs663

that are matched but have a distance larger than the threshold. In this sense, LCSS664

can be interpreted as the measure that minimizes the number of points that need to665

be classified as outliers to perfectly align the remaining trajectories. This, however,666

comes at the cost of introducing the threshold as an additional parameter.667

6. Experimental setup668

The discussion in Section 4 provided a thorough theoretical analysis of the different669

trajectory similarity measures. Section 5 then provided summary of expectations of670

the behavior of different measures with respect to key characteristics, such as temporal671

alignment, tolerance to outliers, and computational efficiency. In Sections 6 and 7, we672

turn to exploring similarity through experiments with real data, to aid in discerning673

apart differences which may be theoretically important, but practically less relevant.674

To throw light on the widest range of practical scenarios, we selected two benchmark675

trajectory data sets with sharply contrasting properties: vehicle movements through676

a transportation network, and trajectories capturing the behavior of coastal wading677

birds.678

6.1. Data sets679

The Dublin bus GPS sample data set (Dublin City Council, 2013) was selected as our680

first data set. The data set records timestamped GPS coordinates of buses traveling681

around Dublin at a frequency of 20 seconds using on-board GPS devices. Each GPS682

fix is associated with a unique bus ID, journey ID, bus route ID, as well as route683

direction.684

This data set was chosen as it is especially suitable for separating spatial and tem-685

poral aspects. For example, bus trajectories from the same time but different routes686

are expected to be relatively dissimilar. Trajectories from the same route but at differ-687

ent times are expected to be relatively similar. Such trajectories are subject to timing688

differences due to traffic and schedules, but are inherently spatially similar and will689
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be automatically temporally aligned to some degree by all our similarity measures,690

excepting LSED (cf. Section 5.4). Trajectories from the same route at the same time691

on different week days are expected to be most similar.692

To prepare a suitable set of bus trajectories for our experiments:693

• From among tens of thousands of Dublin bus trajectories, a selected subset of694

137 trajectories was extracted from weekdays (2nd, 3rd, 4th, and 7th of January695

2013) and 8–9am, 1–2pm, and 8–9pm time blocks.696

• Any stationary trajectory segments at the start or the end of a trajectory were697

removed, to avoid distorting similarity values with extended stops.698

This subset of trajectories from restricted dates and times ensured sufficient pairs of699

trajectories at comparable locations and times for our experiments to test the responses700

of different similarity measures to different trajectory pairings. Two example pairs of701

trajectories are shown in Fig 2.702

Figure 2. Example bus trajectories. Dashes perpendicular to movement paths denote trajectory “fixes”

(timestamped points in the trajectory). The left pair shows trajectories of the same bus route collected at
the same time but on different days. The left pair are spatially coincident (same bus route), but have been

displaced for visual clarity. This displacement was not employed during similarity calculation. The right pair

shows trajectories with different routes and different times.

The second data set concerned GPS trajectories of oystercatchers, annotated with703

bird activities (Shamoun-Baranes et al., 2012). Specifically, this data set resulted from704

a one month-long 2009 scientific study of three oystercatchers, in a 3km2 region of705

Schiermonnikoog island in northern Netherlands. The trajectories used were derived706

from GPS trackers fitted to the birds generating fixes every 10s. During tracking, birds707

were simultaneously observed by the scientists through telescopes. These observations708

enabled the trajectories to be annotated with eight different types of behaviors: ag-709

gression, body care, fly, forage, handle, sit, stand, and walk.710

This data set was chosen as it is especially suitable for exploring similarity of tra-711

jectories transformed in time and space. Bird trajectories reflecting the same activity712

may occur in different locations and times. The distinctive features of the different ob-713

served movement behaviors are expected to make the trajectories resulting from those714

behaviors dissimilar. An example of a “flight” and a “forage” trajectory are contrasted715

in Fig 3.716

To prepare a suitable set of bird trajectories for our experiments:717

• Those trajectories annotated as either flight or foraging were extracted from the718

full data set, to support comparisons between trajectories arising from known,719

different types of activities (and hence expected to exhibit different levels of720
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Figure 3. Example bird trajectories, showing one trajectory of flight (black) and one trajectory of foraging

(gray)
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Figure 4. Sinuosity comparison between fly trajectories and forage trajectories

similarity).721

• Trajectories with a length of fewer than four fixes were excluded, judged to be722

too short to clearly indicate any embedded activity.723

After the preprocessing and filtering step, there remained 870 trajectory segments.724

Due to the relative under-representation of flight behaviors in the underlying data set,725

only 9 of these trajectories corresponded to flight behaviors. Nevertheless, this number726

was still deemed large enough set to run our experimental cross comparisons.727

Visual inspection of the trajectories associated with different behaviors indicated728

apparent spatial differences, as expected. For example, oystercatchers appear to make729

more sudden turns when they are foraging compared to cases when they are simply730

flying (Fig. 3). To confirm this visual impression, Figure 4 shows the sinuosity of731

the two sets of trajectories extracted. Trajectories of flight behavior have uniformly732

a sinuosity close to 1 (a straight line). In contrast, forage behavior exhibits a wide733

variety of trajectories sinuosity, with an average sinuosity approaching 2.734
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6.2. Measure thresholds and normalization735

As the trajectories used in the experiments can vary dramatically in length, a direct736

comparison of similarity measures is not possible. In order for all similarity measures737

to be compared within the same categories, and between inter-category groups, LCSS738

and EDR similarity values needed to first be normalized. LCSS was normalized by739

the shortest trajectory length while EDR was normalized by the longest trajectory740

length. DTW was normalized as a function of the number of points in the longest741

trajectory in a pair (Section 4.2). As DFD and FD are essentially unaffected by length742

of trajectories, normalization was unnecessary.743

The threshold value ε for LCSS and EDR was set to 50m for all experiments, except744

where stated.745

7. Experimental results746

This section presents the results of four experiments, structured so as to explore the747

behavior of the different trajectory similarity measures with increasingly dissimilar748

sets of paired trajectories drawn from the data sources introduced in the previous sec-749

tion. These experiments are designed to provide a baseline comparison (Experiment750

1); explore trajectory similarity of movement in a constrained network space (Experi-751

ment 2); compare similarity measures in the context of different movement behaviors752

(Experiment 3); and contrast similarities of fundamentally different types of movement753

(Experiment 4).754

Throughout these experiments it is important to emphasize that our focus remains755

on what the data and experiments can tell us about the differences between similarity756

measures, rather than what the similarity measures can tell us about the differences757

between the data sets. It is important not to lose sight of the fact our comparative anal-758

ysis is is primarily concerned with elucidating the characteristics similarity measures759

themselves, not the differences in trajectory data sets nor on the different movement760

behaviors that give rise to those trajectories.761

7.1. Experiment 1: Verification and baseline762

Our first experiment explored the baseline differences between similarity measures un-763

der a range of transformations. Our expectation is that different similarity measures764

exhibit different levels of sensitivity to spatial, temporal, or spatiotemporal transfor-765

mations.766

A randomly selected trajectory was resampled to a single high-resolution baseline767

trajectory from the raw data (Fig. 5a). The bus data set was used as the source of768

this baseline trajectory. However, this choice was arbitrary, and has no impact on the769

expected results in Experiment 1, which compare the effect of different transformations770

on measured similarity. Three further transformed trajectories for comparison were771

derived from this baseline as follows:772

(1) A temporal transformation, where points were sub-sampled from the original773

trajectory with an increasing temporal interval, clustering points towards the774

(temporal) beginning of the trajectory (Fig. 5b);775

(2) A spatial transformation where the base trajectory was rotated slightly about776

its origin (Fig. 5c); and777
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(3) A spatiotemporal transformation where both temporal and spatial transforma-778

tions above were applied (Fig. 5d).779

(a) no transformation

(d) spatiotemporal
      transformation

(b) temporal transformation

(c) spatial transformation

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15)
(t20)

Figure 5. Experiment 1 setup. Trajectory comparisons between one bus trajectory and its variations. The
black trajectory is the baseline, with transformed gray trajectories showing (a) no transformation, (b) temporal

transformation, i.e., measurements are temporally shifted towards one the beginning of the trajectory, (c)

spatial transformation, i.e., the gray trajectory has been rotated, and (d) spatiotemporal transformation, i.e.,
the combination of both the spatial and the temporal transformation. In our figures, the gray trajectories have

been additionally displaced for visual clarity, with (a) illustrating this purely visual transformation.

The threshold value ε for LCSS and EDR was set to 100m in Experiment 1, unlike780

subsequent experiments, where the threshold used was 50m. The higher threshold was781

selected as the Experiment 1 baseline was the only case where the trajectories were782

resampled (see above).783

7.1.1. Results784

Table 1 shows the calculated similarity measures for the trajectories shown in Fig. 5.785

The table shows both the absolute similarity measure computed, and in parenthesis786

the relative rank of that similarity across all four values computed for that measure.787

7.1.2. Interpretation788

We expected that all measures would yield maximum similarity when trajectories are789

identical. This expectation is indeed confirmed in Table 1. Such a comparison can790

be seen as a trivial verification of the implementation of our code, and an important791

sanity check.792

In all cases except LCSS, identical trajectories (i.e., no transformation, Fig. 5)793

yield a value of 0. In other words, these measures strictly measure dissimilarity, with794
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Table 1. Computed similarities between black and gray trajectories in Fig. 5. The ranks in parentheses

indicate for every measure the relative order of the computed similarities.

Transformation None Temporal Spatial Spatiotemporal
(Fig. 5a) (Fig. 5b) (Fig. 5c) (Fig. 5d)

LCSS Ratio 1 (1) 0.68 (2) 0.61 (3) 0.55 (4)
EDR Ratio 0 (1) 0.57 (3) 0.43 (2) 0.70 (4)
Fréchet (m) 0 (1) 163.61 (2) 497.84 (3 =) 497.84 (3 =)
Discrete Fréchet (m) 0 (1) 456.87 (2) 497.84 (3 =) 497.84 (3 =)
DTW (m) 0 (1) 179.64 (2) 270.19 (4) 259.10 (3)

larger values indicating greater dissimilarity. LCSS in contrast does measure similarity,795

yielding a value of 1 for two identical trajectories.796

Beyond these extreme values, though, in most cases a physical interpretation of797

the meaning of the similarity measures is not straightforward. EDR and LCSS were798

both normalized between 0–1 (see Section 6.2). DTW was normalized as a function of799

the number of points in the longest trajectory in a pair (Section 4.2). FD and DFD800

can be interpreted as a discrete physical distance. However, in general the magnitude801

of similarity values are hard to ascribe meanings to, and as a consequence absolute802

similarity values are hard to compare, except in the case of FD and DFD.803

Instead, in this experiment we are more interested in the ordering of results within804

and between similarity measures. Are the same trajectory pairs always more similar,805

irrespective of the similarity measure used? Or, as we expect from our theoretical806

analysis, are some measures more sensitive to spatial or temporal transformations807

than others?808

Looking at Table 1, it can be inferred that similarity values are indeed sensitive809

to the measures used, with both the absolute value and relative ranking of trajectory810

similarity varying between measures with different transformations used.811

One further unanticipated difference is worth highlighting. The similarity values812

associated with continuous and discrete Fréchet distance under temporal transforma-813

tions are notably different, where all other similarity values for FD and DFD are in814

accord. This difference arises since under FD distances are calculated between not815

only data points, but also interpolated segments between these points, and thus the816

influence of the temporal transformation of the data points is limited.817

7.2. Experiment 2: Bus routes818

Our second experiment aimed to explore the behavior of different similarity measures819

on real trajectories constrained in a network space. Here, we assumed that spatial820

behavior, while not identical, is very similar for repeated instances of the same route.821

Temporal behavior, however, may vary greatly (i.e., from variations in traffic flow)822

based on the time of day. A key question then is: which similarity measures are better823

suited to discriminating between trajectories paired from different categories?824

We chose two dimensions along which to characterize trajectories: spatial similarity,825

where we select trajectories according to individual bus routes; and temporal similarity,826

where we select trajectories from the three sampled time periods (8–9am, 1–2pm, and827

8–9pm, all on weekdays). These criteria were then used to randomly select pairs of828

trajectories to test four scenarios:829

• SameSame: 36 pairs of different trajectories, where both trajectories in each pair830

are derived from a bus traveling along same route in the same temporal window,831
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possibly on different weekdays.832

• SameRoute: 36 pairs of different trajectories, where both trajectories in each833

pair are derived from a bus traveling along the same route in different temporal834

windows.835

• SameTime: 36 pairs of different trajectories, where both trajectories in each pair836

are derived from a bus traveling along different routes in the same temporal837

windows, possibly on different weekdays.838

• DiffDiff : 36 pairs of different trajectories, where both trajectories in each pair839

are derived from a bus traveling along different routes in different temporal840

windows.841

These four scenarios capture the essential spatial and temporal dimensions of tra-842

jectory similarity of tracking data in network space.843

7.2.1. Results844

Fig. 6 shows box plots of the similarity measures for each of our four cases. Hence,845

each box plot summarizes 144 data points.846
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Figure 6. Box plots of bus trajectory similarity. The five similarity measures are tested against 4 different
scenarios, where the pair of trajectories of interest are of (1) same time same route; (2) same time different

routes; (3) different time same route and (4) different time different routes.

It is immediately evident from Fig. 6 that the spatial differences between trajec-847

tories dominates the similarity values. For all similarity measures, SameSame and848

SameRoute, which compare the same spatial trajectory paths, exhibit higher levels of849

measured similarity than SameTime and DiffDiff, which compare different routes. By850

contrast, temporal differences appear to have little influence on measured similarity.851

This observation was confirmed using a Wilcoxon signed rank hypothesis test. The852

test revealed no significant differences at the 5% level between either the SameSame853

versus SameRoute or the SameTime versus DiffDiff across all measures tested. By854
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contrast, the differences between SameSame versus SameTime/DiffDiff and between855

the SameRoute versus SameTime/DiffDiff are significant at the 5% level in all cases.856

7.2.2. Interpretation857

In our second experiment, our expectation was that different similarity measures858

should be able to discriminate between trajectories that differ spatially, temporally,859

or spatiotemporally.860

In fact, the results imply that differences between bus trajectories are largely the861

product of spatial differences. None of the treatments where differences were purely862

temporal (SameSame versus SameRoute or the SameTime versus DiffDiff ) yielded863

statistically significant differences in similarity measure. Conversely, all of the treat-864

ments that varied the spatial path, whether independent of or in combination with865

temporal differences, resulted in significant differences in measured similarity.866

Having said that, it should be noted that bus routes are oftentimes designed to be867

spatially different in order to cover more area and share less overlap may be a factor868

in the lack of similarity between different routes, when compared with different times.869

Further, bus trajectories collected at different time periods are not necessarily tem-870

porally distinct in the way illustrated by the temporal transformation of a trajectory871

in Experiment 1. Instead, there appeared to be limited difference in the proportion872

of points at each section of the trajectory. This is likely due to buses following fixed873

schedules, operating at similar speeds, and stopping with similar frequency.874

7.3. Experiment 3: Bird behaviors875

In Experiment 3 our aim was to assess trajectory similarity with respect to known876

behavioral differences between bird flight and foraging. In this experiment, pairs of877

trajectories were selected randomly from bird movements labeled as foraging or flight878

behavior, to build the following treatment sets:879

• FlyFly : 36 pairs of different trajectories, constructed from exhaustive pairings of880

different trajectories from the set of 9 trajectories labeled as flight.881

• FlyForage: 36 pairs of different trajectories, randomly selected one from the set882

labeled as flight and one from the set labeled as foraging.883

• ForageForage: 36 pairs of different trajectories, randomly selected from the set884

of trajectories labeled as foraging.885

The relatively small number of 9 trajectories labeled as flight in our data set provided886

a lower bound for the number of pairs in our experiments ((9− 1)2/2 = 36). Although887

larger data sets might have been sought to increase this lower bound sample size, a888

well-known effect of increasing sample sizes is unwarranted inflation of the statistical889

significance of hypothesis tests, a particular hazard in the information sciences, where890

data sets may often be arbitrarily large (Lin et al., 2013). Hence, our lower bound891

of 36 samples in each treatment set was deemed an appropriate sample size for our892

experimental cross comparisons, applied across all Experiments 2–4 using real data.893

Since such bird movements were spatially dispersed, a necessary additional step in894

Experiment 3 was a geometric transformation (translation and rotation) to spatially895

align trajectories. Thus, all trajectories were translated such that their origins were896

identical, and rotated so that the angle formed between the first and last point in897

every trajectory was 45 degrees.898
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7.3.1. Results899

Box plots showing the results for all five similarity measures across the three different900

treatment sets are shown in Fig. 7.901
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Figure 7. Box plots of bird activity trajectory similarity. The five similarity measures are tested against three

scenarios, where the pairs of trajectories are (1) both from flight activity group; (2) one from flight and one

from forage activity group; and (3) both from forage activity group.

In contrast to the previous experiment, the results indicate a clear difference between902

the five similarity measures. While pairs of foraging trajectories were ranked with903

higher similarity by Fréchet distance, DFD, and DTW, this was not the case for pairs904

of flight trajectories. Pairs of flight trajectories were measured using Fréchet distance,905

DFD, and DTW as at least as dissimilar as pairs of flying/foraging trajectories.906

To test whether similarity measures could be treated as being drawn from different907

populations, according to the semantics of the comparisons, we performed a Kruskal-908

Wallis rank sum test (Table 2). As suggested by the box plots, we found significant909

differences (p<0.05) between the similarity values for Fréchet distance, DFD, and910

DTW only.911

Table 2. P-values for Kruskal-Wallis test performed on the similarity distribution for analysis on Oyster-
catcher data.

P-value Significant at 5% level
LCSS Ratio 0.3389
EDR Ratio 0.5583
Fréchet 0.0057 *
Discrete Fréchet 0.0057 *
DTW 0.0075 *

To further explore the nature of these differences, we then performed pairwise912

Wilcoxon signed rank tests to compare the (FlyFly with FlyForage/ForageForage with913
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FlyForage) (Table 3). We found significant differences (p<0.05) for both measures914

when comparing foraging behavior with mixed groups of trajectories, but were not915

able to distinguish between flying behavior from mixed groups. These results, given916

our previous experiment, imply that the form of trajectories has an influence on the917

sensitivity of measures to differences.918

Table 3. P-values for Wilcoxon signed rank tests for analysis on Oystercatcher data.

Comparison groups P-value Significant at 5% level

FD, DFD
FlyVsFly and FlyVsForage 0.4375
ForageVsForage and FlyVsForage 0.0210 *

DTW
FlyVsFly and FlyVsForage 0.5625
ForageVsForage and FlyVsForage 0.0210 *

7.3.2. Interpretation919

It was expected that the different similarity measures would capture differences be-920

tween behavioral patterns expressed through differing movements. More specifically,921

trajectories arising from the same activity were expected to be more similar than those922

arising from different activities.923

In contrast, the results for EDR indicate this measure is unable to distinguish any924

of the exhibited movement patterns, with no significant differences found between925

treatment sets and all combinations of patterns approximately equally dissimilar.926

The results for Fréchet distance, DFD, and DTW did indicate that foraging tra-927

jectories do share common features that are invariant to transformation, as expected.928

However, in the case of flight behavior, these three measures yielded similarity values929

indicating one flight trajectory may be as dissimilar from another flight trajectory as930

it is from a foraging trajectory.931

The LCSS ratio is the only measure that appear to exhibit the expected signal—932

that pairs of flying and pairs of foraging trajectories have greater similarity than mixed933

pairs—albeit a signal that is weak and not significant at the 5% level.934

Overall, the measures provided much weaker alignment with expectations in differ-935

entiating between labeled animal movement trajectories. It is worth noting that such936

comparisons are a typical example of trajectory similarity comparisons in a between-937

subjects experiment in ecology, where the aim is to describe animal behaviors using938

GPS tracks.939

7.4. Experiment 4: Buses vs Birds940

In any experiments comparing methods, it is important to consider straightforward941

baselines that are easy to interpret. Since the two data sets used exhibit very different942

properties, one final experiment was designed to compare these two more general943

activities—bird activity and bus activity.944

The similarity measures were then performed on three treatment sets of trajectory945

pairs:946

• BirdBird : 36 randomly selected pairs of different bird trajectories.947

• BusBird : 36 randomly selected pairs of trajectories, one from the set of bird and948

one from the set of bus trajectories.949

• BusBus : 36 randomly selected pairs of different bus trajectories.950
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As the bird and bus trajectories lie far away from each other, transformation in951

space and time was utilized to enable comparison. Trajectory pairs were translated952

and rotated in space and scaled in time to align the start and end points of both953

trajectories together.954

7.4.1. Results955

Figure 8 shows box plots for trajectories selected from pairs of similar (BusBus and956

BirdBird) and dissimilar (BusBird ) trajectories.957
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Figure 8. Box plots of bird and bus activity trajectory similarity. The five similarity measures are calculated

for three scenarios: (1) Bird trajectory v.s. Bird trajectory; (2) Bus trajectory v.s. Bus trajectory and (3) Bus

trajectory v.s. Bird trajectory.

From Figure 8, Fréchet distance, DFD, and DTW all appear to be able to discrim-958

inate between semantically similar and dissimilar objects, with largest values (and959

thus most dissimilar) trajectories associated with the BusBird pairs. However, LCSS960

and EDR, while finding the greatest similarity between BirdBird pairs, found either961

higher dissimilarity (LCSS) or comparably high dissimilarity (EDR) between BusBus962

and BusBird pairs.963

As for Experiment 3, pairwise Wilcoxon signed rank tests were performed in order964

to determine if there was a significant difference between the three groups of trajectory965

pairs. With the exception of the EDR ratio on BusBird and BusBus trajectory pairs,966

all other comparisons deferred exhibit significant differences at the 5% level.967

7.4.2. Interpretation968

Our final experiment compared trajectories from across our two data sets, to explore969

whether the similarity measures detect differences between fundamentally different970

types of behavior. Hence, this experiment provides a baseline for all experiments by971

comparing trajectories from markedly different domains that are expected to be in-972

trinsically markedly different: buses moving in a structured network space versus birds973
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free to move in a largely unconstrained space.974

Our expectation was that bird and bus trajectories should be distinguishable based975

solely on their movement patterns. While the results broadly aligned with this expec-976

tation, neither LCSS nor EDR ratio were able consistently to reflect this expectation.977

8. Conclusions and recommendations978

This section draws together our conclusions from across all the three perspectives979

on trajectory similarity—conceptual, theoretical, and empirical—leading to high-level980

advice and recommendations for choosing trajectory similarity measures.981

8.1. Summary of experimental perspective982

Taking the observed differences across our four experiments, it is possible to identify983

three general empirical properties of the different similarity measures.984

(1) Differences in similarity values are sensitive to the choice of measure. In partic-985

ular, not only does the absolute similarity value computed vary; but the relative986

ordering of similarity of trajectory pairs may vary across different similarity987

measures (e.g., Table 1).988

(2) All the similarity measures tested were more effective at distinguishing spatially989

dissimilar trajectories, when compared with temporally dissimilar trajectories.990

Relatively small spatial differences in trajectories tend to correspond to large991

differences in the magnitude of measured similarity, more so than than even992

relatively large temporal differences in trajectories (e.g., Experiment 2, Section993

7.2).994

(3) Broadly speaking, similarity values computed using DTW, DFD, and FD tended995

to accord more closely with our expectations of similarity than LCSS and EDR.996

In Experiment 3 (Section 7.3), for example, LCSS and EDR both failed to dis-997

tinguish trajectories that arose from quite different activities, and were at least998

visually quite distinct (Fig. 3). Similarly, in Experiment 4 (Section 7.4), the999

similarity values for EDR even failed to reliably discern apart differences be-1000

tween bus trajectory pair when compared with differences between bus and bird1001

trajectories.1002

8.2. Summary of all perspectives1003

Metric measures Some applications, such as indexing or clustering, rely on similar-1004

ity measures that offer metric properties. In such cases only some of these similarity1005

measures are suitable (LSED, DFD, FD, and possibly edit distance, although not1006

EDR).1007

Discrete vs continuous measures Only Fréchet distance, and its interpolation1008

between measured locations, can provide a measure of difference over continuous tra-1009

jectory paths, although some continuous analogs of DTW and LCSS can also offer1010

continuous measure properties. The decision as to whether to use a discrete or a con-1011

tinuous measure usually depends on several aspects, such as whether the sampling rates1012

in the trajectories are expected to be similar (e.g., in terms of density or frequency1013
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of fixes); whether interpolation between trajectory points is possible and meaningful;1014

and the fact that discrete measures are typically simpler to implement.1015

Computational efficiency A major factor to consider when selecting a similarity1016

measure is computational efficiency. In terms of computational complexity (the rate1017

at which computation time increases as a function of input data size), FD is the least1018

efficient measure; LSED the most efficient; with DTW, LCSS, EDR, DFD falling in1019

between these extremes, all underpinned by similar dynamic programming implemen-1020

tations. However, in practice throughout all of the experiments, little to no difference1021

was found when comparing FD to its discrete counterpart. In all cases, the primary1022

influence in execution time is the number of sample points in the trajectories, meaning1023

that over-sampling should be avoided.1024

Maximum vs sum of distances Similarity measures at root measure either the1025

maximum of distance between trajectories (i.e., FD, DFD), or the sum of all or a sam-1026

ple of distances between trajectories (LSED, DTW, EDR, LCSS). Different measures1027

in this respect may lend themselves to different applications. As a direct consequence,1028

those measures that are based on maximum distances are much more sensitive to out-1029

liers than those based on the sum of distances. That said, in our experiments FD,1030

DFD, and DTW performed similarly, indicating that any outliers present in our data1031

sets were not sufficiently significant to influence the results.1032

Spatial vs temporal similarity In all of the similarity measures tested, the spatial1033

differences between trajectories were more important in determining the magnitude1034

of measured similarity than temporal differences. This is particularly evident in Ex-1035

periment 2. However, the precise magnitude of these differences is likely to depend1036

strongly on the specific application.1037

Thresholds This exploration has not covered the selection of meaningful thresh-1038

olds for similarity measures that require them, EDR and LCSS. Neither theory nor1039

the experiments in this paper can offer insights into the right thresholds to choose.1040

Thresholds are highly data dependent, and their selection needs to take into account1041

the specific characteristics of the application, including noise, outliers, and constrained1042

or unconstrained spaces for movement.1043

Bounded versus unbounded measures As noted among the five similarity mea-1044

sures, LCSS and ED can be expressed as ratios, bounded between 0 and 1. Fréchet1045

distance, DFD, and DTW are unbounded positive numbers. Though bounded mea-1046

sures do enable similarity results to be compared across different data sets, they have1047

low resolution when representing high dissimilarity. For example, while it is easy to1048

define 0 in edit distance ratio as two trajectories that are identical, there is no situation1049

where two trajectories are so different that they produce a value of 1. Additionally, the1050

lower discriminatory power poses significant issues when different types of trajectories1051

are compared as evidenced by LCSS and EDR ratio’s inability to distinguish different1052

movement patterns in Experiment 3.1053

Interpretation of measure magnitudes Similarity measures are best interpreted1054

in terms of relative ordering, rather than absolute magnitude. FD and DFD similarity1055
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measures do have a direct physical interpretation, as the maximum sum of differences1056

between trajectories. Hence, similarity values computed using these measures may1057

arguably be compared or reasoned about (e.g., two trajectories with an FD of 1000m1058

are arguably twice as dissimilar as a trajectory pair with a FD of 500m). DTW similarly1059

has a physical interpretation, albeit a less intuitive one (cf. Section 4.2). LCSS and1060

EDR ratios have no such interpretation. However, given the limitations of similarity1061

measures discussed above, such as their discriminatory power, and the experimental1062

variability, it seems safer in all cases to interpret measured values qualitatively (i.e.,1063

more or less similar) rather than quantitatively.1064

8.3. Summary of recommendations1065

To conclude, Table 4 provides a visual summary of the most salient differences between1066

the similarity measures. The table indicates for each similarity measure whether it:1067

(1) is a metric (is symmetric; obeys triangle inequality; and zero only when two1068

compared objects are equal, see Section 3.1);1069

(2) operates on discrete or continuous trajectories;1070

(3) accommodates relative time by automatically aligning trajectories temporally;1071

(4) is computationally efficient, when compared with other measures (in Table 41072

three stars indicates most efficient, one star least efficient);1073

(5) is robust to outliers, when compared to other measures (in Table 4 three stars1074

indicates most tolerant, one star least tolerant).1075

The color coding of cells in Table 4 aims to provide a visual impression of subjective1076

“performance” of the different measures, such that lighter cells correspond to more1077

desirable properties, such as greater computational efficiency, tolerance to outliers,1078

flexibility to support relative time, and so forth.1079

In summary, as argued in Section 3, our aim was not to promote a single similarity1080

measure that fits all situations; rather our aim is to clarify and illuminate the impor-1081

tant differences and similarities between measures. The decision on which similarity1082

measure to apply depends on each individual definition of distance, with different ap-1083

plications placing the emphasis on different aspects of the trajectories they compare.1084

The conceptual, theoretical, and experimental characteristics of the most popular mea-1085

sures, thoroughly explored in this paper, are we believe a fundamental evidence-base1086

for making that decision.1087
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Universität Wien.1156

Fritz, H., Said, S., and Weimerskirch, H., 2003. Scale–dependent hierarchical adjustments of1157

movement patterns in a long–range foraging seabird, Proceedings of the Royal Society of1158

London B: Biological Sciences, 270 (1520), 1143–1148.1159

Furtado, A.S., Alvares, L.O.C., Pelekis, N., Theodoridis, Y., and Bogorny, V., 2018. Unveiling1160

movement uncertainty for robust trajectory similarity analysis, International Journal of1161

Geographical Information Science, 32 (1), 140–168.1162

Furtado, A.S., Kopanaki, D., Alvares, L.O., and Bogorny, V., 2016. Multidimensional similarity1163

measuring for semantic trajectories, Transactions in GIS, 20 (2), 280–298.1164

Gong, S., Cartlidge, J., Bai, R., Yue, Y., Li, Q., and Qiu, G., 2019. Extracting activity patterns1165

from taxi trajectory data: a two-layer framework using spatio-temporal clustering, bayesian1166

probability and monte carlo simulation, International Journal of Geographical Information1167

Science, 1–25.1168
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