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ABSTRACT
Computing trajectory similarity is a fundamental operation in movement analytics, required in 
search, clustering, and classification of trajectories, for example. Yet the range of different but 
interrelated trajectory similarity measures can be bewildering for researchers and practitioners 
alike. This paper describes a systematic comparison and methodical exploration of trajectory 
similarity measures. Specifically, this paper compares five of the most important and commonly 
used similarity measures: dynamic time warping (DTW), edit distance (EDR), longest common 
subsequence (LCSS), discrete Fréchet distance (DFD), and Fréchet distance (FD). The paper begins 
with a thorough conceptual and theoretical comparison. This comparison highlights the simila
rities and differences between measures in connection with six different characteristics, including 
their handling of a relative versus absolute time and space, tolerance to outliers, and computa
tional efficiency. The paper further reports on an empirical evaluation of similarity in trajectories 
with contrasting properties: data about constrained bus movements in a transportation network, 
and the unconstrained movements of wading birds in a coastal environment. A set of four 
experiments: a. creates a measurement baseline by comparing similarity measures to a single 
trajectory subjected to various transformations; b. explores the behavior of similarity measures on 
network-constrained bus trajectories, grouped based on spatial and on temporal similarity; 
c. assesses similarity with respect to known behavioral annotations (flight and foraging of oyster
catchers); and d. compares bird and bus activity to examine whether they are distinguishable 
based solely on their movement patterns. The results show that in all instances both the absolute 
value and the ordering of similarity may be sensitive to the choice of measure. In general, all 
measures were more able to distinguish spatial differences in trajectories than temporal differ
ences. The paper concludes with a high-level summary of advice and recommendations for 
selecting and using trajectory similarity measures in practice, with conclusions spanning our 
three complementary perspectives: conceptual, theoretical, and empirical.
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Introduction

Trajectories – recording the evolving position of 
objects in geographic space and time – are funda
mental building blocks of computational movement 
analysis (Laube 2014). Trajectories have become ubi
quitous in a wide range of applications, from analysis 
at the scale of micro-organisms in laboratory settings 
in the environmental sciences (Nathan et al. 2008) to 
global-scale species migrations and interactions 
(Horne et al. 2007; Andersson et al. 2008). Trajectory 
analysis has been applied to the movement of “crisp” 
objects, such as the movement of birds, people, and 
vehicles (Fritz, Said, and Weimerskirch 2003; González, 
Hidalgo, and Albert-László 2008; Arslan, Cruz, and 
Ginhac 2019; Y. Liu et al. 2012), as well as ill-defined 

objects, such as hurricanes (Dodge, Laube, and Weibel 
2012). Trajectory analysis has also been applied to 
“unconstrained” movements, such as movement of 
ships and aircraft (Kaluza, Andrea Kölzsch, and 
Blasius 2010; Varlamis et al. 2019), as well as move
ment within a transportation network, such as the 
movement of buses and cars (Tao, Both, and 
Duckham 2017; Gong et al. 2019).

Irrespective of these different settings, a fundamental 
operation for comparing two trajectories is the mea
surement of trajectory similarity. Measuring trajectory 
similarity is key to analysis tasks including search (find 
the most similar trajectory in a collection to a given 
trajectory, e.g. (Buchin et al. 2011)), clustering (group 
trajectories with similar properties, e.g. (Zhang, Huang, 
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and Tan 2006)), classification (identifying trajectories 
associated with a known set of properties, e.g. (Bashir, 
Khokhar, and Schonfeld 2007)), and aggregation and 
characterization (identifying representative trajectories 
and their properties, e.g. (K. Buchin et al. 2013)).

In the context of this wide range of applications, 
a plethora of methods for measuring trajectory simi
larity has emerged in parallel, and sometimes in iso
lation, across diverse academic communities. These 
communities include (but are not limited to) geo
graphic information science (Dodge, Laube, and 
Weibel 2012; Petry et al. 2019a), computational geo
metry (Buchin et al. 2011), knowledge discovery and 
databases (Pelekis et al. 2007), movement ecology 
(Demšar et al. 2015), and transport studies (Zhang 
et al. 2011).

Our aim in this paper is to explore trajectory simi
larity measures systematically and from three comple
mentary perspectives: conceptual, theoretical, and 
empirical. More specifically, in this paper we:

● set out and explore a conceptual model of tra
jectory similarity, illustrated through a set of 
examples;

● populate our conceptual model with a set of 
algorithms and explore their theoretical proper
ties from the perspective of computational geo
metry; and

● explore experimentally the different properties 
of selected algorithms through two contrasting 
data sets (constrained movement of vehicles on 
a network, and quasi-unconstrained movement 
of birds in a 2D space).

The analysis in this paper focuses on 
a representative subset of arguably the most well 
known and commonly used of measures: dynamic 
time warping (Berndt and Clifford 1994) (DTW), 
edit distance on real sequences (EDR) (Chen, 
Özsu, and Oria 2005), Longest common subse
quence (LCSS)(Vlachos, Gunopulos, and Kollios 
2002), Fréchet distance (FD) (Alt and Godau 
1995) and its discrete counterpart, the discrete 
Fréchet distance (DFD) (Eiter and Mannila 1994). 
All of these measures are described further in 
detail in Section 4, with a full justification of 
their selection in Section 3 and following the 
review of the background literature in Section 2. 

The outcomes and conclusions of the work in 
Sections 7 and 8 aim to provide clear, useful, 
and generalizable recommendations for research
ers and practitioners seeking to use trajectory 
similarity measures.

Background

To date, relatively few comparative studies have 
sought to reconnect the diverse communities that 
use trajectory similarity measures. Two welcome early 
exceptions in this regard include the work of (Magdy 
et al. 2015) and of (Wang et al. 2013), who explored in 
an empirical setting the effectiveness of a range of 
trajectory similarity measures. However, though the 
latter compared measures, their conclusions are 
based on a small number of trajectories in 
a constrained network space, and lack a theoretical 
underpinning. The former paper briefly characterizes 
trajectories conceptually, but lacks empirical examples.

Two more recent works also addressed the need to 
compare and analyze similarity measures for trajec
tories, in a spirit more similar to ours. (Cleasby et al. 
2019) analyzed five different measures (four of which 
we also include) in order to understand how they 
compare to each other when applied to movement 
ecology. They carried out simulations with synthetic 
data and also included experiments with a real data 
set of northern gannet trajectories. The study was 
focused on ecology applications, but some of its con
clusions are more broadly relevant too. The survey by 
(Su et al. 2020) provides a computational comparison 
of an impressive selection of 15 similarity measures. 
The authors evaluated how capable are these mea
sures of handling different transformations to the 
data (e.g. adding/deleting points, changing sampling 
rate, etc.). However, the comparison among these 
similarity measures emphasizes the computational 
rather than conceptual perspective, for example, 
experimenting with synthetic data rather than real 
data.

Hence, our approach complements this work by 
(Cleasby et al. 2019; Su et al. 2020), by adopting a GI 
science perspective that balances the more applica
tion-specific and more computational perspectives of 
this related recent work. Based on this holistic 
approach, this paper aims to not only explore the 
properties of the different trajectory similarity algo
rithms and measures but also to characterize the 
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different ways in which choice of algorithm and mea
sure impacts on the results of analysis of real data.

Similarity measures and algorithms

Trajectory similarity measures have received consider
able attention in several areas, with a large number of 
similarity measures proposed in the literature.

Perhaps the simplest approach to measure how 
similar two trajectories are is to measure spatial dis
tance between corresponding locations (i.e. the first 
two points of each trajectory, the second two points, 
and so on). This is what we call lock-step Euclidean 
distance. From there on, measures attempt to com
pare locations in more sophisticated ways.

Several other similarity measures have been pro
posed, but most of them can be seen as extensions, 
generalizations, and improvements (e.g. in terms of 
computation time) of the basic measures mentioned 
above. For instance, sequence weighted alignment 
(SWALE) (Morse and Patel 2007) generalizes in 
a unified model EDR and LCSS. The edit distance 
with projections (EDwP) (Ranu et al. 2015) is 
a variant of EDR that uses projections to handle non- 
uniform sampling rates. The w-constrained discrete 
Fréchet distance (wDF) (Ding, Trajcevski, and 
Scheuermann 2008) is a variant of DFD where two 
points are matched only if their timestamps are within 
a given time distance. The uncertain movement simi
larity (UMS) (Furtado et al. 2018) replaces the fixed 
global threshold of the lock-step Euclidean distance 
by different ellipses that are used to associate points 
from both trajectories.

While many of the measures proposed above can 
be generalized to higher-dimensional data, some 
have been adapted specifically to this setting, such 
as DTW for multi-dimensional time series (MD-DTW) 
(Holt Ten, Reinders, and Hendriks 2007). A particularly 
important case of multidimensional trajectories are 
semantic trajectories (Spaccapietra et al. 2008). 
These are trajectories that are enriched with addi
tional semantic information.

Several definitions and variations of semantic 
trajectories exist (see, e.g. (Alvares et al. 2007; 
Bogorny et al. 2014; Parent et al. 2013)). In general, 
semantic trajectories can be viewed as sequences 
of stops and moves between stops. The stops typi
cally represent salient places visited; the moves 
represent purposeful motion between consecutive 

stops. In contrast to these semantic trajectories, the 
“raw” space-time trajectories as defined above 
(called raw trajectories in the context of semantic 
trajectories) describe only movement, without 
identified stops or semantics for intervening 
moves implied by those salient stops.

Naturally, the computation of similarity for seman
tic versus raw trajectories requires different methods 
that focus on different aspects. Some similarity mea
sures designed for semantic trajectories focus specifi
cally on stops and their semantic attributes, e.g. 
(Kang, Kim, and Ki-Joune 2009; H. Liu and Schneider 
2012; Ying et al. 2010). Others try to take into account 
the full breadth of aspects: time, space, and semantics 
(e.g. (Furtado et al. 2016; Lehmann, Alvares, and 
Bogorny 2019; Petry et al. 2019b)).

The focus of this paper is on similarity measures for 
“raw” space-time trajectories. However, it should be 
stressed that such “raw” measures are essential build
ing blocks of similarity measures for semantic trajec
tories. To compare two semantic trajectories, one also 
needs to be able to compare two raw trajectories, for 
which methods like those studied in this paper are 
needed. In addition, some of the measures for seman
tic trajectories (e.g. MD-DTW) are based on funda
mental similarity measures for raw trajectories 
(e.g. DTW).

While trajectory similarity calculation is one of the 
major components for many trajectory analytics tasks, 
many popular similarity measures are readily available in 
various analysis toolkits.

● (Toohey and Duckham 2015) present an 
R package for trajectory similarity measures, 
freely available on CRAN, which includes LCSS, 
Fréchet distance, DTW, and edit distance.

● (Guillouet and Van Hinsbergh 2018) offer 
a Python implementation of symmetric segment- 
path distance (SSPD), one-way distance (OWD), 
Hausdorff distance, FD (Fréchet distance), DFD 
(discrete Fréchet distance), DTW, EDR, LCSS, and 
edit distance with real penalty (ERP).

● MoveTK (Mitra and Steenbergen 2020) is a C++ 
library for movement analytics, which covers algo
rithms for various types of movement analysis 
tasks, including clustering, simplification, segmen
tation, and so on. Specifically, it implements LCSS, 
Hausdorff, and FD for trajectory similarity 
calculation.
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This spread of open-source implementations also 
suggest the popularity of some of the similarity mea
sures. The similarity measures we chose to compare in 
this paper, while not as exhaustive as (Su et al. 2020), 
represent a sample of the most widely available and 
used measures today. Further, in addition to popular
ity, the selected measures cover the fundamental 
principles common to the wider range of more spe
cialized trajectory similarity measures subsequently 
developed. This systematic evaluation of these funda
mental similarity measures, thus, offers a solid start 
point for rapid development of further specialized 
similarity measures for various application scenarios.

Conceptual modeling of trajectory similarity

A trajectory represents the path of an object’s move
ment, in general as position in space as a continuous 
function of time. In practice, however, trajectories are 
usually captured as “fixes,” which are discrete, granu
lar measurements of location at given times. In such 
cases, both position and time may be regularly or 
irregularly sampled. In addition to the imprecision 
introduced through sampling, it is important to 
remember that location in space and in time are 
usually also subject to inaccuracy. However, for rea
sons of scope and clarity, we make the simplifying 
assumption in this paper on that trajectory fixes are 
more-or-less accurate.

Similarity measures aim to quantify the extent to 
which two trajectories resemble each other. 
Comparing two trajectories involves comparing at 
the same time their spatial and temporal aspects. 
Accordingly, three key characteristics are especially 
useful in classifying trajectory similarity measures: 
the measure’s metric properties, it’s handling of tra
jectory granularity, and its spatial and temporal refer
ence frames.

Metric versus non-metric measures

An important property of a similarity measure is 
whether it is a metric or not. A metric is a function 
that is zero only when two compared objects are 
equal; is symmetric (i.e. distance from A to B equals 
the distance from B to A); and satisfies the triangle 
inequality (i.e. for any three trajectories A, B, C, the 
distance from A to B plus the distance from B to C 
must be at least as large as the distance from A to C). 

Metric properties are important for certain trajectory 
applications, such as indexing and clustering. 
However, not all distance measures are metric (e.g. 
travel time in transportation networks is a distance 
measure that is frequently not symmetric). Similarly, 
not all similarity measures are metric (e.g. A may be 
more similar to B than B is to A).

Discrete versus continuous measures

In cases where the trajectory representation is contin
uous and takes into account all the (infinite) points 
along the trajectory, similarity may be measured con
tinuously. However, similarity measures may often be 
discrete, in that they consider only a discrete subset of 
points in the trajectory, most commonly the mea
sured data points (fixes). Hence, discrete measures 
use only the locations at certain times, ignoring the 
movement in-between. Continuous measures require 
interpolation between locations measured at 
a discrete set of times.

Relative versus absolute measures

In comparing two trajectories, one can consider space 
and time as either absolute (i.e. compared with an 
external spatial and/or temporal reference frame) or 
relative (i.e. intrinsic comparison, ignoring absolute 
times or positions). For example, the similarities of 
two commuter trajectories could be measured for 
two people living and working in the same buildings 
and on the same morning (absolute space and time); 
a single commuter’s trajectories on two different 
mornings (absolute space, relative time); two different 
commuters living and working in different buildings 
but traveling on the same morning (relative space and 
absolute time); or two commuters living in working in 
different buildings and traveling on different morn
ings (relative space and relative time). Different simi
larity measures behave differently when presented 
with such data. In addition, transformations or pre
processing may be applied to data to align trajec
tories spatially and/or temporally before similarity 
analysis.

Absolute time and space
Occasionally, it is desirable to compare trajectories 
that are proximal in both space and time. Such abso
lute trajectory comparison is quite restrictive, 
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however, as it requires that two trajectories must have 
similar lengths and be occurring in approximately the 
same space at the same time. For example, comparing 
the similarity of the trajectories of two runners in 
a marathon may provide insights into their relative 
performance. In practice, though, applications that 
require measures of similarity only for such closely 
related trajectories are rare. Instead, most applications 
of trajectory similarity require measures that operate 
in relative time, relative space, or both. Returning to 
the example of commuting above, it is expected that 
in most cases we will be interested in similarities 
between different people’s commutes across space, 
and/or changes in patterns of commutes over time 
(i.e. in relative space and/or relative time).

Relative time
In most trajectory similarity applications, temporal 
references are less important than the spatial charac
teristics of trajectories. For example, in comparing an 
individual’s travel from home to work over the work
ing week, differences in the day of the week, or even 
the exact time the journey began, may not be as 
important as the relative spatial configurations of 
routes taken. In such cases, similarity measures are 
desired that prioritize similarities in space between 
trajectories, and limit the influence of temporal 
differences.

In practice, trajectories will usually differ not simply 
in start and end times, but also in local variations in 
time, e.g. due to traffic, and in granularity, e.g. in the 
frequency of fixes in discrete trajectories. Relative 
time refers to the property of a similarity measure to 
handle such local time differences. Similarity mea
sures can be further differentiated as rigid (does not 
support relative time), flexible (evaluates spatial simi
larity, ignoring time shifts), and semi-flexible (evalu
ates spatial similarity as well as accounting for the 
degree of temporal shift). For instance, a pair of tra
jectories that are spatially identical but vary in speed 
profile along the trajectory will be expected to have 
a higher similarity score when compared using 
a flexible measure than a rigid or semi-flexible 
measure.

However, even in the case of flexible measures, the 
sequence of fixes for a trajectory still strongly influ
ences the results. Two trajectories that follow spatially 
identical paths but move in opposite directions (e.g. 
a route from home to work, versus the same route 

from work to home) will be measured as dramatically 
different from each other, even by trajectory similarity 
measures that support local alignments in time. In 
cases where trajectories are known to be the “inverse” 
of each other (i.e. same spatial path in opposite direc
tions), an option for comparing similarity could be 
a temporal transformation that reverses the order of 
points within the trajectory. Such a transformation is 
discussed in more detail Section 5.3, and is the tem
poral analog of spatial transformations, discussed in 
the following subsection.

Relative space
The requirement that trajectories be close in absolute 
space can also be rather strict for some applications 
aspiring to mine general patterns from trajectories. 
For example, two objects do not have to be moving in 
the same area or even in the same direction to be 
considered similar if they are engaging in essentially 
the same behavior. Migration patterns of animals, for 
example, may exhibit meaningfully similar patterns 
even if they occur at dramatically different times, 
locations, and even scales.

Transformations in space can be performed to 
align distal trajectories together before similarity 
measures are applied. Possible spatial transformations 
include but are not limited to translation, rotation, 
and scaling. For example, a translation may align 
trajectories so that they begin at the same point. 
Rotation can be used to ensure that the direction 
from the start point to the end point is the same for 
each trajectory. Additional scaling may also be used 
to align the start and end points of the trajectories. 
The type of transformations that are applicable to 
a specific application are dependent on the specific 
behaviors of the observed trajectories.

Selection of similarity measures

For our analysis, we do not aim at a complete survey 
of similarity measures. Instead, we chose five of the 
most widely-known and frequently cited trajectory 
similarity measures, plus a further sixth measure as 
a baseline. These are also the measures that are most 
readily available to practitioners, as they can be found 
in software libraries in languages like Python and 
R (e.g. (Guillouet and Van Hinsbergh 2018; Toohey 
and Duckham 2015)). It is also important to empha
size that we restrict our focus to measures where the 
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spatial component of similarity is based on spatial 
distance. We do not consider spatial similarity based 
on shape features, such as curvature, or similarity 
measures solely using the direction of movement.

Trajectory data sets are a special case of multivari
ate time series data. (Kotsakos et al. 2013) survey 
commonly-used similarity measures for univariate 
and multivariate time-series clustering. In our com
parison, we included all the measures highlighted in 
their survey. These measures are dynamic time warp
ing, longest common subsequence, and edit distance, 
in addition to the lock-step Euclidean distance 
(termed Lp distance) as a baseline measure. We 
excluded methods for multidimensional subsequence 
matching, since these address a different problem.

For spatiotemporal data sets, (Gunopulos and 
Trajcevski 2012) additionally discuss the Fréchet dis
tance. The Fréchet distance also has recently received 
considerable attention in geographic information 
science (Werner and Oliver 2018), and we therefore 
included both Fréchet distance and its variant the 
discrete Fréchet distance.

All the chosen measures support relative time, in 
the sense that the definition of each measure (below) 
fundamentally relies on the absolute spatial distance 
between ordered points in the trajectory, rather than 
the absolute time gap between points. Lock-step 
Euclidean distance is the only measure covered here 
that implicitly assumes that trajectories occur at the 
same absolute times. However, even in the case of the 
lock-step Euclidean distance, the calculation of similar
ity usually depends on the spatial distance between 
temporally aligned fixes, not on the absolute time
stamp values, as discussed further below in Section 4.1.

At their core, all the similarity measures considered 
rely on a distance measure between two points. 
Throughout our comparison, we use Euclidean dis
tance for this purpose. Depending on the application 
other attributes of the movement can be used as 
distance measures, e.g., speed or direction of move
ment, cf. (Konzack et al. 2017). A good choice of 
attributes to compare is important, but mostly ortho
gonal to the choice of the trajectory similarity mea
sure and therefore not the focus of this paper.

Theoretical analysis of similarity measures

Throughout the remainder of this paper, the follow
ing notation will be used. Let A and B be two 

trajectories consisting of n timestamped points and 
m timestamped points (“fixes”), respectively. We write 
A ¼ ta

1; pa
1

� �
; . . . ; ta

n; pa
n

� �� �
and 

B ¼ tb
1 ; pb

1

� �
; . . . ; tb

m; pb
m

� �� �
, where pa

i ; pb
j 2 R 2 are 

two-dimensional locations and ta
i ; tb

j 2 R are the cor

responding time stamps. For conciseness we will 
often use the notation ai and bj to refer to the ith or 
jth point in A or B (i.e. pa

i and pb
j , respectively).

Given a point p 2 R 2, we use x pð Þ and y pð Þ to 
denote the x and y coordinates of point p, respec
tively. For two points p, q in two dimensions, we use 

dist2 p; qð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx pð Þ � x qð ÞÞ
2

þ ðy pð Þ � y qð ÞÞ
2

q

(1) 

to denote their Euclidean distance, and 

dist1 p; qð Þ ¼ max x pð Þ � x qð Þj j; y pð Þ � y qð Þj jð Þ (2) 

to denote their infinity or maximum norm. Finally, for 
a trajectory A, we use A i;j½ � to refer to the sub- 

trajectory given by points pa
i ; ta

i

� �
; . . . ; pa

j ; ta
j

� �� �
, 

for 1 � i � j � n, and A i½ � to refer to pa
i, the ith time

stamped point (fix) in trajectory A.
Each of the following subsections begins by pre

senting the basic definition of each similarity mea
sure. Except for unifying notation, we have tried to 
keep the definitions as close as possible to the var
iants most widely adopted. (Figure 1) serves as 
a graphical summary of the computation of each 
measure.

Lock-step Euclidean distance (LSED)

Lock-step Euclidean distance measures the total dis
tance between all pairs of corresponding points in 
two trajectories. In the continuous setting, lock-step 
Euclidean distance requires that two trajectories are 
the same length. In the discrete setting, lock-step 
Euclidean distance requires two trajectories to con
tain the same number of points, or that we can inter
polate along the length of the trajectories.

More formally, if n ¼ m we can interpret the tra
jectories as points in the Euclidean space R 2n and take 
their Euclidean distance. 

Definition 1. The lock-step Euclidean distance of A 
and B is defined as 

648 Y. TAO ET AL.



Eu A; Bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

dist2
2 ai; bið Þ

s

: (3) 

A frequently used variant is the average distance 
between corresponding measurements: 

Eu0 A; Bð Þ ¼
1
n

Xn

i¼1

dist2 ai; bið Þ : (4) 

Alternatively, the maximum instead of the average 
distance can be used. For example, in (Figure 1) the 
two trajectories have an average-distance LSED of 
3.73 and a maximum-distance LSED of 5.66.

The definition above is most meaningful when 
there is a correspondence in time between the two 
trajectories. That is, if ta

i ¼ tb
i for all 1 � i � n ¼ m, 

then LSED measures how far the trajectories are 

EDR = 
no. of edits = 2

LCSS = 
no. of matched pts. = 2

DFD = 
max(1.41, 3, 5.39, 4.12,1) =
5.39

FD = 3.04
monotone path in

 free space
 max(distance along )

LSED = 
SQRT(1.412 + 5.662 + 4.122) =
7.14

DTW = 
2 + 13 + 34 + 1 = 50
DTW (normalized) = 
SQRT(50/4) = 3.54
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Figure 1. Demonstration of trajectory similarity measures, aligning two trajectories where n=3 and m=4 (except for LSED, where 
n=m=3) according to the various measures, along with a corresponding distance matrix or free-space diagram. The distances relevant 
for computing the respective similarity measures are added as dashed red lines in the figures and highlighted in red in the matrices, 
e.g. distance dist a3; b2ð Þ for DFD. Other relevant distances, included in the computation but not contributing to the final similarity 
measure, are also highlighted in gray cells, and gray dashed lines in associated geometric figures (in cases where associated distance is 
greater than zero). Further details of the precise computation of each measure are contained in Sections 4.1–4.6 below.
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apart at corresponding times. In particular, Eu0 A; Bð Þ is 
then the average distance at corresponding times. If 
we assume uniform sampling in time, then the require
ment n=m corresponds to both trajectories having the 
same duration, i.e. ta

n � ta
1 ¼ tb

n � tb
1 . However, if both 

trajectories have the same duration but use different – 
possibly non-uniform – sampling, then we can gener
alize these measures using interpolation: 

Eu A; Bð Þ ¼
1
n

ò

ta
n�ta

1

0
dist2 A ta

1 þ t
� �

; B tb
1 þ t

� �� �
dt ; (5) 

where A tð Þ and B tð Þ are the locations of A and B, 
respectively, obtained by interpolation. Most com
monly linear interpolation is used for this, i.e. for ta

i �

t � ta
iþ1 we have: 

A tð Þ ¼ ai
ta

iþ1 � t
ta

iþ1 � ta
i

þ aiþ1
t � ta

i

ta
iþ1 � ta

i
: (6) 

This interpolation assumes that the object moves 
between two measurements with constant speed 
along a straight line; an alternative is to bound these 
distances only assuming an upper bound on the 
speed of movement (Buchin and Purves 2013). All 
the distances above can be computed in O n þ mð Þ

time by scanning over the data once.
The Euclidean distance between two trajectories 

and its variants are widely used (cf. (Vlachos, 
Gunopulos, and Kollios 2002)). An implicit assumption 
underlying LSED is that the two trajectories are aligned 
in time. All of the following measures relax this condi
tion: data points with different time stamps may be 
aligned as long as the alignment preserves the order of 
the points along the trajectories. For all of the measures 
the alignment is optimized according to certain criteria. 
The measures differ in the specific criteria.

Dynamic time warping (DTW)

Dynamic time warping is a classical dynamic- 
programming algorithm, originally used for speech 
recognition. DTW has been successfully applied to 
time series data since the work by (Berndt and 
Clifford 1994). Later, it became one of the most com
mon methods for measuring similarity between tra
jectories. The following definition follows the one 
presented by (Chen, Özsu, and Oria 2005). 

Definition 2. The dynamic time warping distance 
from A to B is defined as 

DTW A; Bð Þ ¼

0 if A and B are empty
1 if A or B are emptyðnot bothÞ

dist2
2 a1; b1ð Þ þ minð

DTW A 2;n½ �; B 2;m½ �

� �
;

DTW A; B 2;m½ �

� �
;

DTW A 2;n½ �; B
� �

Þ otherwise

8
>>>>>><

>>>>>>:

(7) 

Matrix formulation. For this algorithm and several 
of the following ones, it will be insightful to interpret 
the distance definitions in terms of paths in the 
distance matrix between the trajectory points, illu
strated in (Figure 1), for two sample trajectories A 
and B. In the figure, the rows and columns of the 
matrix are laid out such that the squared distance 
between the first two points is at the lower left and 
the last two points at the upper right corner of the 
matrix.

Dynamic time warping can be seen as selecting 
a minimum cost path in the distance matrix. More 
precisely, DTW selects a path from the lower left to 
the upper right corner of the distance matrix that 
minimizes the sum of squared distances. In the exam
ple, the resulting sum is 2 þ 13 þ 34 þ 1 ¼ 50. DTW is 
based on defining a cost for aligning two data points, 
namely the squared Euclidean distance between 
them.

From the point of view of walking along this path, 
from the lower left to the upper right corner, at each 
step DTW considers three possible moves: horizontal, 
vertical or diagonal. More specifically, the options 
available are:

(1) Match current pair of points, and move diagon
ally: the cost of this move is equal to the 
squared distance between the pair of points.

(2) Match current pair of points, and move up: the 
cost is equal to the squared distance between 
the pair of points.

(3) Match current pair of points, and move right: 
the cost is equal to the squared distance 
between the pair of points.

Another useful way to visualize the DTW approach 
is in terms of alignments. Each path in the distance 
matrix considered by DTW corresponds to an align
ment between the points of the two trajectories (red 
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dashed lines, Figure 1). Each cell in the path implicitly 
aligns one point of A with one of B, that is, a path 
through cell i; jð Þ, for 1 � i � n and 1 � j � m, is 
implicitly aligning ai with bj.

What characterizes a similarity measure like DTW is 
how the cost of a path is defined, since the cost of 
a path represents how well the two trajectories are 
aligned in that path. Following (Chen, Özsu, and Oria 
2005), in the definition above the cost of a path is the 
sum of the squared distances between all pairs of 
aligned points. In common with other measures 
using squared distance, this distance metric can help 
support tolerance to outliers, discussed further in 
Sections 5.6 and 8. However, DTW is also frequently 
used with other costs, e.g. turning angles, discussed in 
more detail at the end of this section. It is also com
mon to enforce additional constraints on the path, for 
instance enforcing similar time-stamps between 
aligned measurements (see, e.g. (Keogh and 
Ratanamahatana 2005)).

Normalization. The DTW distance corresponds to 
a sum of squared distances between data points and 
depends on the number of data points used. This 
makes it difficult to compare DTW distances between 
different numbers of data points in each trajectory. In 
the experiments, we therefore divide the DTW dis
tance by max m; nð Þ, which is (in the matrix formula
tion) the smallest number of cells that need to be 
visited. To obtain a more comprehensible 1D- 
distance measure, we additionally take the square 
root, that is, as normalized DTW distance we use 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DTW A; Bð Þ=max m; nð Þ

p
, which produces 

ffiffiffiffiffiffiffiffiffiffi
50=4

p
¼

3:54 for the example in (Figure 1).
It might seem natural to normalize using the num

ber of values in the sum (in terms of the matrix 
formulation: the number of cells visited) instead of 
max m; nð Þ. This approach would however make the 
normalized distance dependent on the path in the 
matrix, assigning relatively smaller normalized dis
tances to longer paths.

Algorithm. The dynamic time warping distance is 
computed using dynamic programming, meaning 
that in terms of the formulation above one can com
pute for every cell(i,j) the cost of the best path to 
reach it. This computation requires constant time 
per cell, as a cell’s cost can be computed based on 

the cost of the cell left, below, and diagonally (left- 
below), resulting in an overall quadratic, i.e. O nmð Þ, 
computation time. In practice, this can often be 
reduced to linear time, by carefully avoiding the com
putation for cells that have no influence on the final 
result (Keogh and Ratanamahatana 2005). To 
decrease the computation time further, deep neural 
network-based models have been developed for the 
DTW measure, see for instance (Zhang et al. 2019).

Edit distance (EDR)

Originally proposed to measure how similar two strings 
of characters are, edit distances have been successfully 
used for trajectory similarity. Conceptually, edit dis
tance measures the changes (“edits”) to a trajectory – 
for instance, deleting a data point – needed to morph it 
into another trajectory. Every edit comes at a cost. Here 
we present the variant proposed by (Chen, Özsu, and 
Oria 2005), known as edit distance on real sequence 
(EDR). In this variant every edit has a unit cost, and the 
edit operations are either deleting a point, or aligning 
two dissimilar points. 

Definition 3. The edit distance on real sequence 
(EDR) of A and B is defined as 

EDR A; Bð Þ ¼

n if B is empty
m; if A is empty
minð

EDR ðA 2;n½ �; B 2;m½ �

�
þ penalty a1; b1ð Þ;

EDR A; B 2;m½ �

� �
þ 1;

EDR A 2;n½ �; B
� �

þ 1Þ otherwise

8
>>>>>><

>>>>>>:

(8) 

where penalty a1; b1ð Þ is 0 if dist1 a1; b1ð Þ< 2 , or 1 
otherwise.

The definition uses a parameter as a matching 
threshold distance (i.e. two points closer than 2 are 
considered to match).

Matrix formulation. Similar to DTW, EDR searches 
for a minimum cost path in the distance matrix, 
although it uses a matrix where the cost is defined 
differently. The cost of the path is the number of 
horizontal, vertical, and diagonal steps, excluding 
diagonal steps for which the corresponding pair of 
points are considered to match (i.e. their distance is 
smaller than).
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It is important to note that in EDR costs are thre
sholded to 0 if the current pair of points match, 
whereas in all other situations the cost is 1, irrespective 
of the distance between the current pair of points. This 
results in the distance threshold matrix, a Boolean 
matrix as shown in (Figure 1). However, non- 
thresholded versions also exist. For instance, EDR itself 
is an adaptation of a measure proposed by (Cai and Ng 
2004) called edit distance with real penalty (ERP). 
Instead of penalizing by 1 every time two elements 
do not match, ERP penalizes with the squared distance 
between the non-matching elements.

In terms of alignments, EDR defines the cost of 
a path as the number of aligned points that are not 
considered a match.

Algorithm. Computing edit distances can be imple
mented in the same way as DTW and therefore take 
quadratic time, O nmð Þ, in the worst case.

Longest common subsequence (LCSS)
Longest common subsequence measures try to cap
ture how well two trajectories match by measuring 
the length of the longest point sequence that they 
have in common. LCSS measures are closely related to 
edit distances, defined as follows after (Vlachos, 
Gunopulos, and Kollios 2002). 

Definition 4. The length of the longest common 
subsequence between A and B is defined as 

LCSS A; Bð Þ ¼

0 if A or B isempty
1 þ LCSS A 1;n�1½ �; B 1;m�1½ �

� �
if dist1 an; bmð Þ<Pand
n � mj j � δ

maxðLCSS A 1;n�1½ �; B
� �

;

LCSS A; B 1;m�1½ �

� �
Þ otherwise

8
>>>><

>>>>:

(9) 

The definition uses two parameters, δ and 2 . As in 
EDR, 2 is a matching threshold distance (i.e. two 
points closer than 2 are considered to match). 
Additionally, δ controls how far in time (specifically, 
in timesteps) two matching points can be, in order to 
align the trajectories in time. However, it should be 
noted that δ is not specific to LCSS, and could be 
added to any of the other measures.

Matrix formulation. LCSS also looks for a path in its 
distance matrix (Figure 1), although with a few differ
ences with respect to the previous measures. First, the 

path is searched in the opposite direction: from the 
upper right to the lower left corner. This is an arbitrary 
decision: it is easy to modify the formula to go in the 
same direction as DTW and EDR. But we preferred here 
to follow the original formulation from (Vlachos, 
Gunopulos, and Kollios 2002). The salient difference in 
LCSS is that the goal is to find a path of maximum score, 
with the objective to maximize the number of matched 
points. The score of a path is the number of diagonal 
steps, where diagonal steps are only allowed if points 
are similar.

In common with to EDR, LCSS is thresholded, mean
ing whether the point pairs match or not matters, but 
not the magnitude of difference. In terms of alignments, 
LCSS defines the value of a path as the number of 
alignments considered a match, making LCSS 
a measure that is somewhat complementary to EDR. 
Indeed, ignoring that one measure minimizes a cost and 
the other maximizes a score, the difference between 
LCSS and EDR is subtle: EDR allows diagonal steps for 
dissimilar points (at a cost), while LCSS does not.

Algorithm. As before, LCSS can be implemented 
using dynamic programming, and therefore takes 
quadratic time, O nmð Þ, in the worst case.

Now we can define a similarity function based on 
LCSS. 

Definition 5. LCSS-based similarity measure and dis
tance definitions for two trajectories A and B.

S A; Bð Þ ¼
LCSS A; Bð Þ

min n; mð Þ
(10) 

D A; Bð Þ ¼ 1 � S A; Bð Þ (11) 

(Vlachos, Gunopulos, and Kollios 2002) also give 
a second similarity measure that is invariant to trans
lations, but here we only present the simplest version.

Discrete Fréchet distance (DFD)

Proposed by (Eiter and Mannila 1994), DFD can be 
seen as a version of DTW that takes the maximum 
distance between aligned points along the path. This 
is in contrast to DTW, which considers the sum of all 
squared distances. 

Definition 6. The discrete Fréchet distance of A and B 
is defined as 
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DFD A; Bð Þ ¼

0 if A and B are empty
1 if A or B are empty ðnot bothÞ

maxðdist2 a1; b1ð Þ; minð

DFD A 2;n½ �; B 2;m½ �

� �
;

DFD A; B 2;m½ �

� �
;

DFD A 2;n½ �; B
� �

Þ otherwise

8
>>>>>><

>>>>>>:

(12) 

Matrix formulation. Similar to DTW and EDR, DFD 
searches for a minimum cost path in the distance 
matrix, from the lower left to the upper right corner 
(Figure 1). As in DTW, the cost of a pair is measured by 
taking the Euclidean distance.

In terms of alignments, DFD defines the cost of 
a path as the maximum over the distances between 
all pairs of aligned points. Note that taking the 
squared distance instead of the distance would result 
in the same optimal paths. Essentially, DFD’s differ
ence to DTW is that it takes the maximum instead of 
the sum of the distances between all pairs of aligned 
points.

Algorithm. As before, DFD can be implemented 
using dynamic programming, resulting in an O nmð Þ- 
time algorithm.

Fréchet distance (FD)

All the distance measures above are discrete, in the 
sense that they only align the measured locations ai, 
bi. This can potentially lead to problems for non- 
uniform sampling. In this section, we present the 
Fréchet distance (Alt and Godau 1995), which is also 
based on the maximum distance between the align
ments, as DFD. However, in FD the alignments con
sidered are continuous, meaning that they are taken 
between all points in both trajectories, by using the 
interpolated trajectories A sð Þ; B tð Þ (defined as in 
Formula 13). 

Definition 7. The Fréchet distance between A and B is 
defined as 

F A; Bð Þ ¼ inf
σ

max
t2 s1;sn½ �

dist2 A tð Þ; B σ tð Þð Þð Þ; (13) 

where the infimum is taken over all continuous, 
strictly monotone-increasing functions σ :

s1; sn !� ½t1; tm½ � (i.e. all continuous alignments).

Algorithm. Algorithms to compute the Fréchet dis
tance usually solve as a subroutine of the decision 
problem: to decide whether the Fréchet distance is 
smaller than a given 2 > 0. Given an algorithm for 
the decision problem, the Fréchet distance can be 
approximated by using a binary search over 2 . 
A more complex search procedure, such as parametric 
search, can be used to compute the Fréchet distance 
exactly (Alt and Godau 1995).

The Fréchet decision problem can be solved by 
a dynamic programming algorithm. Consider the so- 
called free-space diagram in (Figure 1) (bottom 
right). The free-space diagram is the continuous 
analog to the distance threshold matrix used for 
the edit distance and LCSS. In the free-space dia
gram the vertical axis corresponds to the parameter 
space of A and the horizontal axis to the parameter 
space of B. Thus, the point s; tð Þ in the diagram 
corresponds to the pair of points A sð Þ; B tð Þð Þ. The 
free space for a given 2 > 0 is the set of points 
s; tð Þ with the property that the distance between 

A sð Þ and B tð Þ is at most 2 .
In (Figure 1), the free-space diagram for 2� 3:04 

is the white-colored region. The Fréchet distance is 
at most 2 if and only if there is a path from the 
lower-left corner to the upper-right corner that 
goes through the free-space and is monotonically 
increasing in both coordinates (shown in light 
gray). To compute whether such a path exists, we 
can incrementally compute the part of the free- 
space diagram that is reachable by such a path. 
This results in an O mnð Þ-time algorithm for the 
decision problem. Computing the exact Fréchet 
distance then requires an additional O log mnð Þð Þ

factor for the parametric search (Alt and Godau 
1995). In the example of (Figure 1) the exact 
Fréchet distance is approximately 3.04 as the 
white region would disconnect when 2 is 
decreased any further. The corresponding align
ment is shown as a dashed red line.

Discussion of conceptual and theoretical 
analysis

Following our pen-and-paper conceptual and theore
tical analysis, and before moving on the experimental 
exploration, this section summarizes the key differ
ences between the similarity measures.
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Metric versus non-metric

LSED, DFD, and FD are metrics. DTW, LCSS, and EDR 
are not metics because:

● DTW does not obey the triangle inequality;
● LCSS does not measure difference (instead mea

suring, to some extent, similarity), although var
iants that satisfy some weaker conditions can be 
defined (Vlachos, Gunopulos, and Kollios 2002); 
and

● EDR does not fulfill two of the conditions of 
a metric, namely the identity of indiscernibles 
(D A; Bð Þ ¼ 0 if and only if A ¼ B) and the triangle 
inequality (D(A,B)+D(B,C)≥D(A,C)).

However, in general edit distance may be a metric, 
including some variants of edit distance used for 
time-series analysis, such as edit distance with real 
penalty (Cai and Ng 2004).

Discrete versus continuous

Fréchet distance (FD) is the only one of the similarity 
measures considered here that is continuous. FD 
works by finding a continuous alignment: one 
between the complete path of both trajectories, not 
just between trajectory fixes. Continuous measures 
are more natural when the interpolated values 
between trajectory points are relevant. Moreover, 
continuous measures are better suited to handling 
trajectories with differing sampling rates and gaps.

To illustrate, consider how the discrete versus con
tinuous measures change in the presence of a data 
gap, leading to one long trajectory segment. Discrete 
measures will only consider the endpoints of that 
segment, producing an increase in the similarity mea
sure. In the case of measures based on the sum of 
distances (e.g. LSED, DTW, EDR, LCSS), this increase 
may average out. However, measures that are based 
on the maximum distance (e.g. DFD) will drastically 
increase. In contrast, a continuous measure is likely to 
show the smallest effect in the presence of gaps or 
different sampling rates, as long as the points on the 
interior of long segments can be aligned to nearby 
points on the other trajectory.

Implementing a continuous measure does present 
additional computational challenges, as opposed to 
the relative simplicity of a discrete measure. However, 

the worst-case running time of the FD is only slightly 
worse than that of the other measures, 
O mnlog mnð Þð Þ as opposed to O mnð Þ, see Section 
4.6 and (Alt and Godau 1995). Indeed, just as FD was 
described as a continuous version of the DFD, contin
uous versions of some other measures have also been 
defined. The so-called partial Fréchet distance 
(Buchin, Buchin, and Wang 2009) is the continuous 
analog of LCSS. For a given 2 > 0, the partial Fréchet 
distance aligns two trajectories to maximize the parts 
that have distance at most 2 , measuring the overall 
length of these parts. The summed or average Fréchet 
distance is a continuous version of dynamic time 
warping, and aligns the trajectories as to minimize 
the average distance between matched points 
(Buchin 2007). Continuous versions of dynamic time 
warping using other measures for the pairwise dis
tance between matched points have also been con
sidered (Efrat, Fan, and Venkatasubramanian 2007).

Relative versus absolute time

LSED is the only similarity measure considered that 
expects measurements to be compared at corre
sponding times (possibly after an absolute time 
shift). Common to all of the other similarity measures 
discussed – DTW, ED, LCSS, DFD, and FD – is the 
principle of temporally aligning the two trajectories 
by aggregating the local costs (i.e. the cost of the 
temporal alignment between each pair of points). 
The key differences between measures often lie in 
the details of how this is done. For instance, DTW 
and DFD fundamentally differ only on whether to 
take the sum (DTW) or the maximum (DFD) of the 
local costs. This difference has knock-on impacts on 
how local time differences influence the measure. For 
instance, since DTW adds up the distance values of 
the cells visited (in the matrix formulation), it is of 
advantage to visit fewer cells, and therefore to take 
diagonal steps unless there is a bigger gain in terms of 
the local cost by taking horizontal/vertical steps. For 
all the measures, how much local variation in time is 
allowed can be restricted by restricting the path in the 
distance matrix to cells close to the diagonal (or more 
generally, close to the path that corresponds to 
a perfect alignment in time). The extreme case 
where the path is completely restricted corresponds 
to LSED (or a variant thereof).
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As discussed in Section 3.3.2, all similarity measures 
encountered are sensitive to the order of points in 
trajectories. The in-built temporal alignment of trajec
tory measures, discussed above, will not aid in identi
fying similar but “inverse” trajectories, where the 
same spatial path is followed in the opposite direction 
(e.g. comparing home to work and work to home 
trajectories). However, it is possible to conceive of 
temporal transformations that would help in identify
ing such trajectory similarities.

For example, when comparing two trajectories A 
and A0, where A0 traces the same spatial path as A but 
in the opposite direction, it is possible to compare 
instead two temporally transformed trajectories B and 
B0, such that: 

B ¼ pa
i ; ta

i � ta
1

� �
; . . . ; pa

n; ta
n � ta

1

� �� �
andB0

¼ pa0

j ; ta0

m � ta0

j

� �
; . . . ; pa0

m; ta0

m � ta0

m

� �� �

where tx
k denotes the kth timestamp in trajectory X, 

as introduced in Section 4. In this case, computing the 
similarity of B and B0 will provide high levels of simi
larity corresponding to spatially coincident trajec
tories traversed in opposite directions A and A0.

Relative versus absolute space

The distance measures considered above align trajec
tories in time to minimize absolute Euclidean dis
tances. However, depending on the application, 
relative distance may be more important. This is 
addressed in two different ways. The first approach is 
to take one of the measures above and optimize it 
under a suitable set of transformations, e.g. transla
tions. That is, if D A; Bð Þ is a distance measure between 
trajectories A and B, one would consider 
minðfd A; B þ τð Þ j τ 2 TgÞ, where T is the set of two- 
dimensional translations. This minimization problem is 
typically computationally expensive (see for example 
(Vlachos, Gunopulos, and Kollios 2002)), and often 
solved by sampling the space of transformations (Alt 
and Scharf 2012). The second approach is much sim
pler. Instead of using Euclidean distances, an alterna
tive measure that is invariant under a suitable set of 
transformations is used. Common choices for this alter
native include heading (translation-invariant) and turn
ing angle (translation- and rotation-invariant). For 
instance, one can use DTW with turning angles instead 
of squared Euclidean distances. Note that the use of 

measures such as heading or turning angle compli
cates the application of continuous similarity measures 
such as FD, since it would require to interpolate head
ing or turning angle between trajectory points.

Computational efficiency

Regarding efficiency, the simplest and fastest measure 
discussed is LSED, as it only requires processing the 
input trajectories once, which takes O n þ mð Þ time. 
Fréchet distance is least efficient O nmlog nmð Þð Þ, but 
also the subject of considerable recent efforts to 
improve efficiency (Bringmann, Künnemann, and 
Nusser 2019). The dynamic programming-based mea
sures (DTW, EDR, LCSS and DFD) require O nmð Þ time 
in their standard formulations. The dynamic program
ming approach is also easy to implement, and is 
almost identical for all four measures. Theoretical 
improvements for some of these measures are possi
ble (Agrawal and Dittrich 2002; Buchin et al. 2014; 
Masek and Paterson 1980). However, these are mar
ginal improvements in practice and come at the cost 
of increased complexity of implementation. 
Approximating a similarity measure can also yield 
faster computation. For instance, limiting how much 
local time-shifting is allowed restricts the search to 
a smaller portion of the distance matrix (or free space 
diagram for the Fréchet distance) close to the 
diagonal.

Tolerance to outliers

One final important difference between the various 
measures is worth highlighting: tolerance to outliers. 
Generally, measures that use the maximum distance 
between matched points (such as FD and DFD) 
emphasize large distances and are therefore more 
sensitive to outliers than measures that use the sum 
of distances (or even the sum of squared distances). 
Thresholds (as used in the EDR and LCSS) can be useful 
for dealing with outliers as they allow for the assign
ment of a uniform cost to pairs that are matched but 
have a distance larger than the threshold. In this sense, 
LCSS can be interpreted as the measure that minimizes 
the number of points that need to be classified as 
outliers to perfectly align the remaining trajectories. 
This, however, comes at the cost of introducing the 
threshold as an additional parameter.
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Experimental setup

The discussion in Section 4 provided a thorough 
theoretical analysis of the different trajectory simi
larity measures. Section 5 then provided summary 
of expectations of the behavior of different mea
sures with respect to key characteristics, such as 
temporal alignment, tolerance to outliers, and 
computational efficiency. In Sections 6 and 7, we 
turn to exploring similarity through experiments 
with real data, to aid in discerning apart differ
ences which may be theoretically important, but 
practically less relevant.

To throw light on the widest range of practical 
scenarios, we selected two benchmark trajectory data 
sets with sharply contrasting properties: vehicle move
ments through a transportation network, and trajec
tories capturing the behavior of coastal wading birds.

Data sets

The Dublin bus GPS sample data set (Dublin City 
Council 2013) was selected as our first data set. The 
data set records timestamped GPS coordinates of 
buses traveling around Dublin at a frequency of 
20 seconds using on-board GPS devices. Each GPS 
fix is associated with a unique bus ID, journey ID, 
bus route ID, as well as route direction.

This data set was chosen as it is especially suitable 
for separating spatial and temporal aspects. For exam
ple, bus trajectories from the same time but different 
routes are expected to be relatively dissimilar. 
Trajectories from the same route but at different 
times are expected to be relatively similar. Such tra
jectories are subject to timing differences due to traf
fic and schedules, but are inherently spatially similar 
and will be automatically temporally aligned to some 
degree by all our similarity measures, excepting LSED 
(cf. Section 5.4). Trajectories from the same route at 
the same time on different week days are expected to 
be most similar.

To prepare a suitable set of bus trajectories for our 
experiments:

● From among tens of thousands of Dublin bus 
trajectories, a selected subset of 137 trajectories 
was extracted from weekdays (2nd, 3rd, 4th, and 
7th of January 2013) and 8–9am, 1–2pm, and 8– 
9pm time blocks.

● Any stationary trajectory segments at the start 
or the end of a trajectory were removed, to 
avoid distorting similarity values with extended 
stops.

This subset of trajectories from restricted dates and 
times ensured sufficient pairs of trajectories at com
parable locations and times for our experiments to 
test the responses of different similarity measures to 
different trajectory pairings. Two example pairs of 
trajectories are shown in (Figure 2).

The second data set concerned GPS trajectories 
of oystercatchers, annotated with bird activities 
(Shamoun-Baranes et al. 2012). Specifically, this 
data set resulted from a one month-long 2009 
scientific study of three oystercatchers, in a 3 km2 

region of Schiermonnikoog island in northern 
Netherlands. The trajectories used were derived 
from GPS trackers fitted to the birds generating 
fixes every 10s. During tracking, birds were simul
taneously observed by the scientists through tele
scopes. These observations enabled the trajectories 
to be annotated with eight different types of beha
viors: aggression, body care, fly, forage, handle, sit, 
stand, and walk.

This data set was chosen as it is especially suitable 
for exploring similarity of trajectories transformed in 
time and space. Bird trajectories reflecting the same 
activity may occur in different locations and times. 
The distinctive features of the different observed 
movement behaviors are expected to make the tra
jectories resulting from those behaviors dissimilar. An 
example of a “flight” and a “forage” trajectory are 
contrasted in (Figure 3).

To prepare a suitable set of bird trajectories for our 
experiments:

● Those trajectories annotated as either flight or 
foraging were extracted from the full data set, to 
support comparisons between trajectories aris
ing from known, different types of activities (and 
hence expected to exhibit different levels of 
similarity).

● Trajectories with a length of fewer than four fixes 
were excluded, judged to be too short to clearly 
indicate any embedded activity.

After the preprocessing and filtering step, there 
remained 870 trajectory segments. Due to the relative 
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under-representation of flight behaviors in the under
lying data set, only nine of these trajectories corre
sponded to flight behaviors. Nevertheless, this 
number was still deemed large enough set to run 
our experimental cross comparisons.

Visual inspection of the trajectories associated with 
different behaviors indicated apparent spatial differ
ences, as expected. For example, oystercatchers 
appear to make more sudden turns when they are 
foraging compared to cases when they are simply 
flying (Figure 3). To confirm this visual impression, 
(Figure 4) shows the sinuosity of the two sets of 
trajectories extracted. Trajectories of flight behavior 
have uniformly a sinuosity close to 1 (a straight line). 
In contrast, forage behavior exhibits a wide variety of 

trajectories sinuosity, with an average sinuosity 
approaching 2.

Measure thresholds and normalization

As the trajectories used in the experiments can vary 
dramatically in length, a direct comparison of similar
ity measures is not possible. In order for all similarity 
measures to be compared within the same categories, 
and between inter-category groups, LCSS and EDR 
similarity values needed to first be normalized. LCSS 
was normalized by the shortest trajectory length 
while EDR was normalized by the longest trajectory 
length. DTW was normalized as a function of the 
number of points in the longest trajectory in a pair 
(Section 4.2). As DFD and FD are essentially unaf
fected by length of trajectories, normalization was 
unnecessary.

The threshold value 2 for LCSS and EDR was set to 
50 m for all experiments, except where stated.

Experimental results

This section presents the results of four experiments, 
structured so as to explore the behavior of the dif
ferent trajectory similarity measures with increas
ingly dissimilar sets of paired trajectories drawn 
from the data sources introduced in the previous 
section. These experiments are designed to provide 
a baseline comparison (Experiment 1); explore tra
jectory similarity of movement in a constrained net
work space (Experiment 2); compare similarity 
measures in the context of different movement 
behaviors (Experiment 3); and contrast similarities 

Figure 2. Example bus trajectories. Dashes perpendicular to movement paths denote trajectory “fixes” (timestamped points in the 
trajectory). The left pair shows trajectories of the same bus route collected at the same time but on different days. The left pair are 
spatially coincident (same bus route), but have been displaced for visual clarity. This displacement was not employed during similarity 
calculation. The right pair shows trajectories with different routes and different times.

Figure 3. Example bird trajectories, showing one trajectory of 
flight (black) and one trajectory of foraging (gray).
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of fundamentally different types of movement 
(Experiment 4).

Throughout these experiments it is important to 
emphasize that our focus remains on what the data 
and experiments can tell us about the differences 
between similarity measures, rather than what the 
similarity measures can tell us about the differences 
between the data sets. It is important not to lose sight 
of the fact our comparative analysis is primarily con
cerned with elucidating the characteristics similarity 
measures themselves, not the differences in trajectory 
data sets nor on the different movement behaviors 
that give rise to those trajectories.

Experiment 1: verification and baseline

Our first experiment explored the baseline differences 
between similarity measures under a range of trans
formations. Our expectation is that different similarity 
measures exhibit different levels of sensitivity to spa
tial, temporal, or spatiotemporal transformations.

A randomly selected trajectory was resampled to 
a single high-resolution baseline trajectory from the 
raw data (Figure 5(a)). The bus data set was used as 
the source of this baseline trajectory. However, this 
choice was arbitrary, and has no impact on the 
expected results in Experiment 1, which compare 
the effect of different transformations on measured 
similarity. Three further transformed trajectories for 
comparison were derived from this baseline as 
follows:

(1) A temporal transformation, where points were 
sub-sampled from the original trajectory with 
an increasing temporal interval, clustering 
points toward the (temporal) beginning of the 
trajectory (Figure 5(b));

(2) A spatial transformation where the base trajec
tory was rotated slightly about its origin (Figure 
5(c)); and

(3) A spatiotemporal transformation where both 
temporal and spatial transformations above 
were applied (Figure 5(d)).

The threshold value 2 for LCSS and EDR was set to 
100 m in Experiment 1, unlike subsequent experi
ments, where the threshold used was 50 m. The 
higher threshold was selected as the Experiment 1 
baseline was the only case where the trajectories 
were resampled (see above).

Results
(Table 1) shows the calculated similarity measures for 
the trajectories shown in (Figure 5). The table shows 
both the absolute similarity measure computed, and 
in parenthesis the relative rank of that similarity 
across all four values computed for that measure.

Interpretation
We expected that all measures would yield maximum 
similarity when trajectories are identical. This 

Figure 4. Sinuosity comparison between fly trajectories and forage trajectories.
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expectation is indeed confirmed in (Table 1). Such 
a comparison can be seen as a trivial verification of 
the implementation of our code, and an important 
sanity check.

In all cases except LCSS, identical trajectories 
(i.e. no transformation, Figure 5) yield a value of 
0. In other words, these measures strictly measure 
dissimilarity, with larger values indicating greater 

dissimilarity. LCSS in contrast does measure simi
larity, yielding a value of 1 for two identical 
trajectories.

Beyond these extreme values, though, in most cases 
a physical interpretation of the meaning of the similar
ity measures is not straightforward. EDR and LCSS were 
both normalized between 0 and 1 (see Section 6.2). 
DTW was normalized as a function of the number of 
points in the longest trajectory in a pair (Section 4.2). 
FD and DFD can be interpreted as a discrete physical 
distance. However, in general the magnitude of simi
larity values are hard to ascribe meanings to, and as 
a consequence absolute similarity values are hard to 
compare, except in the case of FD and DFD.

Instead, in this experiment, we are more interested 
in the ordering of results within and between similar
ity measures. Are the same trajectory pairs always 
more similar, irrespective of the similarity measure 
used? Or, as we expect from our theoretical analysis, 

(a) no transformation

(d) spatiotemporal
      transformation

(b) temporal transformation

(c) spatial transformation

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15) (t20)

(t0)

(t5)

(t10)

(t15)
(t20)

Figure 5. Experiment 1 setup. Trajectory comparisons between one bus trajectory and its variations. The black trajectory is the 
baseline, with transformed gray trajectories showing (a) no transformation, (b) temporal transformation, i.e. measurements are 
temporally shifted toward one the beginning of the trajectory, (c) spatial transformation, i.e. the gray trajectory has been rotated, and 
(d) spatiotemporal transformation, i.e. the combination of both the spatial and the temporal transformation. In our figures, the gray 
trajectories have been additionally displaced for visual clarity, with (a) illustrating this purely visual transformation.

Table 1. Computed similarities between black and gray trajec
tories in (Figure 5). The ranks in parentheses indicate for every 
measure the relative order of the computed similarities.

Transformation None Temporal Spatial Spatiotemporal

(Figure 5 
(a))

(Figure 5 
(b))

(Figure 5(c)) (Figure 5(d))

LCSS Ratio 1 1ð Þ 0:68 2ð Þ 0:61 3ð Þ 0:55 4ð Þ

EDR Ratio 0 1ð Þ 0:57 3ð Þ 0:43 2ð Þ 0:70 4ð Þ

Fréchet (m) 0 1ð Þ 163:61 2ð Þ 497:84 3 ¼ð Þ 497:84 3 ¼ð Þ

Discrete Fréchet 
(m)

0 1ð Þ 456:87 2ð Þ 497:84 3 ¼ð Þ 497:84 3 ¼ð Þ

DTW (m) 0 1ð Þ 179:64 2ð Þ 270:19 4ð Þ 259:10 3ð Þ
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are some measures more sensitive to spatial or tem
poral transformations than others?

Looking at (Table 1), it can be inferred that similar
ity values are indeed sensitive to the measures used, 
with both the absolute value and relative ranking of 
trajectory similarity varying between measures with 
different transformations used.

One further unanticipated difference is worth high
lighting. The similarity values associated with contin
uous and discrete Fréchet distance under temporal 
transformations are notably different, where all other 
similarity values for FD and DFD are in accord. This 
difference arises since under FD distances are calcu
lated between not only data points but also interpo
lated segments between these points, and thus the 
influence of the temporal transformation of the data 
points is limited.

Experiment 2: bus routes

Our second experiment aimed to explore the beha
vior of different similarity measures on real trajec
tories constrained in a network space. Here, we 
assumed that spatial behavior, while not identical, is 
very similar for repeated instances of the same route. 
Temporal behavior, however, may vary greatly (i.e. 
from variations in traffic flow) based on the time 
of day. A key question then is as follows: where simi
larity measures are better suited to discriminating 
between trajectories paired from different categories?

We chose two dimensions along which to character
ize trajectories: spatial similarity, where we select trajec
tories according to individual bus routes; and temporal 
similarity, where we select trajectories from the three 
sampled time periods (8–9am, 1–2pm, and 8–9pm, all 
on weekdays). These criteria were then used to ran
domly select pairs of trajectories to test four scenarios:

● SameSame: 36 pairs of different trajectories, 
where both trajectories in each pair are derived 
from a bus traveling along same route in the same 
temporal window, possibly on different weekdays.

● SameRoute: 36 pairs of different trajectories, 
where both trajectories in each pair are derived 
from a bus traveling along the same route in 
different temporal windows.

● SameTime: 36 pairs of different trajectories, 
where both trajectories in each pair are derived 

from a bus traveling along different routes in the 
same temporal windows, possibly on different 
weekdays.

● DiffDiff: 36 pairs of different trajectories, where 
both trajectories in each pair are derived from 
a bus traveling along different routes in different 
temporal windows.

These four scenarios capture the essential spatial 
and temporal dimensions of trajectory similarity of 
tracking data in network space.

Results
(Figure 6) shows box plots of the similarity measures 
for each of our four cases. Hence, each box plot 
summarizes 144 data points.

It is immediately evident from (Figure 6) that the 
spatial differences between trajectories dominates 
the similarity values. For all similarity measures, 
SameSame and SameRoute, which compare the 
same spatial trajectory paths, exhibit higher levels of 
measured similarity than SameTime and DiffDiff, 
which compare different routes. By contrast, temporal 
differences appear to have little influence on mea
sured similarity.

This observation was confirmed using a Wilcoxon 
signed rank hypothesis test. The test revealed no sig
nificant differences at the 5% level between either the 
SameSame versus SameRoute or the SameTime versus 
DiffDiff across all measures tested. By contrast, the dif
ferences between SameSame versus SameTime/DiffDiff 
and between the SameRoute versus SameTime/DiffDiff 
are significant at the 5% level in all cases.

Interpretation
In our second experiment, our expectation was that 
different similarity measures should be able to discri
minate between trajectories that differ spatially, tem
porally, or spatiotemporally.

In fact, the results imply that differences between 
bus trajectories are largely the product of spatial 
differences. None of the treatments where differ
ences were purely temporal (SameSame versus 
SameRoute or the SameTime versus DiffDiff) yielded 
statistically significant differences in similarity mea
sure. Conversely, all of the treatments that varied 
the spatial path, whether independent of or in com
bination with temporal differences, resulted in signif
icant differences in measured similarity.
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Having said that it should be noted that bus 
routes are oftentimes designed to be spatially differ
ent in order to cover more area and share less over
lap may be a factor in the lack of similarity between 
different routes, when compared with different 
times. Further, bus trajectories collected at different 
time periods are not necessarily temporally distinct 
in the way illustrated by the temporal transforma
tion of a trajectory in Experiment 1. Instead, there 
appeared to be limited difference in the proportion 
of points at each section of the trajectory. This is 
likely due to buses following fixed schedules, oper
ating at similar speeds, and stopping with similar 
frequency.

Experiment 3: bird behaviors

In Experiment 3 our aim was to assess trajectory 
similarity with respect to known behavioral differ
ences between bird flight and foraging. In this experi
ment, pairs of trajectories were selected randomly 
from bird movements labeled as foraging or flight 
behavior, to build the following treatment sets:

● FlyFly: 36 pairs of different trajectories, constructed 
from exhaustive pairings of different trajectories 
from the set of 9 trajectories labeled as flight.

● FlyForage: 36 pairs of different trajectories, ran
domly selected one from the set labeled as flight 
and one from the set labeled as foraging.

● ForageForage: 36 pairs of different trajectories, 
randomly selected from the set of trajectories 
labeled as foraging.

The relatively small number of nine trajectories 
labeled as flight in our data set provided a lower 
bound for the number of pairs in our experiments 
(ð9 � 1Þ

2
=2 ¼ 36). Although larger data sets might 

have been sought to increase this lower bound 
sample size, a well-known effect of increasing sam
ple sizes is unwarranted inflation of the statistical 
significance of hypothesis tests, a particular hazard 
in the information sciences, where data sets may 
often be arbitrarily large (Lin, Lucas, and Shmueli 
2013). Hence, our lower bound of 36 samples in 
each treatment set was deemed an appropriate 
sample size for our experimental cross compari
sons, applied across all Experiments 2–4 using 
real data.

Since such bird movements were spatially dis
persed, a necessary additional step in Experiment 3 
was a geometric transformation (translation and rota
tion) to spatially align trajectories. Thus, all trajectories 
were translated such that their origins were identical, 

Figure 6. Box plots of bus trajectory similarity. The five similarity measures are tested against four different scenarios, where the pair of 
trajectories of interest are of (1) same time same route; (2) same time different routes; (3) different time same route and (4) different 
time different routes.
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and rotated so that the angle formed between the 
first and last point in every trajectory was 45 degrees.

Results
Box plots showing the results for all five similarity 
measures across the three different treatment sets 
are shown in (Figure 7).

In contrast to the previous experiment, the results 
indicate a clear difference between the five similarity 
measures. While pairs of foraging trajectories were 
ranked with higher similarity by Fréchet distance, 
DFD, and DTW, this was not the case for pairs of flight 
trajectories. Pairs of flight trajectories were measured 
using Fréchet distance, DFD, and DTW as at least as 
dissimilar as pairs of flying/foraging trajectories.

To test whether similarity measures could be trea
ted as being drawn from different populations, 
according to the semantics of the comparisons, we 
performed a Kruskal-Wallis rank sum test (Table 2). As 
suggested by the box plots, we found significant 
differences (p< 0.05) between the similarity values 
for Fréchet distance, DFD, and DTW only.

To further explore the nature of these differences, 
we then performed pairwise Wilcoxon signed rank 
tests to compare the (FlyFly with FlyForage/ 
ForageForage with FlyForage) (Table 3). We found 
significant differences (p< 0.05) for both measures 

when comparing foraging behavior with mixed 
groups of trajectories, but were not able to distin
guish between flying behavior from mixed groups. 
These results, given our previous experiment, imply 
that the form of trajectories has an influence on the 
sensitivity of measures to differences.

Interpretation
It was expected that the different similarity measures 
would capture differences between behavioral pat
terns expressed through differing movements. More 
specifically, trajectories arising from the same activity 
were expected to be more similar than those arising 
from different activities.

In contrast, the results for EDR indicate this mea
sure is unable to distinguish any of the exhibited 
movement patterns, with no significant differences 
found between treatment sets and all combinations 
of patterns approximately equally dissimilar.

The results for Fréchet distance, DFD, and DTW did 
indicate that foraging trajectories do share common 
features that are invariant to transformation, as 
expected. However, in the case of flight behavior, 
these three measures yielded similarity values indicat
ing one flight trajectory may be as dissimilar from 
another flight trajectory as it is from a foraging 
trajectory.

Figure 7. Box plots of bird activity trajectory similarity. The five similarity measures are tested against three scenarios, where the pairs 
of trajectories are (1) both from flight activity group; (2) one from flight and one from forage activity group; and (3) both from forage 
activity group.
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The LCSS ratio is the only measure that appear to 
exhibit the expected signal – that pairs of flying and 
pairs of foraging trajectories have greater similarity 
than mixed pairs – albeit a signal that is weak and not 
significant at the 5% level.

Overall, the measures provided much weaker align
ment with expectations in differentiating between 
labeled animal movement trajectories. It is worth not
ing that such comparisons are a typical example of 
trajectory similarity comparisons in a between- 
subjects experiment in ecology, where the aim is to 
describe animal behaviors using GPS tracks.

Experiment 4: buses vs birds

In any experiments comparing methods, it is impor
tant to consider straightforward baselines that are 
easy to interpret. Since the two data sets used exhibit 
very different properties, one final experiment was 
designed to compare these two more general activ
ities – bird activity and bus activity.

The similarity measures were then performed on 
three treatment sets of trajectory pairs:

● BirdBird: 36 randomly selected pairs of different 
bird trajectories.

● BusBird: 36 randomly selected pairs of trajec
tories, one from the set of bird and one from 
the set of bus trajectories.

● BusBus: 36 randomly selected pairs of different 
bus trajectories.

As the bird and bus trajectories lie far away from 
each other, transformation in space and time was 

utilized to enable comparison. Trajectory pairs were 
translated and rotated in space and scaled in time to 
align the start and end points of both trajectories 
together.

Results
(Figure 8) shows box plots for trajectories selected 
from pairs of similar (BusBus and BirdBird) and dissim
ilar (BusBird) trajectories.

From (Figure 8), Fréchet distance, DFD, and DTW all 
appear to be able to discriminate between semantically 
similar and dissimilar objects, with largest values (and 
thus most dissimilar) trajectories associated with the 
BusBird pairs. However, LCSS and EDR, while finding 
the greatest similarity between BirdBird pairs, found 
either higher dissimilarity (LCSS) or comparably high 
dissimilarity (EDR) between BusBus and BusBird pairs.

As for Experiment 3, pairwise Wilcoxon signed rank 
tests were performed in order to determine if there was 
a significant difference between the three groups of 
trajectory pairs. With the exception of the EDR ratio on 
BusBird and BusBus trajectory pairs, all other compari
sons deferred exhibit significant differences at the 5% 
level.

Interpretation
Our final experiment compared trajectories from across 
our two data sets, to explore whether the similarity 
measures detect differences between fundamentally 
different types of behavior. Hence, this experiment 
provides a baseline for all experiments by comparing 
trajectories from markedly different domains that are 
expected to be intrinsically markedly different: buses 
moving in a structured network space versus birds free 
to move in a largely unconstrained space.

Our expectation was that bird and bus trajectories 
should be distinguishable based solely on their move
ment patterns. While the results broadly aligned with 
this expectation, neither LCSS nor EDR ratio were able 
to consistently reflect this expectation.

Conclusions and recommendations

This section draws together our conclusions from 
across all the three perspectives on trajectory similar
ity – conceptual, theoretical, and empirical – leading 
to high-level advice and recommendations for choos
ing trajectory similarity measures.

Table 2. P-values for Kruskal-Wallis test performed on the simi
larity distribution for analysis on Oystercatcher data.

P-value Significant at 5% level

LCSS Ratio 0:3389
EDR Ratio 0:5583
Fréchet 0:0057 *
Discrete Fréchet 0:0057 *
DTW 0:0075 *

Table 3. P-values for Wilcoxon signed rank tests for analysis on 
Oystercatcher data.

Comparison groups P-value Significant at 5% level

FD,DFD FlyVsFly and FlyVsForage 0.4375
ForageVsForage and 

FlyVsForage
0.0210 *

DTW FlyVsFly and FlyVsForage 0.5625
ForageVsForage and 

FlyVsForage
0.0210 *
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Summary of experimental perspective

Taking the observed differences across our four 
experiments, it is possible to identify three general 
empirical properties of the different similarity 
measures.

(1) Differences in similarity values are sensitive to 
the choice of measure. In particular, not only 
does the absolute similarity value computed 
vary; but the relative ordering of similarity of 
trajectory pairs may vary across different simi
larity measures (e.g. Table 1).

(2) All the similarity measures tested were more 
effective at distinguishing spatially dissimilar 
trajectories, when compared with temporally 
dissimilar trajectories. Relatively small spatial 
differences in trajectories tend to correspond 
to large differences in the magnitude of mea
sured similarity, more so than even relatively 
large temporal differences in trajectories (e.g. 
Experiment 2, Section 7.2).

(3) Broadly speaking, similarity values computed 
using DTW, DFD, and FD tended to accord 
more closely with our expectations of similarity 
than LCSS and EDR. In Experiment 3 (Section 7.3), 
for example, LCSS and EDR both failed to distin
guish trajectories that arose from quite different 
activities, and were at least visually quite distinct 

(Figure 3). Similarly, in Experiment 4 (Section 7.4), 
the similarity values for EDR even failed to reliably 
discern apart differences between bus trajectory 
pair when compared with differences between 
bus and bird trajectories.

Summary of all perspectives

Metric measures. Some applications, such as index
ing or clustering, rely on similarity measures that offer 
metric properties. In such cases only some of these 
similarity measures are suitable (LSED, DFD, FD, and 
possibly edit distance, although not EDR).

Discrete vs continuous measures. Only Fréchet dis
tance, and its interpolation between measured loca
tions, can provide a measure of difference over 
continuous trajectory paths, although some continu
ous analogs of DTW and LCSS can also offer contin
uous measure properties. The decision as to whether 
to use a discrete or a continuous measure usually 
depends on several aspects, such as whether the 
sampling rates in the trajectories are expected to be 
similar (e.g. in terms of density or frequency of fixes); 
whether interpolation between trajectory points is 
possible and meaningful; and the fact that discrete 
measures are typically simpler to implement.

Figure 8. Box plots of bird and bus activity trajectory similarity. The five similarity measures are calculated for three scenarios: (1) Bird 
trajectory vs Bird trajectory; (2) Bus trajectory v.s. Bus trajectory and (3) Bus trajectory v.s. Bird trajectory.
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Computational efficiency. A major factor to con
sider when selecting a similarity measure is computa
tional efficiency. In terms of computational 
complexity (the rate at which computation time 
increases as a function of input data size), FD is the 
least efficient measure; LSED the most efficient; with 
DTW, LCSS, EDR, DFD falling in between these 
extremes, all underpinned by similar dynamic pro
gramming implementations. However, in practice 
throughout all of the experiments, little to no differ
ence was found when comparing FD to its discrete 
counterpart. In all cases, the primary influence in 
execution time is the number of sample points in 
the trajectories, meaning that over-sampling should 
be avoided.

Maximum vs sum of distances. Similarity measures 
at root measure either the maximum of distance 
between trajectories (i.e. FD, DFD), or the sum of all 
or a sample of distances between trajectories (LSED, 
DTW, EDR, LCSS). Different measures in this respect 
may lend themselves to different applications. As 
a direct consequence, those measures that are 
based on maximum distances are much more sensi
tive to outliers than those based on the sum of dis
tances. That said, in our experiments FD, DFD, and 
DTW performed similarly, indicating that any outliers 
present in our data sets were not sufficiently signifi
cant to influence the results.

Spatial vs temporal similarity. In all of the similarity 
measures tested, the spatial differences between tra
jectories were more important in determining the 
magnitude of measured similarity than temporal dif
ferences. This is particularly evident in Experiment 2. 
However, the precise magnitude of these differences 
is likely to depend strongly on the specific application.

Thresholds. This exploration has not covered the 
selection of meaningful thresholds for similarity mea
sures that require them, EDR and LCSS. Neither theory 
nor the experiments in this paper can offer insights 
into the right thresholds to choose. Thresholds are 
highly data dependent, and their selection needs to 
take into account the specific characteristics of the 
application, including noise, outliers, and constrained 
or unconstrained spaces for movement.

Bounded versus unbounded measures. As noted 
among the five similarity measures, LCSS and ED can 
be expressed as ratios, bounded between 0 and 1. 
Fréchet distance, DFD, and DTW are unbounded posi
tive numbers. Although bounded measures do enable 
similarity results to be compared across different data 
sets, they have low resolution when representing 
high dissimilarity. For example, while it is easy to 
define 0 in edit distance ratio as two trajectories that 
are identical, there is no situation where two trajec
tories are so different that they produce a value of 1. 
Additionally, the lower discriminatory power poses 
significant issues when different types of trajectories 
are compared as evidenced by LCSS and EDR ratio’s 
inability to distinguish different movement patterns 
in Experiment 3.

Interpretation of measure magnitudes. Similarity 
measures are best interpreted in terms of relative 
ordering, rather than absolute magnitude. FD and 
DFD similarity measures do have a direct physical 
interpretation, as the maximum sum of differences 
between trajectories. Hence, similarity values com
puted using these measures may arguably be com
pared or reasoned about (e.g. two trajectories with an 
FD of 1000 m are arguably twice as dissimilar as 
a trajectory pair with an FD of 500 m). DTW similarly 
has a physical interpretation, albeit a less intuitive one 
(cf. Section 4.2). LCSS and EDR ratios have no such 
interpretation. However, given the limitations of simi
larity measures discussed above, such as their discri
minatory power, and the experimental variability, it 
seems safer in all cases to interpret measured values 
qualitatively (i.e. more or less similar) rather than 
quantitatively.

Summary of recommendations

To conclude, (Table 4) provides a visual summary of 
the most salient differences between the similarity 
measures. The table indicates for each similarity mea
sure whether it:

(1) is a metric (is symmetric; obeys triangle 
inequality; and zero only when two compared 
objects are equal, see Section 3.1);

(2) operates on discrete or continuous trajectories;
(3) accommodates relative time by automatically 

aligning trajectories temporally;
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(4) is computationally efficient, when compared 
with other measures (in (Table 4) three stars 
indicates most efficient, one star least efficient);

(5) is robust to outliers, when compared to other 
measures (in Table 4 three stars indicate most 
tolerant, one star least tolerant).

The color coding of cells in (Table 4) aims to pro
vide a visual impression of subjective “performance” 
of the different measures, such that lighter cells cor
respond to more desirable properties, such as greater 
computational efficiency, tolerance to outliers, flex
ibility to support relative time, and so forth.

In summary, as argued in Section 3, our aim was not 
to promote a single similarity measure that fits all 
situations; rather our aim is to clarify and illuminate 
the important differences and similarities between 
measures. The decision on which similarity measure 
to apply depends on each individual definition of dis
tance, with different applications placing the emphasis 
on different aspects of the trajectories they compare. 
The conceptual, theoretical, and experimental charac
teristics of the most popular measures, thoroughly 
explored in this paper, are we believe a fundamental 
evidence-base for making that decision.
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