Zürcher Hochschule für Angewandte Wissenschaften

Reactive Transport in Porous Electrodes: From Pore-scale to Macroscale Descriptions

R. P. Schärer, J. Wlodarczyk, J. O. Schumacher

Institute of Computational Physics, ZHAW, Winterthur, Switzerland

Abstract

Macroscopic homogenized descriptions of reactive electrolyte transport through porous electrodes capture important sub-scale effects by the use of effective parameters, such as the dispersion tensor or the effective reaction rate.

We apply the volume averaging method (VAM) [2] to upscale the transport of electrolyte through periodic unit cells and evaluate the dependency and sensitivity of macroscopic effective parameters on pore-scale properties.

The effective parameters can be applied in macroscopic cell models of redox flow batteries to study the effect of different pore-scale geometries within porous electrodes on the mass transfer rate or homogeneity of the electric current density.

Volume-averaged Macroscopic Model

SENAR

The macroscopic species transport is governed by

 $\operatorname{Pe}_{l}^{\star} \bar{\nabla} \cdot \left(\langle \bar{c}_{\mathrm{ox}} \rangle^{\beta} \langle \bar{\mathbf{v}} \rangle^{\beta} \right) = \bar{\nabla} \cdot \left(\bar{\mathbf{D}}^{\mathrm{eff}} \cdot \bar{\nabla} \langle \bar{c}_{\mathrm{ox}} \rangle^{\beta} \right) - \operatorname{Ki}_{l}^{\mathrm{eff}} \frac{\bar{a}_{v}}{\epsilon} \left(\langle \bar{c}_{\mathrm{ox}} \rangle^{\beta} - \langle \bar{c}_{\mathrm{ox}}^{\mathrm{eq}} \rangle^{\beta} \right),$

where ϵ is the porosity and \bar{a}_v denotes a dimensionless specific surface area. The effective dispersion tensor and kinetic number are given by

 $\bar{\mathbf{D}}^{\text{eff}} = \mathbf{I} + \langle \mathbf{n}_{\beta\gamma} \mathbf{f} \rangle_{\beta\gamma}^{\beta} - \text{Pe}_{l}^{\star} \langle \mathbf{f} \tilde{\bar{\mathbf{v}}} \rangle^{\beta}, \quad \text{Ki}_{l}^{\text{eff}} = \text{Ki}_{l} \left(e^{(1-\beta_{s})\bar{\eta}} + e^{-\beta_{s}\bar{\eta}} \right) \left(1 + \frac{\epsilon \langle s \rangle_{\beta\gamma}^{\beta}}{\bar{a}_{v}} \right)$

Pore-scale Geometry

The porous medium is assumed to be spatially periodic. Within each periodic unit cell, the electrode geometry is modelled as a collection of straight fibers:

Illustration of a periodic unit cell. In this work we consider various simplified periodic fiber arrangements:

with the intrinsic volume and surface averages, and the equilibrium concentration

 $\langle \cdot \rangle^{\beta} = \frac{1}{\bar{V}_{\beta}} \int_{\bar{V}_{\beta}} \cdot d\bar{V}, \quad \langle \cdot \rangle^{\beta}_{\beta\gamma} = \frac{1}{\bar{V}_{\beta}} \int_{\bar{A}_{\beta\gamma}} \cdot d\bar{A}, \quad \langle \bar{c}_{\mathrm{ox}}^{\mathrm{eq}} \rangle^{\beta} = \frac{1}{1 + \exp(-\bar{\eta})}.$

The periodic field variables \mathbf{f} and s are determined by closure problems [1] for the local concentration deviation, $\tilde{\bar{c}}_{ox} = \bar{c}_{ox} - \langle \bar{c}_{ox} \rangle^{\beta} = s \langle \bar{c}_{ox} \rangle^{\beta} + \mathbf{f} \cdot \nabla \langle \bar{c}_{ox} \rangle^{\beta}$.

Results

We verify the up-scaled macroscopic description with a direct numerical solution for a 1D advection-diffusion-reaction transport problem using the SCd pore-scale geometry:

The following figures show computed effective parameters for the SCd geometry:

Effective Diffusion

Effectiveness Factor

Pore-scale Transport Equations

The pore-scale electrolyte transport is assumed to fulfill the simplifying assumptions:

• steady-state

- creeping flow conditions
- dilute electrolyte concentrations
- equal and constant diffusion coefficients

negligible ohmic resistivity

- local electroneutrality
- isothermal conditions
- heterogeneous Butler-Volmer type reactions

The transport of the electro-active species in oxidized and reduced form is governed by the dimensionless advection-diffusion equation

 $\operatorname{Pe}_{l}^{\star} \cdot \bar{\mathbf{v}} \cdot \bar{\nabla} \bar{c}_{i} = \bar{\nabla}^{2} \bar{c}_{i}, \quad i = \{ \operatorname{ox}, \operatorname{red} \},$

where $\operatorname{Pe}_{l}^{\star} = l^{0}v^{0}/D$ is a Peclet number with $D = D_{ox} = D_{red} = \operatorname{const.}$ and

$$\bar{x} = \frac{x}{l^0}, \quad \bar{c}_i = \frac{c_i}{c^0}, \quad \bar{\mathbf{v}} = \frac{\mathbf{v}}{(l^0)^2 \mu^{-1} \|\nabla \langle p \rangle^\beta\|}, \quad \bar{\nabla} = l^0 \nabla,$$

where l^0 is the unit cell size and $\langle p \rangle^{\beta}$ denotes the intrinsic volume average of the pressure.

Electrochemical Reactions

We consider the heterogeneous one-electron transfer redox reaction

Transport by advection-diffusion-reaction for varying Peclet numbers and $Ki_l = 1, \eta = 0.5$.

Conclusions and Applications

 $Ox + e^- \rightleftharpoons Red$

at the electrode surface, which is modelled with the Butler-Volmer type reaction equation

 $-\bar{\nabla}\bar{c}_{\mathrm{ox}}\cdot\mathbf{n}_{\beta\gamma}\big|_{\bar{A}_{\beta\gamma}}=\mathrm{Ki}_{l}^{a}\bar{c}_{T}-(\mathrm{Ki}_{l}^{a}+\mathrm{Ki}_{l}^{c})\cdot\bar{c}_{\mathrm{ox}},$

where $\bar{c}_T = \bar{c}_{red} + \bar{c}_{ox} = const.$ is the total constant electrolyte concentration and

 $\operatorname{Ki}_{l}^{a} = \operatorname{Ki}_{l} e^{(1-\beta_{s})\overline{\eta}}, \quad \operatorname{Ki}_{l}^{c} = \operatorname{Ki}_{l} e^{-\beta_{s}\overline{\eta}},$

where $\operatorname{Ki}_{l} = k_0 l^0 / D$ is a dimensionless kinetic number, k_0 is a reaction constant, β_s is the symmetry factor and $\bar{\eta} = (E - E_f^{\circ}) / V^0$ with $V^0 = RT/F$ is a spatially constant overpotential.

Acknowledgements

The authors gratefully appreciate the financial support from the European Union's Horizon 2020 research and innovation programme under Grant Agreement no. 875489 (SONAR).

• The developed framework based on the method of volume averaging allows studying the dependency and sensitivity of the effective parameters in terms of different porescale geometries and dimensionless transport parameters.

• We are developing reduced surrogate models for the effective parameters, which can be used in place of common simplified analytical or empirical relations to efficiently simulate the effect of different pore-scale geometries within porous electrodes in macroscopic redox flow battery cell models.

References

[1] F. J. Valdés-Parada, C. G. Aguilar-Madera, and J. Álvarez-Ramírez, "On diffusion, dispersion and reaction in porous media," Chemical Engineering Science, vol. 66, no. 10, pp. 2177–2190, May 2011.

[2] S. Whitaker, The Method of Volume Averaging, vol. 13. Dordrecht: Springer Netherlands, 1999.

