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ABSTRACT

The simultaneous determination of multiple physical or chemical parameters can be very advantageous in many
sensor applications. In some cases, it is unavoidable because the parameters of interest display cross sensitivities
or depend on multiple quantities varying simultaneously. One notable example is the determination of oxygen
partial pressure via luminescence quenching. The measuring principle is based on the measurement of the
luminescence of a specific molecule, whose intensity and decay time are reduced due to collisions with oxygen
molecules. Since both the luminescence and the quenching phenomena are strongly temperature-dependent, this
type of sensor needs continuous monitoring of the temperature. This is typically achieved by adding temperature
sensors and employing a multi-parametric model (Stern–Volmer equation), whose parameters are all temperature-
dependent. As a result, the incorrect measurement of the temperature of the indicator is a major source of error.
In this work a new approach based on multi-task learning (MTL) artificial neural networks (ANN) was successfully
implemented to achieve robust sensing for industrial applications. These were integrated in a sensor that not
only does not need the separate detection of temperature but even exploits the intrinsic cross-interferences of
the sensing principle to predict simultaneously oxygen partial pressure and temperature. A detailed analysis of
the robustness of the method was performed to demonstrate its potential for industrial applications. This type
of sensor could in the future significantly simplify the design of the sensor and at the same time increase its
performance.

Keywords: oxygen monitoring, luminescence quenching, artificial neural networks, multi-task learning, error
limited accuracy

1. INTRODUCTION

The determination of molecular oxygen concentration is of great interest in numerous areas since oxygen plays
an important role in respiration and metabolic processes in living organisms. The applications are not limited to
research fields but include applications in many industries: food packaging, beverage production and bottling,
agriculture for plant respiration and soil aeration, biopharma, aquaculture, to mention only few.

One of the most used optical methods, successfully industrialized for several years, is based on luminescence
quenching: the intensity and decay time of a specific luminophore are reduced due to collisions with molecular
oxygen.1 Among the most frequently used luminophores are porphyrin and metalloporphyrin. Among these,
PtTFPP and PdTFPP are particularly attractive because they display a strong phosphorescence, good photo-
stability, are strongly quenched by oxygen, and have long lifetimes. These characteristics are important for the
realization of an industrial sensor because they directly impact on the signal-to-noise ratio and the long time
stability. The long lifetimes, additionally, make the realization of the excitation and interrogation electronics
simpler. However, both the luminescence itself and its quenching by oxygen are temperature dependent, which
requires continuous and fast determination of the temperature of the luminophore. This is most frequently
achieved with a separate sensor, for example, a resistance temperature detector, whose response is then used to
correct the calculated oxygen concentration. This is a challenging task for practical implementation and can be
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a significant source of error in oxygen determination. Therefore, to achieve a robust industrial oxygen sensor, it
is essential to simultaneous determination both oxygen and temperature.

In previous work it was demonstrated that it is possible to apply multi-task learning (MTL) artificial neural
network (ANN) architectures to predict both oxygen concentration and temperature,2 making the oxygen de-
termination temperature immune. The advantage of this type of approach is that not only the sensor does not
need the separate detection of temperature, but it even exploits the intrinsic cross-interferences of the measuring
approach (luminescence quenching).

In this work, the robustness of approach and the accuracy of the sensor are investigated in detail to demon-
strate that the application of ANN to industrial sensor can enable the realization of sensors with simpler concept
and construction, but higher accuracy and reliability.

2. MATERIALS AND METHODS

2.1 Experimental

The luminophore used for oxygen detection was PtTFPP, commercially available as Oxygen Sensor Spot (PSt3,
PreSens GmbH, Regensburg, Germany). The excitation light was provided by a 405 nm LED, filtered by a
short pass filter, and focused on the surface of the sample with a collimation lens. The luminescence focused by
a lens was collected by a photodiode after filtering with a band pass filter. The frequency modulation for the
excitation light and luminescence phase shift determination were performed with a commercial lock-in amplifier.
The details of the experimental setup are described in a previous paper.3

For the realization of the oxygen sensor based on ANN, a large amount of data under varying oxygen concen-
tration, temperature, and modulation frequency conditions were carried out. The phase shift was measured for
50 modulation frequencies between 200 Hz and 15 kHz, at 21 oxygen concentrations between 0% air and 100%
air and at 9 temperatures between 5 ◦C and 45 ◦C and each measurement was repeated 20 times, for a total
189’000 phase shift values. This was performed by a fully automated program for both instrument control and
the automatic data acquisition. The automated acquisition procedure is explained in detail in a previous work.2

The availability of a large set of experimental data was an essential prerequisite for the training and test of
the ANN. Additionally, it allowed to test the the classical approach based on an analytical model when applied
to measurements under varying conditions of oxygen concentration, temperature, and modulation frequency, as
described in Section 3.1.

2.2 Artificial Neural Network Model

The proposed approach uses an ANN with a specifically designed architecture instead of describing the response
of the sensor through an analytical model, like a Stern-Volmer two-site model.1 Thanks to the MTL architec-
ture,4,5 the ANN predicts the oxygen concentration without any information about the temperature. The MTL
architecture used in this work (Figure 1) is characterized by a set of common hidden layers, whose output is then
the input of multiple branches of task-specific hidden layers, that learn to predict the oxygen concentration and
temperature at the same time. The details of the architecture and the parameters for the training are described
in detail in a previous authors’ work.6

To assess the performance of the ANN, the dataset was split in two parts:7,8 a training set (80% of the
available observations) indicated with Strain for the training of the ANN, and a development set (20% of the
available observations) indicated with Sdev, for the validation. The results shown in this work were obtained by
calculating the metrics on Sdev.

The metrics to evaluate the performance of the sensor are the absolute error (AE) and its average over the
a specific set of observations, the mean absolute error (MAE). The AE for the jth observation is indicated
with AE[j], wile the MAE evaluated on a dataset S will be indicated with MAE(S). A subscript will indicate
for which quantity ([O2] or T ) it is calculated. For example, for the oxygen concentration [O2] and the jth

observation the AE
[j]
[O2]

is

AE
[j]
[O2]

= |[O2]
[j]
pred − [O2][j]meas|. (1)
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Figure 1. Architecture of the multi-task learning neural network. The input are the normalized phase shit at different
modulation frequencies. The common hidden layers generate a shared representation, that is the input to task-specific
branches. The output are the oxygen and temperature predictions. The predictions of the common hidden layer were
disregarded in this work.

where [O2]
[j]
pred and [O2]

[j]
meas are the predicted and expected oxygen concentration for observation j respectively.

The MAE[O2](Sdev) is defined as

MAE[O2](Sdev) =
1

|Sdev|
∑

j∈Sdev

|[O2]
[j]
pred − [O2]

[j]
real| (2)

where |Sdev| is the size (or cardinality) of the training dataset. The AET and MAET are similarly defined.

When working with ANNs, it is important to carefully investigate how the MAE depends on the particular
choice of the training and test data. To be usable in industrial applications, a sensor needs to achieve high
reproducibility in the prediction accuracy. The average and standard deviation of the MAE, calculated for large
number of dataset splits, can be used as an indicator of the robustness of the ANN predictions. From a practical
point of view, this is unfortunately very time consuming. The training of the described ANN for one single
dataset split with an optimal set of hyperparameters (105 epochs, mini-batch size of 32) requires ca. 4 hours
on a 2.3 GHz 8-Core IntelCore i9 with 32 GB 2667 MHz DDR4 memory. This problem can be addressed by
using the resampling technique bootstrap with a reduced number of dataset splits to have enough MAE values
to study.9 The method is described in detail for completeness in Appendix A in Algorithm 1. The Algorithm 1
describes the steps necessary for the evaluation of average and standard deviation of MAE[O2] and MAET over
multiple dataset splits and multiple samples generated via bootstrap on the validation dataset obtained in each
split.

Finally, using the error limited accuracy2 (ELA), the minimum absolute error value for which all observations
are predicted within the given error was evaluated. In other words, the minimum value of the absolute error
(indicated with AE) for which the network predicts all the observations correctly is calculated for all splits. This
value (AE) can be interpreted as the biggest error expected in the sensor predictions.
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3. RESULTS AND DISCUSSION

3.1 Limitations of the Stern-Volmer relationship and of the two-site model

The conventional approach to describe the relationship between the oxygen concentration and the lumines-
cence intensity or decay is the Stern-Volmer relationship. When the the indicator is embedded in a matrix or
substrate, however, the Stern-Volmer linear behaviour is rarely observed.1,10 The deviations are attributed to
heterogeneities of the matrix or to the presence of static quenching. The most widely used analytical model
to describe the deviation from the linear behaviour for oxygen quenching is the two-site model.11–14 The idea
behind the model is that the indicator is embedded in at least two environments, and therefore quenched at
different rates.

For industrial applications, the measurement of the luminescence decay time in the frequency domain is the
preferred method due to its higher reliability and robustness.15 In this case, the excitation light is modulated;
the luminescence light is also modulated, but shows a phase shift with respect to the excitation light. The oxygen
concentration can be then determined from the phase shift as3

tan θ0
tan θ

=

(
f

1 +KSV 1 · [O2]
+

1− f
1 +KSV 2 · [O2]

)−1
(3)

where θ0 and θ, respectively, are the phase shifts in the absence and presence of oxygen, f and 1 − f are the
fractions of the total emission for each component under unquenched conditions, and KSV 1 and KSV 2 are the
associated Stern–Volmer constants for each component.

The complexity of the implementation of this approach is best illustrated when considering that the quantities
f , KSV 1, and KSV 2 are not constants, but they actually depend on both the angular modulation frequency ω
and the temperature. This is illustrated in Figure 2, where the above-mentioned parameters are plotted for
selected modulation frequencies and temperatures. The parameters were obtained via standard nonlinear fitting
procedures with the model of Eq. (3) from the data at constant temperature and modulation frequency.

Figure 2. Dependence of the parameters of f , KSV 1, and KSV 2 from the modulation frequency obtained by fitting the
measurement at 5 ◦C (blue), 25 ◦C (green), and 45 ◦C (red).

Although the temperature dependence of KSV 1 and KSV 2 might be physically justified due to, for example
to an increased permeability for the oxygen molecule at higher temperatures, the dependence of the parameters
from the modulation frequency has no physical explanation and is rather an artefact of the model. Alternatives
to the two-site models have been proposed, like the non-linearity solubility model16 or the description of the
Stern-Volmer relationship in terms of thermodynamic parameters.17 Both approaches, however, do not simplify
the description of the behaviour, but rather offer different physically-based parametrizations.

3.2 Performance of the ANN model

The robustness of the predictions was tested by splitting the development dataset six times and creating 1000
bootstrap samples each time, and by calculating the MAE[O2] and MAET for each of the 6000 bootstrap samples.
Table 1 shows the average and standard deviation of the 6000 values of MAE[O2] and MAET . The results
reported here were obtained with a mini-batch size of 32. The results are shown in Figure 3 and summarized in
Table 1.
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Parameter 〈MAE〉 σ(MAE)
[O2] 0.18 (% air) 0.03 (% air)
T 0.20 (◦C) 0.03 (◦C)

Table 1. Average 〈MAE〉 and standard deviation σ of MAE[O2] and MAET of 6000 bootstrap samples obtained by
splitting the development dataset six times and creating 1000 bootstrap samples each time.

The statistical variation of 〈MAE[O2]〉 and 〈MAET 〉 was estimated by creating 30000 bootstrap samples of the
size of |Sdev| from the 6000 samples available. The detailed steps are described in 1 in Appendix A. Figure 3 shows
the resulting distributions of 〈MAE[O2]〉 and 〈MAET 〉. For each distribution, the kernel density estimation of the
distributions was calculated.2 As expected the 〈MAE[O2]〉 and 〈MAET 〉 distributions approximate a Gaussian
shape.9 The results indicate that average of the 〈MAE[O2]〉 is below 0.2 (% air) with a standard deviation of
only 0.03 (% air) and that the average of the 〈MAET 〉 is 0.2 ◦C, thus demonstrating that such a sensor can be
used confidently since the results are extremely stable and the standard deviations have very small values.

Figure 3. The two plots show the distributions of 〈MAE[O2]〉 and of 〈MAET 〉. The distributions have a Gaussian shape.
The continuous lines are plots of the kernel density estimation of the distributions.

The average and standard deviation of the MAE, however, do not tell the entire story. For practical industrial
applications, the maximum AE to be expected by a trained ANN on a specific dataset is perhaps the most
important quantity. This can be calculated through the ELA as the value of the absolute error value for which
all observations are predicted within this given absolute error. These values, AE[O2] and AET , obtained for the
6 splits are summarized in Table 2. The average and standard deviation of these results can be easily calculated
and gives 〈AE[O2]〉 = 1.22 % air, 〈AET 〉 = 2.05 ◦C, σ(AE[O2]) = 0.31 % air and σ(AET ) = 0.95◦C.

Split AE[O2] (% air) AET (◦C)
1 1.29 2.30
2 1.81 2.98
3 0.97 1.15
4 1.05 1.18
5 1.29 2.13
6 0.88 1.18

Table 2. Values of the absolute errors for which all the oxygen concentration and temperature are predicted within these
absolute errors, AE[O2] and AET , for each split.

This indicates that the maximum error to be expected for the prediction will be below 2 % air and 3 ◦C for
the trained ANN. These results are slightly higher that previously reported2 due to the multiple splits performed
here. It is not excluded that a longer training would allow even lower errors.

4. CONCLUSIONS

In this work, a sensor based on luminescence quenching and ANNs is described which can predict the oxygen
concentration and temperature simultaneously. The sensor uses an ANN with MTL architecture which takes
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as input the normalized phase shift of the luminescence for multiple modulation frequencies and returns as
output the oxygen concentration and the temperature. The performance of the sensor is investigated in detail to
demonstrate its potential for industrial applications. In particular, since the errors in the prediction measured as
absolute error (AE) and mean absolute error (MAE) are influenced by the particular choice of the training and
development datasets, the reproducibility of a the prediction of both parameters was evaluated by performing
multiple splits, applying bootstrapping to the respective development datasets. For the resulting models, the
statistical distributions of the average of the MAE was calculated, to have an indication of the average error
in the prediction, indicated as 〈MAE〉. Additionally, to evaluate the worst possible performance of the sensor,
the error limited accuracy (ELA) was computed and the value of the AE for which all the predictions are below
this specific error (AE) was determined. The results over the 6000 bootstrap samples show that the 〈MAE〉
is 0.18 % air for the oxygen prediction and 0.2 ◦C for the temperature predictions respectively. AE remains
below 1.8 % air for the oxygen prediction and below 3 ◦C for the temperature. These results show how the ANN
is well able to predict both the oxygen concentration and the temperature simultaneously, although the latter
with slightly lower accuracy, since Pt-TFPP has a stronger dependence on oxygen than on the temperature.
This demonstrates how the use of this type of sensor architecture has the potential of revolutionizing the sensor
design.

APPENDIX A. PSEUDO-CODE TO PERFORM THE STATISTICAL ANALYSIS

The pseudo-code to perform the statistical analysis of the performance of the ANN model shown in 3 is described
in the Algorithm 1. This describes the evaluation of average and standard deviation of 〈MAE[O2]〉 and of

Algorithm 1: Pseudo-code for the evaluation of average and standard deviation of MAE[O2] and
MAET over multiple data splits and multiple samples generated via bootstrap on the validation dataset
obtained in each split. In this work the following values were used: Ns = 6, Nb = 1000 and Nb2=30000.

Result: Average and standard deviation of MAE[O2] and MAET .

Create two empty lists LO2 and LT ;
for i = 1, . . . , Ns do

Split the data in two parts: training set ST,i (80% of the data) and development set Sdev,i (20% of
the data) using a random seed equal to i;

Train the ANN on ST,i and save the best model obtained in 106 epochs;
for j = 1, . . . , Nb do

Generate a new dataset Sdev,i,j choosing |Sdev,i| elements from Sdev,i with repetitions. |Sdev,i| is
the cardinality of the set |Sdev,i|, or in other words its size;

Calculate MAE[O2](Sdev,i,j) and MAET (Sdev,i,j) ;
add MAE[O2](Sdev,i,j) to the list LO2 and MAET (Sdev,i,j) to the list LT ;

end

end
for i = 1, . . . , Nb2 do

Generate two new datasets LO2,i and LT,i by choosing |Sdev| elements from LO2 and LT respectively
with repetitions;

Evaluate 〈MAE[O2]〉 =
1

Nb2

Nb2∑
i=1

〈MAE[O2]〉i where 〈MAE[O2]〉i =
1

|Sdev|

|Sdev|∑
j=1

L
[j]
O2,i and L

[j]
O2,i is the

jth element in the list L
[j]
O2,i ;

Evaluate σ(MAE[O2]) =

Nb2∑
j=1

( 〈MAE[O2]〉i − 〈MAE[O2]〉
Nb2

)1/2

;

Evaluate the equivalent quantities for the temperature;

end
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〈MAET 〉. MAE[O2](S) indicates the mean absolute error of the oxygen concentration’s prediction evaluated
on a generic dataset S. MAET (S) indicates the mean absolute error of the temperature’s prediction evaluated
on a generic dataset S. Ns indicates the number of splits performed, Nb and Nb2 the number of bootstrap
samples. The average is indicated with 〈·〉 and the standard deviation with σ(·). The formula for 〈MAET 〉 and
σ(MAET ) are not reported for simplicity but are defined similarly to those reported for the oxygen concentration
by substituting [O2] with T .
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