

www.embedded-world.eu

Rust for Secure IoT Applications

 Why C Is Getting Rusty

Mario Noseda, Fabian Frei, Andreas Rüst, Simon Künzli
Zurich University of Applied Sciences (ZHAW)

Institute of Embedded Systems (InES)
Winterthur, Switzerland

mario.noseda@zhaw.ch, fabian.frei@zhaw.ch, andreas.ruest@zhaw.ch, simon.kuenzli@zhaw.ch

Abstract— Memory corruption is still the most used type of
exploit in today’s malware landscape. Human error inevitably
introduces memory vulnerabilities into software by using
memory-unsafe languages like C and C++, affecting not only
security but also safety, dependability, and even basic
functionality of devices. The Rust language guarantees memory
safety without a garbage collector, promises comparable
performance to C/C++, and allows for gradual extension of
existing codebases by using its foreign function interface. This
report presents the risks of having memory vulnerabilities in
embedded applications, what a switch to Rust looks like, how the
development experiences differ between Rust and C/C++, and if
there are significant differences in performance.

Keywords— bare-metal programming; c; cpp; cybersecurity;
embedded systems; exploits; iot; memory unsafety; rust

I. INTRODUCTION
Embedded and bare-metal programming environments

predominantly use C and C++, which is not surprising due to the
balanced mix between hardware-oriented programming and
high-level abstraction. Although these languages have clear and
undeniable strengths, they also have weaknesses that can no
longer be overlooked with today's software development know-
how and experience from the last decades.

A. Memory Unsafety
Arguably the most critical of these weaknesses is the

inherent memory unsafety [1], a property of programming
languages that allows bugs to arise from incorrect memory use.
These vulnerabilities can be divided into two categories: spatial
and temporal vulnerabilities. Typical spatial vulnerabilities are
out-of-bounds array accesses, dereferencing a null pointer, and
using uninitialized memory. Regarding temporal vulnerabilities,
use-after-free, double-free, and data races are known problems
(these lists are not exhaustive). Since the advent of malware in
the 1980s [2], exploits have been using memory vulnerabilities
extensively because they usually allow a severe compromise of
the target. Fish in a Barrel's iOS14 analysis in 2021 identified
346 vulnerabilities, of which 209 (60%) were due to memory
unsafety [3]. Among actively exploited vulnerabilities, they
attributed 8 out of 11 (73%) to memory unsafety. Microsoft's
Security Response Center says that memory unsafety caused

70% of their assigned CVEs [4]. The Google Security Blog even
speaks of a memory unsafety share of 90% of all Android bugs,
mainly consisting of out-of-bound reads and writes, use-after-
free, and integer overflows [5]. Finally, Google's Project Zero
analyses 0-day exploits and concluded that 39 of 58 exploits in
2021 are due to memory corruption [6]. So, although the
problem of memory unsafety has been known for a long time,
decades of experience have not led to the production of software
without critical memory vulnerabilities today. On the contrary,
according to the sources mentioned above, memory unsafety is
the most common cause of vulnerabilities. We will not be able
to produce bug-free code anytime soon without significantly
changing software development.

B. Problem for Everyone
Even if one does not care about security, memory unsafety

also has a tremendous impact on the basic functionality of a
device. Memory bugs can be extremely hard to find and can stay
undetected by various static and dynamic code analysis tools,
even worse if they only appear after a specific run time in the
field. Bugs like this are notoriously difficult to reproduce and
trace, which makes troubleshooting enormously difficult and, in
the worst case, can result in a significant loss (both monetary and
reputational). Memory unsafety is arguably just as crucial for
those who deal with systems and devices where safety and
dependability are essential. There will hardly be any device that
does not require either security, safety, dependability, or just
basic functionality. Memory safety should therefore be an ideal
to strive for, no matter what domain you come from or what
demands the product has, as it ties into all of them. Of course,
no one claims that memory safety means you will no longer have
other types of bugs in your code. It only eliminates memory bugs
and does not protect the developer from introducing other bugs,
such as logic errors, into the code.

However, especially concerning embedded devices and the
Internet of Things (IoT), getting rid of a whole category of bugs
is extremely valuable. It reduces the probability of a critically
necessary update, which can be extremely costly in the case of a
large number of devices. This becomes even worse if the devices
do not have sufficient connectivity, requiring the update to be
performed manually, maybe even onsite.

C. What Can We Do About It?
There are only two options for achieving memory safety.

Either we use various tools and tests to check code written in a
memory-unsafe language for bugs and vulnerabilities, or we use
a memory-safe language like Rust from the beginning. This
report contains insights and experiences from embedded
software developers who, after more than a decade with C, have
decided to evaluate what a switch to (embedded) Rust looks like
and how it compares to working with C/C++. On the one hand,
the report summarizes publicly available information, which
will be of interest to all those who want to take this step without
digging through the vast amounts of documentation.
Additionally, the report also contains findings on how the
development experiences differ between Rust and C/C++.

This report is structured accordingly: Section II introduces
Rust and how the ecosystem and the software development
workflow differ from C/C++. Further, it lists drawbacks and
how one can achieve memory safety without using Rust. Lastly,
the section discusses which companies and projects already
employ Rust. Section III investigates the use and benefits of Rust
in Embedded Systems. Section IV presents a proof of concept
(PoC) application written in C, the possible damages caused by
exploitation, and an equivalent but memory-safe PoC
application written in Rust. Section V compares the performance
of the languages with a benchmark consisting of cryptographic
primitives, and section VI draws appropriate conclusions.

II. RUST
Rust is a compiled, strong- and statically-typed systems

programming language with high-level features while retaining
low-level memory management capabilities. Graydon Hoare
started developing Rust at Mozilla Research in 2010. Mozilla
has gradually reduced its influence on the project while open-
source contributions steadily increased [7]. Rust is now
stewarded by the Rust Foundation since its formation in
February 2021 [8].

According to Steve Klabnik (former member of the Rust
core team and co-author of the official Rust book) [9], Rust has
memory safety, speed, and productivity as its core values.
Ergonomics, compilation time, and correctness are seen as
secondary values. Regarding the last point, it is essential to note
that Rust strongly cares about your program being correct, but
just not in the sense that it would force you to use dependent
types or a proof assistant. However, Rust does not create new
programming paradigms and uses previously established ones.
Further, it does not release unfinished features only for the sake
of releasing and will not guarantee support for old and obsolete
targets.

So far, it sounds like Rust could be just a younger and less
mature version of C++. However, it boasts memory safety
without the need for a runtime and garbage collector, which is
the case for common memory-safe languages like Java, C#, or
Python. It achieves this with the concept of ownership, Rust’s
arguably most unique feature. It is responsible for most memory
safety guarantees and prevents memory bugs with either a
compilation error or a controlled panic during run time. Table I
shows how various issues are handled by Rust.

TABLE I: TYPICAL MEMORY BUGS AND WHEN RUST HANDLES THEM.

Issue Rust (release)

Out-of-bounds R/W Run time
Null dereference Run time1

Type confusion Run time1

Integer overflow Run time1

Use-after-free Compile time
Double free Compile time

Invalid stack R/W Compile time
Uninitialized memory Compile time

Data race Compile time
1: Some restrictions apply

A. Rust’s Improved Ecosystem
Memory safety is not the only new or improved feature

compared to C/C++. Working with Rust, you quickly realize that
Rust is a much newer language and was designed with the flaws
and shortcomings of C/C++ in mind. For example, switching the
RTOS of an application might take multiple days just to set up
the C/C++ build system by installing all the dependencies and
the required toolchain. Many of these build systems are also
famously convoluted, making this even harder. Installing Rust is
extremely simple with the "rustup" toolchain installer [10], even
when cross-compiling for bare-metal targets. And Rust's internal
package manager, "Cargo" [11], takes care of downloading
dependencies, compiling your package, and even distributing it
if you wish to do so. Furthermore, Rust contains various
language features typically associated with high-level or
scripting languages like pattern matching, verbose backtraces, or
generic functions and types (similar to C++ templates). Such
features are unusual for languages that run on bare-metal targets.
This section will not go into detail on what Rust can and cannot
do but rather show how these features had a positive impact on
the development experience.

As mentioned before, installing Rust is extremely easy, and
you will not have to fight with some obscure build system as
everything has been standardized with Cargo. Next up is
learning the actual language itself. The community prides itself
on enforcing an open and inclusive environment for newbies and
veterans alike. The creation and maintenance of learning
resources that are needed to get into the language are usually led
by members of the core team with contributions from the
community. Notably, the superb documentation of the language
and associated software keeps the barrier low for new
contributors.

B. How Rust Development Differs From C/C++
This section uses a fictional application development to

discuss how the development experiences of C/C++ and Rust
differ. Imagine you are starting the project and want to take your
first steps with the library you will use. Many C libraries pack
related data into structs, which need to be set up and configured
using specific functions before they can be passed to multiple
functions by reference to achieve some arbitrary tasks. Listing I

www.embedded-world.eu

illustrates some potential function prototypes for drafting and
approving a post.

typedef struct {
 ...

} post_t;

int post_init(post_t *post);
int post_add_content(post_t *post, uint8_t *content);
int post_request_review(post_t *post);
int post_approve(post_t *post);

LISTING I: C FUNCTION PROTOTYPES FOR DRAFTING A POST.

C's type system does not assist newcomers to the library, as
all functions just need a pointer to the struct without encoding
further information into the types. The user needs to make sure
that they call the required functions in the correct order, and
finding all of them might be even harder. Contrastingly, Rust’s
type system wants the library's author to encode as much
information into the types as possible. Listing II demonstrates
what the corresponding Rust function prototypes could look
like.

fn new_draft_post(content: String) -> DraftPost {...}
fn request_review(draft: DraftPost) -> PendingReview {...}
fn approve_post(pend: PendingReview) -> Post {...}

LISTING II: RUST FUNCTION PROTOTYPES FOR DRAFTING A POST.

Thus, the type system guides the user automatically to all the
necessary functions as many of the types can only be produced
by calling the respective functions instead of creating them
directly. In the case of the example, the user can only create
values of the type Post by calling the listed functions in order.
Of course, a C library could also specify different struct types
for the different stages of the post. However, this is neither the
convention nor can C prevent the user from simply creating an
instance of the final post struct directly and skipping the
functions altogether.

Assume that you progressed with your fictional application
development and are happily working with Rust's enums. There
is a similar concept in other languages called "tagged unions",
as they allow data of different types and sizes to be attached to
the enum variants. Listing III illustrates an enum for storing
either an IPv4 address using four 8-bit integers, an IPv6 address
as a string, or no address without any associated data. Rust
checks the type during run time, and thus the data cannot be
interpreted for another variant.

enum IpAddr {
 V4(u8,u8,u8,u8),
 V6(String),
 None,
}

let ipv4 = IpAddr::V4(127,0,0,1);
let ipv6 = IpAddr::V6(String::from("::1"));
let no_addr = IpAddr::None;

LISTING III: ENUM EXAMPLE IN RUST.

Listing IV shows how this could be implemented in C using
a struct and an enum.

typedef enum {
 V4,

 V6,

} ip_version_t;

typedef struct {
 ip_version_t version;
 uint8_t *addr;
} ip_addr_t;

uint8_t addr_buf[4] = {127,0,0,1};
ip_addr_t ipv4 = {
 .version = V4,

 .addr = addr_buf,

};
LISTING IV: ENUM EXAMPLE IN C.

Rust’s enums are not just significantly more concise but also
safe compared to C’s alternative, as setting and checking the
current variant is mandated by the syntax. In contrast, C allows
the developer to forget to set or check the enum variant.
Interpreting the address field for the wrong variant or a similar
mistake would go undetected and result in undefined behavior.
This boils down to the same problem as forgetting the null
pointer check in C when supplying functions with pointers.

Unfortunately, even good code is not perfect, and errors will
likely happen during run time. Most C libraries follow the
convention to return an integer corresponding to the occurred
error. This approach, however, does not work well with bubbling
up the error to the upper layers without loss of information or
significant effort to implement sophisticated error handling.
Rust again uses the "tagged union" functionality of their enums
by defining result values that allow functions to return data with
different types and sizes in case of success or an error. Listing V
shows how a function can return an integer if successful or a
string in case of an error.

fn foo(a: u8, b: u32) -> Result<u32,String> {
 ...

}
LISTING V: RUST FUNCTION USING A RESULT TYPE AS A RETURN VALUE.

Of course, C could define a tagged union for returning
different types from a function as well. However, this introduces
the same problem of forgetting to check which variant is
currently stored in the union, as discussed in the previous enum
example. Apart from that, returning tagged unions in C is also
somewhat uncommon.

Rust has an excellent testing infrastructure and encourages
the developer to add corresponding unit tests directly under the
code-under-test. The tests are typically excluded during building
to keep the executable as small as possible. Using the cargo
test command, they can be executed whenever desired.
Listing VI demonstrates the recommended practice of placing
Rust code and its corresponding unit test into the same file.

fn foo(a: u8, b: u32) -> Result<u32,String> {
 ...

}

#[cfg(test)]

mod tests {
 use super::*;

 #[test]

 fn test_foo() {
 assert_eq!(foo(1,1000).unwrap(), 123);
 }

}
LISTING VI: FUNCTION AND ITS CORRESPONDING UNIT TEST.

Assume that all tests have passed in your fictional
application development, your application reached version
1.0.0, and you shipped it to the customer. Even though you
thoroughly tested your application, you still missed something,
and the client immediately encountered a bug. You quickly find
the reason, fix the bug, build the application, and run the tests.
Astonishingly, the unit tests pass, but the integration tests fail. It
appears that the change to the code was correct as the unit tests
passed. However, you added a so-called doc comment to the
function in question. As implied by the name, doc comments
allow the developer to add documentation to code elements like
functions, methods, or types. Rust highly encourages developers
to add example code to such doc comments as the compiler
converts them to integration tests. Listing VII shows a function
with a doc comment containing sample code. Executing the first
line of code in the doc comment verifies if calling the function
works as intended, while the second line checks the return value
similar to a unit test.

/// Add two numbers.
///
/// # Example
/// ```
/// let res = add(2,3);
/// assert_eq!(res, 5);
/// ```
fn add(a: u32, b: u32) -> u32 {
 ...

}
LISTING VII: FUNCTION WITH DOC COMMENT CONTAINING EXAMPLE CODE.

Regarding the fictional application development, you
modified the function signature and its call sites. However, you
forgot to update the description and the example in the doc
comment. Fortunately, the outdated example code resulted in an
integration test failure which prompted you to update the entire
doc comment. Outdated doc comments can be very problematic
as they might lead to others misusing your code. Similar
functionality can be found in other languages like Python [12]
and Haskell [13]. Due to the integration test failure, you could
correct the documentation, and you can use Cargo to create the
project documentation. It aggregates all doc comments and
publishes the resulting documentation as an interlinked webpage
for easy navigation, which is one of the reasons why published
Rust crates (libraries) are so well documented.

The features discussed in this section, Rust’s type system,
improved error handling, testing infrastructure, along with many
other features, and its safety guarantees result in the developer
being able to focus more on the logic and the functionality of the
application instead of constantly worrying about introducing
bugs into the code. This significantly increases productivity and
confidence in the resulting product.

C. Drawbacks
Of course, do not trust anyone that claims that Rust does not

have any real drawbacks. For example, there is currently no clear
definition of what features a programming language needs to
qualify as object-oriented. Rust does not make any claims [14]
but argues to be somewhere in between as it allows the creation
of objects (structs and enums) that package data and define
corresponding procedures (methods) that act on this associated
data. Another common feature is the encapsulation of the data in
these objects, which Rust is also capable of (private and public
attributes). Lastly, inheritance is also widely regarded as a
feature of object-oriented languages, which Rust intentionally
does not support [15]. Rust uses a different approach (traits and
trait objects) instead of inheritance to solve similar problems. A
trait specifies one or more methods that need to be implemented
by the type (sometimes called interface in other languages). If
two types implement the same traits, they share the same
behavior. However, this specific take on object orientation adds
to the complexity of the language as it is yet another concept that
either has to be learned from scratch or one has to adjust to if
coming from a language like C++.

Furthermore, the concept of ownership introducing memory
safety is entirely new for most programmers. The associated
compile-time errors might appear complex and unfair at times
as the compiler just relentlessly flags various lines of code if it
detects the possibility of a memory safety violation. You can
consider every C warning a Rust error and probably will get even
more errors on top of that. Ultimately, the learning curve is very
subjective, but we experienced C as easy to learn and hard to
master and Rust as hard to learn and easy to master.

It is not a surprise that a language many times younger than
C does not have the same ecosystem yet. Even though it is
growing every day, there might not be a library for your specific
use case yet. Moreover, although Rust has full Windows support
for the compiler and the standard library, the community is
decidedly Linux-focused, resulting in some third-party libraries
supporting Windows only partially or not at all.

Various design choices of Rust require that the compiler has
access to the source code of the application as well as all the
dependencies written in Rust. This requirement effectively
makes it impossible to publish compiled Rust libraries which
might be a problem for companies wanting to preserve their
intellectual property. However, Rust’s licensing model is
permissive enough for releasing your source code with a
commercial license that requires anyone to buy it first. If the
source code must be kept secret at all costs, a Rust library can
also be compiled to a static library with a C interface,
indistinguishable from a static C library. However, this results
in the Rust compiler not being able to check security guarantees
across the entire application for anyone that uses this library. The
application itself, as well as the library, are checked individually,

www.embedded-world.eu

but the calls to and from the library cannot be checked, as the C
interface of the static Rust library effectively acts as a barrier to
the safety checks of the compiler. Thus, the developer needs to
check the safety and correctness of the calls to and from the
library. Fortunately, this is possible with reasonable effort if the
API of the library is clearly defined and manageably sized.
Furthermore, suppose a memory vulnerability still manages to
be detected. You can limit the search to the interaction between
the application and the library, making the search much more
accessible, especially for large projects. Lastly, the current rise
of open-source culture and this characteristic of the Rust
compiler may lead to more vendors releasing their source code.
This would significantly improve the debugging experience
compared to working with precompiled libraries, which are
effectively a black box for the end-user.

Another often-debated drawback is Rust's compilation time,
as compiling a large project depending on various other crates
can take some time to compile for the first time. Type checking,
turning generic into specific implementations, running the
borrow checker (this is what verifies the ownership rules), and
compiling all third-party crates from source just takes time.
However, this is time that you would otherwise spend debugging
when using a memory-unsafe language, i.e., you "pay" for the
safety guarantees with an extended compilation time. Luckily,
subsequent builds only compile the changed crates, which
results in very short compilation times in most use cases.

Lastly, the currently missing compiler certification might be
a dealbreaker for some industry sectors. Fortunately, the German
company Ferrous Systems, which is already involved in multiple
Rust open-source projects and working groups [16], takes on the
challenge of providing a Rust compiler toolchain version
qualified for ISO26262 [17][18], which is a functional safety
standard for electrical and electronic systems in series
production passenger cars. They plan on tackling other
certifications if this project is successful.

D. Alternative Solutions
Instead of using a memory-safe language, one could also

keep using C/C++ and use specialized tools to ensure memory
safety. Unfortunately, this is only treating the symptoms instead
of the root cause, which shows as soon as one analyzes their
efficiency in regard to finding memory bugs. Static code
analysis (SCA) is only as good as the ruleset, which must be
finetuned to whatever it is applied. Moreover, as soon as a
library is used without access to the source code, the SCA has
no choice but to assume that calls to and from such libraries, as
well as the library itself, are correct. This returns the
responsibility to the developer, which is precisely the opposite
of what the SCA tried to achieve in the first place.

Most SCA tools parse the code into an abstract
representation which is then analyzed. This analysis is path
sensitive as bugs might only occur if various code segments are
executed in a specific order. However, this poses a significant
problem for SCA as a full exploration of all paths quickly
exhausts the provided resources. As most software developers
do not have access to a supercomputer, the tool must make
assumptions on what probably will not happen during run time
or other approximations. This situation is further exacerbated if
asynchronous paths like interrupts, exceptions, or concurrency

can occur, with many tools simply ignoring the possibilities [19].
In contrast, Rust again uses the sophisticated type system, which
annotates every type if it is safe to be sent over a thread boundary
and if it contains the required synchronization mechanics (e.g.,
mutex) for safe accesses from different contexts. In other words,
Rust forces you to take all necessary precautions while providing
concurrency guarantees at compile time instead of run time.

Dynamic code analysis (DCA) is often used together with
SCA, as these two approaches complement each other.
Unfortunately, both combined are still not able to detect all types
of memory bugs. This is further complicated because DCA can
only find bugs that actually occur during a test run, and memory
bugs are known to be very elusive. Additionally, these run-time
checks can impose a significant performance impact, resulting
in the tests not being run under the same conditions as the
device-under-test. This does not even consider that many DCA
checks are only available for x86 and other desktop-style
architectures. For a Cortex-M architecture, they would need to
be ported manually, or the firmware could be checked within an
emulation. Though, this approach would require mocking the
used peripherals and maybe even externally connected devices
in case of networking. In contrast, everything that Rust cannot
catch at compile time (like indexing an array with a number
supplied by the user) is handled with implicitly added run-time
checks that trigger a controlled panic for keeping the system in
a known and controlled state. These checks could be regarded as
mandatory DCA while resulting in minimal to zero overhead,
depending on the situation. The default panic handler mainly
prints a backtrace to the standard error output and aborts the
program. This behavior is usually infeasible for embedded
systems due to missing OS abstractions or because simply
aborting the program and requiring a user to restart the
application is impossible (e.g., pacemaker). Thus, custom panic
handlers can be registered to select the desired behavior in case
of run-time errors, like resetting the target. Similar to
conventional watchdogs triggered by anomalous execution
times and deadlocks, this is effectively a watchdog triggered by
run-time bugs.

Other tools to identify bugs include fuzzing and emulation:
Fuzzing can be used to verify the input of functions, but other
than that, it is severely limited in its use cases. Emulation might
also help find some more bugs, but it is usually extremely costly
to set up the environment, create all the needed mocks, and keep
everything up to date.

To test how thoroughly the discussed SCA/DCA tools find
bugs, we created 16 small C/C++ applications containing
different types of memory bugs. We used popular tools like
splint (out-of-the-box configuration), cppcheck (using the
MISRA C 2012 ruleset), and GNU C/C++ sanitize for our tests.
Listing VIII shows one of the 16 applications leading to a
memory safety issue.

void foo(uint32_t x) {
 uint32_t buf [10];
 if (x == 100) {
 buf[x] = 0;
 }

}
LISTING VIII: EXAMPLE MEMORY VULNERABILITY BUG.

Table II shows if the different tools flag the bugs correctly.
Of course, one could improve the configuration of the tools so
that they might find more bugs. However, this is a clear
advantage for Rust as it executes all tests every time without
requiring manual configuration and is able to find all these bugs.
Such an approach eliminates the inevitable human errors
associated with the configuration of such software checks.

TABLE II: CHECKING IF SCA/DCA TOOLS FIND MEMORY BUGS.

Bug cppcheck splint GNU C/C++
sanitize

0 ✓ ✓ ✓
1 ✓ ✓ ✓
2 ✓ ✓ ✓
3 missed ✓ missed
4 missed ✓ compile err.
5 ✓ ✓ missed
6 ✓ ✓ missed
7 missed ✓ missed
8 ✓ ✓ partly
9 partly ✓ partly
10 ✓ missed missed
11 missed ✓ missed
12 ✓ ✓ missed
13 missed ✓ partly
14 ✓ incompatible ✓
15 missed incompatible missed

Instead of using tools to make an unsafe language safe, one
could also use a different memory-safe language than Rust, like
Go, C#, Java, Swift, Python, or JavaScript. However, getting
these languages to run at a comparable performance on an
embedded device (if at all!) would be a significant challenge, to
say the least. Moreover, the language Zig [20] is not entirely
memory-safe, but it presents itself as a better C alternative and
provides significantly more checks than C. However, Table III
shows that it is still not close to the safety guarantees of Rust
[21].

TABLE III: C, ZIG, AND RUST MEMORY SAFETY COMPARISON.

Issue Zig (release-safe) Rust (release)
Out-of-bounds R/W Run time Run time

Null dereference Run time1 Run time1

Type confusion Run time1,2 Run time1

Integer overflow Run time Run time1

Use-after-free None1 Compile time
Double free None1 Compile time

Invalid stack R/W None Compile time
Uninit. memory None Compile time

Data race None Compile time
1: Some restrictions apply, 2: Partial

Furthermore, Zig is even younger than Rust as it started in
2016 and is currently on version 0.9.1 as of the release of this
report.

E. Where Is Rust Used?
Not every company clearly states what kind of languages

they use in their products. However, one can safely assume that
members of the Rust Foundation use the language in some of
their products or production workflow. The platinum members
AWS, Google, Huawei, Meta, Microsoft, and Mozilla, are huge
companies with the necessary budget to make such drastic
changes as introducing a new programming language into
products. Therefore, it is probably more interesting to look at the
silver members like 1password, Arm, Dropbox, and Threema as
they better represent all the businesses besides the tech giants.

The Internet Security Research Group (ISRG) [22] started
the Prossimo project [23] to move the Internet's security-
sensitive software infrastructure to memory-safe code. They
depend on an active community of developers and funders to
reach their goals. Probably the most famous of their initiatives is
the journey to get Rust as a language for writing Linux Kernel
drivers [24]. They created a branch of the Linux Kernel and
currently apply necessary changes to facilitate the use of Rust.
Even though Linus Torvalds voiced concerns in his reply to the
RFC, he gave his implicit approval by not shutting it down
immediately (unlike his infamous reaction to C++ [25]), which
makes Rust the first language besides C to be considered
anywhere near the Linux Kernel. Rustls is another one of their
initiatives and is an alternative to OpenSSL written in Rust. It
passed its first audit in 2020 and is ready to be used according to
the maintainers. Furthermore, they have currently active
initiatives to create memory-safe implementations in Rust for
the network time protocol (NTP), domain name system (DNS)
resolvers, curl (ubiquitous network transfer utility), and mod_tls
(used in HTTP server by Apache).

III. EMBEDDED RUST
Generally, Rust supports both desktop PCs and embedded

systems because the language allows complete low-level access.
Nevertheless, the Embedded Rust Book [26] clearly
distinguishes the following embedded programming
classifications: hosted and bare-metal environments. The former
is close to a desktop environment as it provides the application
with a system interface like POSIX for accessing systems like
the file system, threading, or networking. The latter does not
include OS abstractions or other code that runs before the actual
application. Rust's standard library (libstd) is implicitly added to
all applications and requires OS abstractions like those provided
in a hosted environment. Thus, the libstd is not available in bare-
metal environments. However, Rust's core library (libcore) is a
platform-agnostic subset of libstd, allowing the creation of
applications for bare-metal environments without the need for
any OS abstractions.

A. Portability of Embedded Drivers
Diving deeper into bare-metal environments, interacting

with core peripherals usually either requires writing a custom
driver and accessing the registers directly or using the drivers
supplied by the manufacturers. Both approaches are very bad for
portability if you want to change the MCU family (or even

www.embedded-world.eu

manufacturer) down the line. The embedded working group is
developing the embedded-hal crate [27] to build an ecosystem
of platform-agnostic drivers. They specify traits for various
peripherals (like ADC, SPI, Timers, …) and authors of drivers
for a specific peripheral on a specific target are then encouraged
to design their drivers using these traits. This allows applications
to switch devices as all the calls to the peripherals are the same
if the drivers all use the embedded-hal. The embedded-hal is
gaining significant traction and represents a strong step towards
increased portability of bare-metal applications.

B. The Type System and Peripherals
Even though the type system is already great as it is, it is even

more helpful when dealing with the setup of hardware resources
like peripherals or GPIOs. For example, see the function
signature of uart_init(…) in Listing IX for a fictional
initialization function of a UART driver. For the TX pin, the
developer then needs to supply the function with a variable of
the type GpioOutput to satisfy the type system and get an
instance to control the UART. However, the GPIO driver, which
declared this type, does not simply allow the creation of such a
variable. It forces the developer to use the appropriate function
to initialize an output pin from an uninitialized pin, which
returns the required type (see example function signature
gpio_init_output(…) in Listing IX). Of course, this
procedure applies to the RX pin and various other peripherals
that require setting up the hardware as well. Encoding the pin
state like this ensures that misconfiguration (or simply forgetting
to initialize) is an issue of the past [28].

fn uart_init(baudrate: u32,
 tx: GpioOutput,
 rx: GpioInput) -> Uart {...}

fn gpio_init_output(pin: GpioUninit) -> GpioOutput {...}
LISTING IX: ENCODING PIN STATES INTO TYPES IN RUST.

Notably, truly idiomatic Rust would further use its object-
oriented characteristics to tie the data types and methods
together even more.

C. C and Rust Coexisting
Finally, imagine an IoT device being developed using an

RTOS written in C. Depending on the development philosophy
of a company, it might be fair to assume that the developers
working on the business logic are more likely to introduce bugs
than the underlying RTOS, which is probably getting tested
more thoroughly and has more eyes on the code itself. Of course,
bugs will inevitably come up in the RTOS as it is unlikely that
they will never make a mistake when using a memory-unsafe
language. However, a device’s probability of a critical bug can
be significantly reduced if at least the business logic on top is
written in a safe language, which usually offers the most
considerable bug potential. Especially if the device
manufacturer is understaffed, on a budget, and pressed with
deadlines.

IV. PROOF OF CONCEPT
CVE-2020-6007 [29] is a heap-based buffer overflow

vulnerability in Philips Hue Bridge that allows the attackers to
install malicious firmware on smart light bulbs and spread it to

other IoT devices within the same network. This vulnerability
was the catalyst for this evaluation and report.

A. PoC in C
We created a proof of concept (PoC), which is loosely based

on the CVE. It consists of an nRF52840 (Cortex-M4) [30]
running a C application built on top of the Zephyr RTOS [31],
which simply prints strings received over an open UDP server.
Instead of using ZigBee, which is used by Hue products, we used
OpenThread [32] as it is built on top of the same physical layer
(IEEE 802.15.4 radio) and was already known to the authors.
We deliberately designed the application in C with a simple
memory vulnerability that can be in or excluded during compile
time. Listing X shows the (very artificial) vulnerability in
question, which is a simple memcpy(…) instruction using the
source length without clamping it to the maximum size of the
destination, resulting in a typical buffer overflow.

void vulnerable_print(const char* input, int len)
{

 static int count = 0;
 char buffer[16];

 /* Missing checks of input arguments */

 /* Copying into buffer w/o checking for overflows */
 memcpy(buffer, input, len);
 buffer[len] = 0;

 printk("[%u]: %s\n", count++, buffer);
}

LISTING X: SIMPLE MEMCPY() VULNERABILITY.

B. Buffer Overflow Exploits
Notably, C code compiled for the ARMv7E-M architecture

used in the Cortex-M4 stores the base pointer of the last frame
and the return address to the calling function in the first two
words of the stack frame, as displayed in Figure 1.

FIGURE 1: TYPICAL STACK FRAME LAYOUT.

This vulnerability thus enables the attacker to call some other
function already present in the target’s flash (like opening the
safe or outputting some sensitive data) by overwriting the return
address with the address of the target function. Of course,
exploiting this either requires knowledge of the firmware or
brute-forcing the target address. Listing XI shows what such an
exploit could look like.

Return

Locals

Base S
t
a
c
k

g
r
o
w
t
h

|<-- Filling buffer with dummy data -->|<-Ret->|
11111111222222223333333344444444555555550d040000

LISTING XI: EXPLOIT FOR REDIRECTING EXECUTION FLOW.

Instead of filling the buffer with dummy data and
overwriting the stored return address, the attacker could also fill
the buffer with shellcode (malicious machine code manually
crafted for the target architecture) and overwrite the return
address with the address of the buffer itself. This instructs the
MCU to fetch its next instructions from the vulnerable buffer
that the attacker just filled with shellcode. Listing XII illustrates
an exploit containing shellcode.

|<-- Assembly code -->|<-Ret->|
4ff0a0434ff4f032c3f81825c3f80c2555555555f1ef0020

LISTING XII: EXPLOIT USING SHELLCODE.

It is called "shellcode", as it is typically used to spawn a shell
from which the attacker can control the target. However, it could
also contain any other instructions like accessing a peripheral or
exfiltrating sensitive data. Even worse is the fact that Cortex-M
devices cannot make use of virtual addresses because of the
missing memory management unit (MMU). Thus, established
shellcode countermeasures like address space layout
randomization (ASLR) are unavailable. Furthermore, there is no
separation of kernel and userspace as seen in desktop
environments, which would otherwise limit the reach of the
exploits. At least most Cortex-M devices include a memory
protection unit (MPU) that prevents unauthorized memory
access. This countermeasure effectively prevents the attack, as
the whole RAM (where the vulnerable buffer inside the stack is
located) could be set to "not executable". It triggers an exception
as soon as the address of the buffer is loaded into the instruction
register at the beginning of the attack. Unfortunately, a study by
W. Zhou et al. found the MPU of Cortex-M devices to be
insufficient and circumventable [33]. According to the study,
recent updates mitigated some of the issues, but the overall MPU
design remains flawed.

Even if a functional and sophisticated MPU were present, an
attacker could resort to return-oriented programming (ROP) if
they have access to the target firmware. This exploitation
technique allows arbitrary code execution without injecting it
into the target system by misusing code already present in its
flash memory. Conventional countermeasures are either
unavailable on Cortex-M devices due to the missing hardware
(e.g., MMU) or add significant overhead to the execution,
making them infeasible for IoT's performance and energy
constraints.

C. PoC in Rust
Rewriting the same application in Rust showed that it is

possible to use a preexisting RTOS written in C and add one's
business logic on top using Rust. Rust's promises for a zero-
overhead foreign function interface (FFI) held up, as we could
call Rust functions from C and vice versa. However, there was a
clear limitation to FFI that arose during the development of our
Rust PoC. C symbols, macros, and other preprocessor
functionalities are not available from Rust as the FFI works
during link-time. Specifically, the Zephyr RTOS used for this

PoC uses macros for various things that are now unavailable
from Rust. Depending on the macro, this could either be solved
by packing it into a function or by creating a corresponding Rust
function that contains the same functionality.

In contrast to the vulnerable C function in Listing X,
idiomatic Rust does not pass a type containing contiguous
memory (e.g., arrays) and the length of the stored data in this
memory separately, as this is known to be error-prone. Instead,
developers are encouraged to use a type that owns the memory
and keeps track of the metadata. For example, the String type
is actually a struct containing a pointer to the memory that holds
the contents of the string, a field for storing the maximum
capacity, and a field for the current length of the stored string.
The fields are private and thus force the developer to use the
String’s methods which keep track of the metadata and
prevent memory violations.

Therefore, it was impossible to recreate the vulnerable
function of Listing X in Rust, which is not surprising regarding
Rust’s memory safety guarantees. We created example
functions for demonstrating how trying to misuse arrays results
in either compile-time errors or run-time panics. Listing XIII
attempts to copy an array of length 10 into an array of length 5,
resulting in a compile-time error.

fn wrong_buf_len() {
 let dest = [0;5];
 let src = [0;10];
 dest = src;
}

error[E0308]: mismatched types
 --> src/main.rs:18:9
 |
18 | dest = src;
 | ^^^^ expected an array with a fixed size
 of 5 elements, found one with 10
 elements

LISTING XIII: COPYING AN ARRAY OF LENGTH 10 INTO AN ARRAY OF LENGTH 5
AND THE CORRESPONDING COMPILER ERROR.

Listing XIV uses a constant out-of-bounds index which also
yields a compile-time error. This detection also works with
arithmetic expressions as the index, as long as the compiler can
evaluate them at compile time.

fn const_index_out_of_bounds() {
 let mut buf = [0;5];
 buf[10] += 1;
}

error: this operation will panic at runtime
 --> src/main.rs:23:2

 |

23 | buf[10] += 1;

 | ^^^^^^^ index out of bounds: the length is 5 but
 the index is 10

LISTING XIV: USING OUT-OF-BOUNDS INDEX KNOWN AT COMPILE TIME AND
THE CORRESPONDING COMPILER ERROR.

www.embedded-world.eu

Listing XV shows the panic message printed during run time
if the compiler cannot determine the index at compile time (e.g.,
supplied by the user).

thread 'main' panicked at 'index out of bounds:
the len is 5 but the index is 10', src/main.rs:28:5

LISTING XV: RUN-TIME PANIC MESSAGE WHEN ACCESSING THE 10TH ELEMENT
OF AN ARRAY OF LENGTH 5.

The compiler can detect most memory vulnerabilities during
compile time, similar to the shown examples. However, as the
compiler cannot predict user input, run-time panics effectively
prevent vulnerabilities from being exploited if the developer
forgets to add the necessary checks.

As discussed in section III.C, the risk of a small team of
developers adding a critical bug to their application is far greater
than the RTOS having some critical vulnerability if it has a large
community, is actively used, and is getting tested meticulously.
Even though the entire application is not memory-safe by
combining Rust and C, it significantly improves the confidence
in the product without having to rewrite everything in Rust. This
PoC indicates that Rust and C can coexist to improve IoT
devices' stability, safety, and security.

V. CRYPTO BENCHMARK
The PoC was designed to evaluate the feasibility of Rust for

embedded systems and how the development differs from
C/C++. However, it is not suited for making statements about
other metrics like execution time and memory footprint due to
its limited scope. The former is especially important for battery-
powered devices as execution time is usually directly related to
battery life. Therefore, a crypto benchmark was created with
hashing (SHA256), encrypting (AES-CCM, AES-GCM,
CHACHA20-POLY1305), and decrypting using MbedTLS (C)
[34] and RustCrypto (Rust) [35]. This provides a practical
comparison as these are arguably the most used libraries of their
respective language for bare-metal environments and both have
been audited by third parties.

A. Results
The results listed in Table IV show that there seems to be no

correlation between execution time and language selection.
TABLE IV: RELATIVE DIFFERENCE IN EXECUTION TIME FOR CRYPTOGRAPHIC

ALGORITHMS WHEN SWITCHING FROM MBEDTLS (C) TO RUSTCRYPTO
(RUST).

Algorithm From C to Rust

SHA256 (16 B) - 13 %
SHA256 (64 KiB) - 9 %

AES128-CCM (16 B) + 145 %
AES128-CCM (64 KiB) + 73 %
AES128-GCM (16 B) + 101 %

AES128-GCM (64 KiB) + 20 %
CHACHA20-POLY1305 (16 B) - 53 %

CHACHA20-POLY1305 (64 KiB) - 52 %

Assumably, the implementation of the algorithms and the
efficiency of the libraries themselves are more important for the
resulting execution time. For example, the RustCrypto
implementation of SHA256 completely unrolled all for loops
which is probably responsible for the faster execution. However,
this also results in a far larger memory footprint which is not
always desirable or feasible.

B. The Computer Language Benchmarks Game
The Computer Language Benchmarks Game [36] uses ten

simple but computationally expensive problems for
benchmarking a large number of languages. Everyone can
submit their optimized solutions, and many programmers use
this as a challenge to squeeze every last bit of performance out
of the benchmark of their favorite language. C, C++, and Rust
share the podium on all of these benchmarks. We have awarded
each language with points according to the achieved ranks: three
points for 1st, two for 2nd, and one for 3rd place. The resulting
scoreboard in Table V shows that these languages should be
indistinguishable for most developers and use cases in regard to
theoretical performance.

TABLE V: SCOREBOARD FOR THE COMPUTER LANGUAGE BENCHMARKS
GAME.

Language Points

C++ 21
Rust 20

C 19

VI. CONCLUSIONS
Memory safety is essential for ensuring the security, safety,

dependability, and even basic functionality of devices.
Exploiting memory vulnerabilities easily leads to a fully
compromised device, as conventional countermeasures are
infeasible for most embedded systems. Our analysis, as well as
today’s vulnerabilities and 0-day exploits, indicate that tools like
static and dynamic code analysis provide only inadequate
protection, as even the tech giants with almost unlimited
resources still struggle with memory safety. Rust not only
prevents memory bugs due to its memory safety guarantees but
also significantly improves the development experience
compared to C/C++. Furthermore, no significant difference in
performance could be detected, which is especially important for
battery-powered devices. Of course, Rust’s advantages and
challenges compared to C/C++ must be weighed carefully
before switching languages. However, having C and Rust
coexist in an application allows for a successive transition
without starting from scratch.

ACKNOWLEDGMENT
We would like to thank our employer, ZHAW, for allowing

us to carry out a project that we are very passionate about.
Furthermore, we would like to extend our gratitude to our
coworkers that proofread this paper and significantly
contributed to the quality of this work.

REFERENCES
[1] "What is memory safety and why does it matter?," ISRG, [Online].

Available: https://www.memorysafety.org/docs/memory-safety/.
[Accessed 06. May 2022].

[2] "A Brief History of Malware," Lastline, [Online]. Available:
https://www.lastline.com/blog/history-of-malware-its-evolution-and-
impact/. [Accessed 06. May 2022].

[3] "2021 in Memory Unsafety - Apple's Operating Systems," Fish in a
Barrel, [Online]. Available: https://langui.sh/2021/12/13/apple-memory-
safety/. [Accessed 06. May 2022].

[4] "We need a safer systems programming language," Microsoft Security
Response Center, [Online]. Available: https://msrc-
blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-
language/. [Accessed 06. May 2022].

[5] "Queue the Hardening Enhancements," Google Security Blog, [Online].
Available: https://security.googleblog.com/2019/05/queue-hardening-
enhancements.html. [Accessed 07. May 2022].

[6] "A Year in Review of 0-days Used In-the-Wild in 2021," Project Zero,
[Online]. Available:
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-
more-you-know-you.html. [Accessed 13. May 2022].

[7] "Laying the foundation for Rust's future," Rust Blog, [Online].
Available: https://blog.rust-lang.org/2020/08/18/laying-the-foundation-
for-rusts-future.html. [Accessed 07. May 2022].

[8] "Announcing the Rust Foundation to the World," Rust Foundation,
[Online]. Available: https://foundation.rust-lang.org/news/2021-02-08-
hello-world/. [Accessed 07. May 2022].

[9] S. Klabnik, How Rust Views Tradeoffs, London: QCon, 2019.
[10] "rustup.rs - The Rust toolchain installer," Rust Foundation, [Online].

Available: https://rustup.rs/. [Accessed 12. May 2022].
[11] "The Cargo Book," Rust Foundation, [Online]. Available:

https://doc.rust-lang.org/stable/cargo/. [Accessed 12. May 2022].
[12] "doctest - Test interactive Python examples," [Online]. Available:

https://docs.python.org/3/library/doctest.html. [Accessed 13. May 2022].
[13] "doctest: Test interactive Haskell examples," [Online]. Available:

https://hackage.haskell.org/package/doctest. [Accessed 13. May 2022].
[14] "Characteristics of Object-Oriented Languages," The Rust Programming

Language, [Online]. Available: https://doc.rust-lang.org/book/ch17-01-
what-is-oo.html. [Accessed 08. May 2022].

[15] "Inheritance as a Type System and as Code Sharing," The Rust
Programming Language, [Online]. Available: https://doc.rust-
lang.org/book/ch17-01-what-is-oo.html#inheritance-as-a-type-system-
and-as-code-sharing. [Accessed 08. May 2022].

[16] "Open Source at Ferrous Systems," Ferrous Systems, [Online].
Available: https://ferrous-systems.com/open-source/. [Accessed 08. May
2022].

[17] "Ferrocene: Rust for Critical Systems," Ferrous Systems, [Online].
Available: https://ferrous-systems.com/ferrocene/. [Accessed 08. May
2022].

[18] "ISO 26262," Solid Sands, [Online]. Available:
https://solidsands.com/safety/iso-26262. [Accessed 08. May 2022].

[19] P. Anderson, "The Use and Limitations of Static-Analysis," CrossTalk -
Journal of Defense Software Engineering, vol. 21, 2008.

[20] "Zig," Zig, [Online]. Available: https://ziglang.org/. [Accessed 07. May
2022].

[21] J. Brandon, "How safe is zig?," [Online]. Available:
https://www.scattered-thoughts.net/writing/how-safe-is-zig/. [Accessed
07. May 2022].

[22] "Internet Security Research Group," ISRG, [Online]. Available:
https://www.abetterinternet.org/. [Accessed 07. May 2022].

[23] "Project Prossimo," ISRG, [Online]. Available:
https://www.memorysafety.org/. [Accessed 07. May 2022].

[24] "RFC for Rust in the Linux Kernel," Linux Kernel Mailing List,
[Online]. Available: https://lkml.org/lkml/2021/4/14/1023. [Accessed
12. May 2022].

[25] "Linus Torvalds on C++," cat -v, [Online]. Available: http://harmful.cat-
v.org/software/c++/linus. [Accessed 12. May 2022].

[26] "The Embedded Rust Book," The Embedded Rust Book, [Online].
Available: https://docs.rust-embedded.org/book/intro/index.html.
[Accessed 10. May 2022].

[27] "embedded-hal," Github, [Online]. Available: https://github.com/rust-
embedded/embedded-hal. [Accessed 10. May 2022].

[28] "Design Contracts," The Embedded Rust Book, [Online]. Available:
https://docs.rust-embedded.org/book/static-guarantees/design-
contracts.html. [Accessed 10. May 2022].

[29] "CVE-2020-6007 Detail," The MITRE Corporation, [Online]. Available:
https://www.cve.org/CVERecord?id=CVE-2020-6007. [Accessed 12.
May 2022].

[30] "nRF52840," Nordic Semiconductor, [Online]. Available:
https://www.nordicsemi.com/Products/nRF52840. [Accessed 11. May
2022].

[31] "Zephyr Project," The Linux Foundation, [Online]. Available:
https://www.zephyrproject.org/. [Accessed 12. May 2022].

[32] "OpenThread," OpenThread, [Online]. Available: https://openthread.io/.
[Accessed 11. May 2022].

[33] W. Zhou, L. Guan, P. Liu and Y. Zhang, "Good Motive but Bad Design:
Why ARM MPU Has Become an Outcast in Embedded Systems,"
August 2019. [Online]. Available: https://arxiv.org/pdf/1908.03638.pdf.
[Accessed 10. May 2022].

[34] "MbedTLS," Linaro Limited, [Online]. Available:
https://www.trustedfirmware.org/projects/mbed-tls/. [Accessed 12. May
2022].

[35] "RustCrypto," Github, [Online]. Available:
https://github.com/RustCrypto. [Accessed 12. May 2022].

[36] "The Computer Language Benchmarks Game," Debian, [Online].
Available: https://benchmarksgame-
team.pages.debian.net/benchmarksgame/index.html . [Accessed 12. May
2022].

