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Abstract— Memory corruption is still the most used type of 
exploit in today’s malware landscape. Human error inevitably 
introduces memory vulnerabilities into software by using 
memory-unsafe languages like C and C++, affecting not only 
security but also safety, dependability, and even basic 
functionality of devices. The Rust language guarantees memory 
safety without a garbage collector, promises comparable 
performance to C/C++, and allows for gradual extension of 
existing codebases by using its foreign function interface. This 
report presents the risks of having memory vulnerabilities in 
embedded applications, what a switch to Rust looks like, how the 
development experiences differ between Rust and C/C++, and if 
there are significant differences in performance. 
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I.  INTRODUCTION 
Embedded and bare-metal programming environments 

predominantly use C and C++, which is not surprising due to the 
balanced mix between hardware-oriented programming and 
high-level abstraction. Although these languages have clear and 
undeniable strengths, they also have weaknesses that can no 
longer be overlooked with today's software development know-
how and experience from the last decades. 

A. Memory Unsafety 
Arguably the most critical of these weaknesses is the 

inherent memory unsafety [1], a property of programming 
languages that allows bugs to arise from incorrect memory use. 
These vulnerabilities can be divided into two categories: spatial 
and temporal vulnerabilities. Typical spatial vulnerabilities are 
out-of-bounds array accesses, dereferencing a null pointer, and 
using uninitialized memory. Regarding temporal vulnerabilities, 
use-after-free, double-free, and data races are known problems 
(these lists are not exhaustive). Since the advent of malware in 
the 1980s [2], exploits have been using memory vulnerabilities 
extensively because they usually allow a severe compromise of 
the target. Fish in a Barrel's iOS14 analysis in 2021 identified 
346 vulnerabilities, of which 209 (60%) were due to memory 
unsafety [3]. Among actively exploited vulnerabilities, they 
attributed 8 out of 11 (73%) to memory unsafety. Microsoft's 
Security Response Center says that memory unsafety caused 

70% of their assigned CVEs [4]. The Google Security Blog even 
speaks of a memory unsafety share of 90% of all Android bugs, 
mainly consisting of out-of-bound reads and writes, use-after-
free, and integer overflows [5]. Finally, Google's Project Zero 
analyses 0-day exploits and concluded that 39 of 58 exploits in 
2021 are due to memory corruption [6]. So, although the 
problem of memory unsafety has been known for a long time, 
decades of experience have not led to the production of software 
without critical memory vulnerabilities today. On the contrary, 
according to the sources mentioned above, memory unsafety is 
the most common cause of vulnerabilities. We will not be able 
to produce bug-free code anytime soon without significantly 
changing software development. 

B. Problem for Everyone 
Even if one does not care about security, memory unsafety 

also has a tremendous impact on the basic functionality of a 
device. Memory bugs can be extremely hard to find and can stay 
undetected by various static and dynamic code analysis tools, 
even worse if they only appear after a specific run time in the 
field. Bugs like this are notoriously difficult to reproduce and 
trace, which makes troubleshooting enormously difficult and, in 
the worst case, can result in a significant loss (both monetary and 
reputational). Memory unsafety is arguably just as crucial for 
those who deal with systems and devices where safety and 
dependability are essential. There will hardly be any device that 
does not require either security, safety, dependability, or just 
basic functionality. Memory safety should therefore be an ideal 
to strive for, no matter what domain you come from or what 
demands the product has, as it ties into all of them. Of course, 
no one claims that memory safety means you will no longer have 
other types of bugs in your code. It only eliminates memory bugs 
and does not protect the developer from introducing other bugs, 
such as logic errors, into the code. 

However, especially concerning embedded devices and the 
Internet of Things (IoT), getting rid of a whole category of bugs 
is extremely valuable. It reduces the probability of a critically 
necessary update, which can be extremely costly in the case of a 
large number of devices. This becomes even worse if the devices 
do not have sufficient connectivity, requiring the update to be 
performed manually, maybe even onsite. 



 

 

C. What Can We Do About It? 
There are only two options for achieving memory safety. 

Either we use various tools and tests to check code written in a 
memory-unsafe language for bugs and vulnerabilities, or we use 
a memory-safe language like Rust from the beginning. This 
report contains insights and experiences from embedded 
software developers who, after more than a decade with C, have 
decided to evaluate what a switch to (embedded) Rust looks like 
and how it compares to working with C/C++. On the one hand, 
the report summarizes publicly available information, which 
will be of interest to all those who want to take this step without 
digging through the vast amounts of documentation. 
Additionally, the report also contains findings on how the 
development experiences differ between Rust and C/C++. 

This report is structured accordingly: Section II introduces 
Rust and how the ecosystem and the software development 
workflow differ from C/C++. Further, it lists drawbacks and 
how one can achieve memory safety without using Rust. Lastly, 
the section discusses which companies and projects already 
employ Rust. Section III investigates the use and benefits of Rust 
in Embedded Systems. Section IV presents a proof of concept 
(PoC) application written in C, the possible damages caused by 
exploitation, and an equivalent but memory-safe PoC 
application written in Rust. Section V compares the performance 
of the languages with a benchmark consisting of cryptographic 
primitives, and section VI draws appropriate conclusions. 

II. RUST 
Rust is a compiled, strong- and statically-typed systems 

programming language with high-level features while retaining 
low-level memory management capabilities. Graydon Hoare 
started developing Rust at Mozilla Research in 2010. Mozilla 
has gradually reduced its influence on the project while open-
source contributions steadily increased [7]. Rust is now 
stewarded by the Rust Foundation since its formation in 
February 2021 [8]. 

According to Steve Klabnik (former member of the Rust 
core team and co-author of the official Rust book) [9], Rust has 
memory safety, speed, and productivity as its core values. 
Ergonomics, compilation time, and correctness are seen as 
secondary values. Regarding the last point, it is essential to note 
that Rust strongly cares about your program being correct, but 
just not in the sense that it would force you to use dependent 
types or a proof assistant. However, Rust does not create new 
programming paradigms and uses previously established ones. 
Further, it does not release unfinished features only for the sake 
of releasing and will not guarantee support for old and obsolete 
targets. 

So far, it sounds like Rust could be just a younger and less 
mature version of C++. However, it boasts memory safety 
without the need for a runtime and garbage collector, which is 
the case for common memory-safe languages like Java, C#, or 
Python. It achieves this with the concept of ownership, Rust’s 
arguably most unique feature. It is responsible for most memory 
safety guarantees and prevents memory bugs with either a 
compilation error or a controlled panic during run time. Table I 
shows how various issues are handled by Rust. 

TABLE I: TYPICAL MEMORY BUGS AND WHEN RUST HANDLES THEM. 

Issue Rust (release) 

Out-of-bounds R/W Run time 
Null dereference Run time1 

Type confusion Run time1 

Integer overflow Run time1 

Use-after-free Compile time 
Double free Compile time 

Invalid stack R/W Compile time 
Uninitialized memory Compile time 

Data race Compile time 
1: Some restrictions apply  
 

A. Rust’s Improved Ecosystem 
Memory safety is not the only new or improved feature 

compared to C/C++. Working with Rust, you quickly realize that 
Rust is a much newer language and was designed with the flaws 
and shortcomings of C/C++ in mind. For example, switching the 
RTOS of an application might take multiple days just to set up 
the C/C++ build system by installing all the dependencies and 
the required toolchain. Many of these build systems are also 
famously convoluted, making this even harder. Installing Rust is 
extremely simple with the "rustup" toolchain installer [10], even 
when cross-compiling for bare-metal targets. And Rust's internal 
package manager, "Cargo" [11], takes care of downloading 
dependencies, compiling your package, and even distributing it 
if you wish to do so. Furthermore, Rust contains various 
language features typically associated with high-level or 
scripting languages like pattern matching, verbose backtraces, or 
generic functions and types (similar to C++ templates). Such 
features are unusual for languages that run on bare-metal targets. 
This section will not go into detail on what Rust can and cannot 
do but rather show how these features had a positive impact on 
the development experience. 

As mentioned before, installing Rust is extremely easy, and 
you will not have to fight with some obscure build system as 
everything has been standardized with Cargo. Next up is 
learning the actual language itself. The community prides itself 
on enforcing an open and inclusive environment for newbies and 
veterans alike. The creation and maintenance of learning 
resources that are needed to get into the language are usually led 
by members of the core team with contributions from the 
community. Notably, the superb documentation of the language 
and associated software keeps the barrier low for new 
contributors. 

B. How Rust Development Differs From C/C++ 
This section uses a fictional application development to 

discuss how the development experiences of C/C++ and Rust 
differ. Imagine you are starting the project and want to take your 
first steps with the library you will use. Many C libraries pack 
related data into structs, which need to be set up and configured 
using specific functions before they can be passed to multiple 
functions by reference to achieve some arbitrary tasks. Listing I 
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illustrates some potential function prototypes for drafting and 
approving a post. 

typedef struct { 
    ... 

} post_t; 
 

int post_init(post_t *post); 
int post_add_content(post_t *post, uint8_t *content); 
int post_request_review(post_t *post); 
int post_approve(post_t *post);  

LISTING I: C FUNCTION PROTOTYPES FOR DRAFTING A POST. 

C's type system does not assist newcomers to the library, as 
all functions just need a pointer to the struct without encoding 
further information into the types. The user needs to make sure 
that they call the required functions in the correct order, and 
finding all of them might be even harder. Contrastingly, Rust’s 
type system wants the library's author to encode as much 
information into the types as possible. Listing II demonstrates 
what the corresponding Rust function prototypes could look 
like. 

fn new_draft_post(content: String) -> DraftPost {...} 
fn request_review(draft: DraftPost) -> PendingReview {...} 
fn approve_post(pend: PendingReview) -> Post {...}  

LISTING II: RUST FUNCTION PROTOTYPES FOR DRAFTING A POST. 

Thus, the type system guides the user automatically to all the 
necessary functions as many of the types can only be produced 
by calling the respective functions instead of creating them 
directly. In the case of the example, the user can only create 
values of the type Post by calling the listed functions in order. 
Of course, a C library could also specify different struct types 
for the different stages of the post. However, this is neither the 
convention nor can C prevent the user from simply creating an 
instance of the final post struct directly and skipping the 
functions altogether. 

Assume that you progressed with your fictional application 
development and are happily working with Rust's enums. There 
is a similar concept in other languages called "tagged unions", 
as they allow data of different types and sizes to be attached to 
the enum variants. Listing III illustrates an enum for storing 
either an IPv4 address using four 8-bit integers, an IPv6 address 
as a string, or no address without any associated data. Rust 
checks the type during run time, and thus the data cannot be 
interpreted for another variant. 

enum IpAddr { 
    V4(u8,u8,u8,u8), 
    V6(String), 
    None, 
} 

 

let ipv4 = IpAddr::V4(127,0,0,1); 
let ipv6 = IpAddr::V6(String::from("::1")); 
let no_addr = IpAddr::None;  

LISTING III: ENUM EXAMPLE IN RUST. 

Listing IV shows how this could be implemented in C using 
a struct and an enum. 

typedef enum { 
    V4, 

    V6, 

} ip_version_t; 
 

typedef struct { 
    ip_version_t version; 
    uint8_t *addr; 
} ip_addr_t; 
 

uint8_t addr_buf[4] = {127,0,0,1}; 
ip_addr_t ipv4 = { 
    .version = V4, 

    .addr = addr_buf, 

};  
LISTING IV: ENUM EXAMPLE IN C. 

Rust’s enums are not just significantly more concise but also 
safe compared to C’s alternative, as setting and checking the 
current variant is mandated by the syntax. In contrast, C allows 
the developer to forget to set or check the enum variant. 
Interpreting the address field for the wrong variant or a similar 
mistake would go undetected and result in undefined behavior. 
This boils down to the same problem as forgetting the null 
pointer check in C when supplying functions with pointers. 

Unfortunately, even good code is not perfect, and errors will 
likely happen during run time. Most C libraries follow the 
convention to return an integer corresponding to the occurred 
error. This approach, however, does not work well with bubbling 
up the error to the upper layers without loss of information or 
significant effort to implement sophisticated error handling. 
Rust again uses the "tagged union" functionality of their enums 
by defining result values that allow functions to return data with 
different types and sizes in case of success or an error. Listing V 
shows how a function can return an integer if successful or a 
string in case of an error. 

fn foo(a: u8, b: u32) -> Result<u32,String> { 
    ... 

}  
LISTING V: RUST FUNCTION USING A RESULT TYPE AS A RETURN VALUE. 

Of course, C could define a tagged union for returning 
different types from a function as well. However, this introduces 
the same problem of forgetting to check which variant is 
currently stored in the union, as discussed in the previous enum 
example. Apart from that, returning tagged unions in C is also 
somewhat uncommon. 

Rust has an excellent testing infrastructure and encourages 
the developer to add corresponding unit tests directly under the 
code-under-test. The tests are typically excluded during building 
to keep the executable as small as possible. Using the cargo 
test command, they can be executed whenever desired. 
Listing VI demonstrates the recommended practice of placing 
Rust code and its corresponding unit test into the same file. 



 

 

fn foo(a: u8, b: u32) -> Result<u32,String> { 
    ... 

} 

 

#[cfg(test)] 

mod tests { 
    use super::*; 
 

    #[test] 

    fn test_foo() { 
        assert_eq!(foo(1,1000).unwrap(), 123); 
    } 

}  
LISTING VI: FUNCTION AND ITS CORRESPONDING UNIT TEST. 

Assume that all tests have passed in your fictional 
application development, your application reached version 
1.0.0, and you shipped it to the customer. Even though you 
thoroughly tested your application, you still missed something, 
and the client immediately encountered a bug. You quickly find 
the reason, fix the bug, build the application, and run the tests. 
Astonishingly, the unit tests pass, but the integration tests fail. It 
appears that the change to the code was correct as the unit tests 
passed. However, you added a so-called doc comment to the 
function in question. As implied by the name, doc comments 
allow the developer to add documentation to code elements like 
functions, methods, or types. Rust highly encourages developers 
to add example code to such doc comments as the compiler 
converts them to integration tests. Listing VII shows a function 
with a doc comment containing sample code. Executing the first 
line of code in the doc comment verifies if calling the function 
works as intended, while the second line checks the return value 
similar to a unit test. 

/// Add two numbers. 
/// 
/// # Example 
/// ``` 
/// let res = add(2,3); 
/// assert_eq!(res, 5); 
/// ``` 
fn add(a: u32, b: u32) -> u32 { 
    ... 

}  
LISTING VII: FUNCTION WITH DOC COMMENT CONTAINING EXAMPLE CODE. 

Regarding the fictional application development, you 
modified the function signature and its call sites. However, you 
forgot to update the description and the example in the doc 
comment. Fortunately, the outdated example code resulted in an 
integration test failure which prompted you to update the entire 
doc comment. Outdated doc comments can be very problematic 
as they might lead to others misusing your code. Similar 
functionality can be found in other languages like Python [12] 
and Haskell [13]. Due to the integration test failure, you could 
correct the documentation, and you can use Cargo to create the 
project documentation. It aggregates all doc comments and 
publishes the resulting documentation as an interlinked webpage 
for easy navigation, which is one of the reasons why published 
Rust crates (libraries) are so well documented. 

The features discussed in this section, Rust’s type system, 
improved error handling, testing infrastructure, along with many 
other features, and its safety guarantees result in the developer 
being able to focus more on the logic and the functionality of the 
application instead of constantly worrying about introducing 
bugs into the code. This significantly increases productivity and 
confidence in the resulting product. 

C. Drawbacks 
Of course, do not trust anyone that claims that Rust does not 

have any real drawbacks. For example, there is currently no clear 
definition of what features a programming language needs to 
qualify as object-oriented. Rust does not make any claims [14] 
but argues to be somewhere in between as it allows the creation 
of objects (structs and enums) that package data and define 
corresponding procedures (methods) that act on this associated 
data. Another common feature is the encapsulation of the data in 
these objects, which Rust is also capable of (private and public 
attributes). Lastly, inheritance is also widely regarded as a 
feature of object-oriented languages, which Rust intentionally 
does not support [15]. Rust uses a different approach (traits and 
trait objects) instead of inheritance to solve similar problems. A 
trait specifies one or more methods that need to be implemented 
by the type (sometimes called interface in other languages). If 
two types implement the same traits, they share the same 
behavior. However, this specific take on object orientation adds 
to the complexity of the language as it is yet another concept that 
either has to be learned from scratch or one has to adjust to if 
coming from a language like C++. 

Furthermore, the concept of ownership introducing memory 
safety is entirely new for most programmers. The associated 
compile-time errors might appear complex and unfair at times 
as the compiler just relentlessly flags various lines of code if it 
detects the possibility of a memory safety violation. You can 
consider every C warning a Rust error and probably will get even 
more errors on top of that. Ultimately, the learning curve is very 
subjective, but we experienced C as easy to learn and hard to 
master and Rust as hard to learn and easy to master. 

It is not a surprise that a language many times younger than 
C does not have the same ecosystem yet. Even though it is 
growing every day, there might not be a library for your specific 
use case yet. Moreover, although Rust has full Windows support 
for the compiler and the standard library, the community is 
decidedly Linux-focused, resulting in some third-party libraries 
supporting Windows only partially or not at all. 

Various design choices of Rust require that the compiler has 
access to the source code of the application as well as all the 
dependencies written in Rust. This requirement effectively 
makes it impossible to publish compiled Rust libraries which 
might be a problem for companies wanting to preserve their 
intellectual property. However, Rust’s licensing model is 
permissive enough for releasing your source code with a 
commercial license that requires anyone to buy it first. If the 
source code must be kept secret at all costs, a Rust library can 
also be compiled to a static library with a C interface, 
indistinguishable from a static C library. However, this results 
in the Rust compiler not being able to check security guarantees 
across the entire application for anyone that uses this library. The 
application itself, as well as the library, are checked individually, 
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but the calls to and from the library cannot be checked, as the C 
interface of the static Rust library effectively acts as a barrier to 
the safety checks of the compiler. Thus, the developer needs to 
check the safety and correctness of the calls to and from the 
library. Fortunately, this is possible with reasonable effort if the 
API of the library is clearly defined and manageably sized. 
Furthermore, suppose a memory vulnerability still manages to 
be detected. You can limit the search to the interaction between 
the application and the library, making the search much more 
accessible, especially for large projects. Lastly, the current rise 
of open-source culture and this characteristic of the Rust 
compiler may lead to more vendors releasing their source code. 
This would significantly improve the debugging experience 
compared to working with precompiled libraries, which are 
effectively a black box for the end-user. 

Another often-debated drawback is Rust's compilation time, 
as compiling a large project depending on various other crates 
can take some time to compile for the first time. Type checking, 
turning generic into specific implementations, running the 
borrow checker (this is what verifies the ownership rules), and 
compiling all third-party crates from source just takes time. 
However, this is time that you would otherwise spend debugging 
when using a memory-unsafe language, i.e., you "pay" for the 
safety guarantees with an extended compilation time. Luckily, 
subsequent builds only compile the changed crates, which 
results in very short compilation times in most use cases. 

Lastly, the currently missing compiler certification might be 
a dealbreaker for some industry sectors. Fortunately, the German 
company Ferrous Systems, which is already involved in multiple 
Rust open-source projects and working groups [16], takes on the 
challenge of providing a Rust compiler toolchain version 
qualified for ISO26262 [17][18], which is a functional safety 
standard for electrical and electronic systems in series 
production passenger cars. They plan on tackling other 
certifications if this project is successful. 

D. Alternative Solutions 
Instead of using a memory-safe language, one could also 

keep using C/C++ and use specialized tools to ensure memory 
safety. Unfortunately, this is only treating the symptoms instead 
of the root cause, which shows as soon as one analyzes their 
efficiency in regard to finding memory bugs. Static code 
analysis (SCA) is only as good as the ruleset, which must be 
finetuned to whatever it is applied. Moreover, as soon as a 
library is used without access to the source code, the SCA has 
no choice but to assume that calls to and from such libraries, as 
well as the library itself, are correct. This returns the 
responsibility to the developer, which is precisely the opposite 
of what the SCA tried to achieve in the first place. 

Most SCA tools parse the code into an abstract 
representation which is then analyzed. This analysis is path 
sensitive as bugs might only occur if various code segments are 
executed in a specific order. However, this poses a significant 
problem for SCA as a full exploration of all paths quickly 
exhausts the provided resources. As most software developers 
do not have access to a supercomputer, the tool must make 
assumptions on what probably will not happen during run time 
or other approximations. This situation is further exacerbated if 
asynchronous paths like interrupts, exceptions, or concurrency 

can occur, with many tools simply ignoring the possibilities [19]. 
In contrast, Rust again uses the sophisticated type system, which 
annotates every type if it is safe to be sent over a thread boundary 
and if it contains the required synchronization mechanics (e.g., 
mutex) for safe accesses from different contexts. In other words, 
Rust forces you to take all necessary precautions while providing 
concurrency guarantees at compile time instead of run time. 

Dynamic code analysis (DCA) is often used together with 
SCA, as these two approaches complement each other. 
Unfortunately, both combined are still not able to detect all types 
of memory bugs. This is further complicated because DCA can 
only find bugs that actually occur during a test run, and memory 
bugs are known to be very elusive. Additionally, these run-time 
checks can impose a significant performance impact, resulting 
in the tests not being run under the same conditions as the 
device-under-test. This does not even consider that many DCA 
checks are only available for x86 and other desktop-style 
architectures. For a Cortex-M architecture, they would need to 
be ported manually, or the firmware could be checked within an 
emulation. Though, this approach would require mocking the 
used peripherals and maybe even externally connected devices 
in case of networking. In contrast, everything that Rust cannot 
catch at compile time (like indexing an array with a number 
supplied by the user) is handled with implicitly added run-time 
checks that trigger a controlled panic for keeping the system in 
a known and controlled state. These checks could be regarded as 
mandatory DCA while resulting in minimal to zero overhead, 
depending on the situation. The default panic handler mainly 
prints a backtrace to the standard error output and aborts the 
program. This behavior is usually infeasible for embedded 
systems due to missing OS abstractions or because simply 
aborting the program and requiring a user to restart the 
application is impossible (e.g., pacemaker). Thus, custom panic 
handlers can be registered to select the desired behavior in case 
of run-time errors, like resetting the target. Similar to 
conventional watchdogs triggered by anomalous execution 
times and deadlocks, this is effectively a watchdog triggered by 
run-time bugs. 

Other tools to identify bugs include fuzzing and emulation: 
Fuzzing can be used to verify the input of functions, but other 
than that, it is severely limited in its use cases. Emulation might 
also help find some more bugs, but it is usually extremely costly 
to set up the environment, create all the needed mocks, and keep 
everything up to date. 

To test how thoroughly the discussed SCA/DCA tools find 
bugs, we created 16 small C/C++ applications containing 
different types of memory bugs. We used popular tools like 
splint (out-of-the-box configuration), cppcheck (using the 
MISRA C 2012 ruleset), and GNU C/C++ sanitize for our tests. 
Listing VIII shows one of the 16 applications leading to a 
memory safety issue. 

void foo(uint32_t x) { 
    uint32_t buf [10]; 
    if (x == 100) { 
        buf[x] = 0; 
    } 

}  
LISTING VIII: EXAMPLE MEMORY VULNERABILITY BUG. 



 

 

Table II shows if the different tools flag the bugs correctly. 
Of course, one could improve the configuration of the tools so 
that they might find more bugs. However, this is a clear 
advantage for Rust as it executes all tests every time without 
requiring manual configuration and is able to find all these bugs. 
Such an approach eliminates the inevitable human errors 
associated with the configuration of such software checks. 

TABLE II: CHECKING IF SCA/DCA TOOLS FIND MEMORY BUGS. 

Bug cppcheck splint GNU C/C++ 
sanitize 

0 ✓ ✓ ✓ 
1 ✓ ✓ ✓ 
2 ✓ ✓ ✓ 
3 missed ✓ missed 
4 missed ✓ compile err. 
5 ✓ ✓ missed 
6 ✓ ✓ missed 
7 missed ✓ missed 
8 ✓ ✓ partly 
9 partly ✓ partly 
10 ✓ missed missed 
11 missed ✓ missed 
12 ✓ ✓ missed 
13 missed ✓ partly 
14 ✓ incompatible ✓ 
15 missed incompatible missed 

 

Instead of using tools to make an unsafe language safe, one 
could also use a different memory-safe language than Rust, like 
Go, C#, Java, Swift, Python, or JavaScript. However, getting 
these languages to run at a comparable performance on an 
embedded device (if at all!) would be a significant challenge, to 
say the least. Moreover, the language Zig [20] is not entirely 
memory-safe, but it presents itself as a better C alternative and 
provides significantly more checks than C. However, Table III 
shows that it is still not close to the safety guarantees of Rust 
[21]. 

TABLE III: C, ZIG, AND RUST MEMORY SAFETY COMPARISON. 

Issue Zig (release-safe) Rust (release) 
Out-of-bounds R/W Run time Run time 

Null dereference Run time1 Run time1 

Type confusion Run time1,2 Run time1 

Integer overflow Run time Run time1 

Use-after-free None1 Compile time 
Double free None1 Compile time 

Invalid stack R/W None Compile time 
Uninit. memory None Compile time 

Data race None Compile time 
1: Some restrictions apply, 2: Partial 

 

Furthermore, Zig is even younger than Rust as it started in 
2016 and is currently on version 0.9.1 as of the release of this 
report. 

E. Where Is Rust Used? 
Not every company clearly states what kind of languages 

they use in their products. However, one can safely assume that 
members of the Rust Foundation use the language in some of 
their products or production workflow. The platinum members 
AWS, Google, Huawei, Meta, Microsoft, and Mozilla, are huge 
companies with the necessary budget to make such drastic 
changes as introducing a new programming language into 
products. Therefore, it is probably more interesting to look at the 
silver members like 1password, Arm, Dropbox, and Threema as 
they better represent all the businesses besides the tech giants. 

The Internet Security Research Group (ISRG) [22] started 
the Prossimo project [23] to move the Internet's security-
sensitive software infrastructure to memory-safe code. They 
depend on an active community of developers and funders to 
reach their goals. Probably the most famous of their initiatives is 
the journey to get Rust as a language for writing Linux Kernel 
drivers [24]. They created a branch of the Linux Kernel and 
currently apply necessary changes to facilitate the use of Rust. 
Even though Linus Torvalds voiced concerns in his reply to the 
RFC, he gave his implicit approval by not shutting it down 
immediately (unlike his infamous reaction to C++ [25]), which 
makes Rust the first language besides C to be considered 
anywhere near the Linux Kernel. Rustls is another one of their 
initiatives and is an alternative to OpenSSL written in Rust. It 
passed its first audit in 2020 and is ready to be used according to 
the maintainers. Furthermore, they have currently active 
initiatives to create memory-safe implementations in Rust for 
the network time protocol (NTP), domain name system (DNS) 
resolvers, curl (ubiquitous network transfer utility), and mod_tls 
(used in HTTP server by Apache). 

III. EMBEDDED RUST 
Generally, Rust supports both desktop PCs and embedded 

systems because the language allows complete low-level access. 
Nevertheless, the Embedded Rust Book [26] clearly 
distinguishes the following embedded programming 
classifications: hosted and bare-metal environments. The former 
is close to a desktop environment as it provides the application 
with a system interface like POSIX for accessing systems like 
the file system, threading, or networking. The latter does not 
include OS abstractions or other code that runs before the actual 
application. Rust's standard library (libstd) is implicitly added to 
all applications and requires OS abstractions like those provided 
in a hosted environment. Thus, the libstd is not available in bare-
metal environments. However, Rust's core library (libcore) is a 
platform-agnostic subset of libstd, allowing the creation of 
applications for bare-metal environments without the need for 
any OS abstractions. 

A. Portability of Embedded Drivers 
Diving deeper into bare-metal environments, interacting 

with core peripherals usually either requires writing a custom 
driver and accessing the registers directly or using the drivers 
supplied by the manufacturers. Both approaches are very bad for 
portability if you want to change the MCU family (or even 
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manufacturer) down the line. The embedded working group is 
developing the embedded-hal crate [27] to build an ecosystem 
of platform-agnostic drivers. They specify traits for various 
peripherals (like ADC, SPI, Timers, …) and authors of drivers 
for a specific peripheral on a specific target are then encouraged 
to design their drivers using these traits. This allows applications 
to switch devices as all the calls to the peripherals are the same 
if the drivers all use the embedded-hal. The embedded-hal is 
gaining significant traction and represents a strong step towards 
increased portability of bare-metal applications. 

B. The Type System and Peripherals 
Even though the type system is already great as it is, it is even 

more helpful when dealing with the setup of hardware resources 
like peripherals or GPIOs. For example, see the function 
signature of uart_init(…) in Listing IX for a fictional 
initialization function of a UART driver. For the TX pin, the 
developer then needs to supply the function with a variable of 
the type GpioOutput to satisfy the type system and get an 
instance to control the UART. However, the GPIO driver, which 
declared this type, does not simply allow the creation of such a 
variable. It forces the developer to use the appropriate function 
to initialize an output pin from an uninitialized pin, which 
returns the required type (see example function signature 
gpio_init_output(…) in Listing IX). Of course, this 
procedure applies to the RX pin and various other peripherals 
that require setting up the hardware as well. Encoding the pin 
state like this ensures that misconfiguration (or simply forgetting 
to initialize) is an issue of the past [28]. 

fn uart_init(baudrate: u32, 
             tx: GpioOutput,  
             rx: GpioInput) -> Uart {...} 
 

fn gpio_init_output(pin: GpioUninit) -> GpioOutput {...}  
LISTING IX: ENCODING PIN STATES INTO TYPES IN RUST. 

Notably, truly idiomatic Rust would further use its object-
oriented characteristics to tie the data types and methods 
together even more. 

C. C and Rust Coexisting 
Finally, imagine an IoT device being developed using an 

RTOS written in C. Depending on the development philosophy 
of a company, it might be fair to assume that the developers 
working on the business logic are more likely to introduce bugs 
than the underlying RTOS, which is probably getting tested 
more thoroughly and has more eyes on the code itself. Of course, 
bugs will inevitably come up in the RTOS as it is unlikely that 
they will never make a mistake when using a memory-unsafe 
language. However, a device’s probability of a critical bug can 
be significantly reduced if at least the business logic on top is 
written in a safe language, which usually offers the most 
considerable bug potential. Especially if the device 
manufacturer is understaffed, on a budget, and pressed with 
deadlines. 

IV. PROOF OF CONCEPT 
CVE-2020-6007 [29] is a heap-based buffer overflow 

vulnerability in Philips Hue Bridge that allows the attackers to 
install malicious firmware on smart light bulbs and spread it to 

other IoT devices within the same network. This vulnerability 
was the catalyst for this evaluation and report. 

A. PoC in C 
We created a proof of concept (PoC), which is loosely based 

on the CVE. It consists of an nRF52840 (Cortex-M4) [30] 
running a C application built on top of the Zephyr RTOS [31], 
which simply prints strings received over an open UDP server. 
Instead of using ZigBee, which is used by Hue products, we used 
OpenThread [32] as it is built on top of the same physical layer 
(IEEE 802.15.4 radio) and was already known to the authors. 
We deliberately designed the application in C with a simple 
memory vulnerability that can be in or excluded during compile 
time. Listing X shows the (very artificial) vulnerability in 
question, which is a simple memcpy(…) instruction using the 
source length without clamping it to the maximum size of the 
destination, resulting in a typical buffer overflow. 

void vulnerable_print(const char* input, int len) 
{ 

    static int count = 0; 
    char buffer[16]; 
 

    /* Missing checks of input arguments */ 
     

    /* Copying into buffer w/o checking for overflows */ 
    memcpy(buffer, input, len); 
    buffer[len] = 0; 
 

    printk("[%u]: %s\n", count++, buffer); 
}  

LISTING X: SIMPLE MEMCPY() VULNERABILITY. 

B. Buffer Overflow Exploits 
Notably, C code compiled for the ARMv7E-M architecture 

used in the Cortex-M4 stores the base pointer of the last frame 
and the return address to the calling function in the first two 
words of the stack frame, as displayed in Figure 1. 

 
FIGURE 1: TYPICAL STACK FRAME LAYOUT. 

This vulnerability thus enables the attacker to call some other 
function already present in the target’s flash (like opening the 
safe or outputting some sensitive data) by overwriting the return 
address with the address of the target function. Of course, 
exploiting this either requires knowledge of the firmware or 
brute-forcing the target address. Listing XI shows what such an 
exploit could look like. 
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|<-- Filling buffer with dummy data -->|<-Ret->| 
11111111222222223333333344444444555555550d040000 

 
LISTING XI: EXPLOIT FOR REDIRECTING EXECUTION FLOW. 

Instead of filling the buffer with dummy data and 
overwriting the stored return address, the attacker could also fill 
the buffer with shellcode (malicious machine code manually 
crafted for the target architecture) and overwrite the return 
address with the address of the buffer itself. This instructs the 
MCU to fetch its next instructions from the vulnerable buffer 
that the attacker just filled with shellcode. Listing XII illustrates 
an exploit containing shellcode. 

|<--           Assembly code        -->|<-Ret->| 
4ff0a0434ff4f032c3f81825c3f80c2555555555f1ef0020 

 
LISTING XII: EXPLOIT USING SHELLCODE. 

It is called "shellcode", as it is typically used to spawn a shell 
from which the attacker can control the target. However, it could 
also contain any other instructions like accessing a peripheral or 
exfiltrating sensitive data. Even worse is the fact that Cortex-M 
devices cannot make use of virtual addresses because of the 
missing memory management unit (MMU). Thus, established 
shellcode countermeasures like address space layout 
randomization (ASLR) are unavailable. Furthermore, there is no 
separation of kernel and userspace as seen in desktop 
environments, which would otherwise limit the reach of the 
exploits. At least most Cortex-M devices include a memory 
protection unit (MPU) that prevents unauthorized memory 
access. This countermeasure effectively prevents the attack, as 
the whole RAM (where the vulnerable buffer inside the stack is 
located) could be set to "not executable". It triggers an exception 
as soon as the address of the buffer is loaded into the instruction 
register at the beginning of the attack. Unfortunately, a study by 
W. Zhou et al. found the MPU of Cortex-M devices to be 
insufficient and circumventable [33]. According to the study, 
recent updates mitigated some of the issues, but the overall MPU 
design remains flawed. 

Even if a functional and sophisticated MPU were present, an 
attacker could resort to return-oriented programming (ROP) if 
they have access to the target firmware. This exploitation 
technique allows arbitrary code execution without injecting it 
into the target system by misusing code already present in its 
flash memory. Conventional countermeasures are either 
unavailable on Cortex-M devices due to the missing hardware 
(e.g., MMU) or add significant overhead to the execution, 
making them infeasible for IoT's performance and energy 
constraints. 

C. PoC in Rust 
Rewriting the same application in Rust showed that it is 

possible to use a preexisting RTOS written in C and add one's 
business logic on top using Rust. Rust's promises for a zero-
overhead foreign function interface (FFI) held up, as we could 
call Rust functions from C and vice versa. However, there was a 
clear limitation to FFI that arose during the development of our 
Rust PoC. C symbols, macros, and other preprocessor 
functionalities are not available from Rust as the FFI works 
during link-time. Specifically, the Zephyr RTOS used for this 

PoC uses macros for various things that are now unavailable 
from Rust. Depending on the macro, this could either be solved 
by packing it into a function or by creating a corresponding Rust 
function that contains the same functionality. 

In contrast to the vulnerable C function in Listing X, 
idiomatic Rust does not pass a type containing contiguous 
memory (e.g., arrays) and the length of the stored data in this 
memory separately, as this is known to be error-prone. Instead, 
developers are encouraged to use a type that owns the memory 
and keeps track of the metadata. For example, the String type 
is actually a struct containing a pointer to the memory that holds 
the contents of the string, a field for storing the maximum 
capacity, and a field for the current length of the stored string. 
The fields are private and thus force the developer to use the 
String’s methods which keep track of the metadata and 
prevent memory violations. 

Therefore, it was impossible to recreate the vulnerable 
function of Listing X in Rust, which is not surprising regarding 
Rust’s memory safety guarantees. We created example 
functions for demonstrating how trying to misuse arrays results 
in either compile-time errors or run-time panics. Listing XIII 
attempts to copy an array of length 10 into an array of length 5, 
resulting in a compile-time error. 

fn wrong_buf_len() { 
    let dest = [0;5]; 
    let src = [0;10]; 
    dest = src; 
} 
 
error[E0308]: mismatched types 
  --> src/main.rs:18:9 
   | 
18 |     dest = src; 
   |            ^^^^ expected an array with a fixed size 
                     of 5 elements, found one with 10 
                     elements 

 
LISTING XIII: COPYING AN ARRAY OF LENGTH 10 INTO AN ARRAY OF LENGTH 5 
AND THE CORRESPONDING COMPILER ERROR. 

Listing XIV uses a constant out-of-bounds index which also 
yields a compile-time error. This detection also works with 
arithmetic expressions as the index, as long as the compiler can 
evaluate them at compile time. 

fn const_index_out_of_bounds() { 
    let mut buf = [0;5]; 
    buf[10] += 1; 
} 

 

error: this operation will panic at runtime 
  --> src/main.rs:23:2 

   | 

23 |     buf[10] += 1; 

   |     ^^^^^^^ index out of bounds: the length is 5 but 
                 the index is 10  

LISTING XIV: USING OUT-OF-BOUNDS INDEX KNOWN AT COMPILE TIME AND 
THE CORRESPONDING COMPILER ERROR. 
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Listing XV shows the panic message printed during run time 
if the compiler cannot determine the index at compile time (e.g., 
supplied by the user). 

thread 'main' panicked at 'index out of bounds: 
the len is 5 but the index is 10', src/main.rs:28:5 

 
LISTING XV: RUN-TIME PANIC MESSAGE WHEN ACCESSING THE 10TH ELEMENT 
OF AN ARRAY OF LENGTH 5. 

The compiler can detect most memory vulnerabilities during 
compile time, similar to the shown examples. However, as the 
compiler cannot predict user input, run-time panics effectively 
prevent vulnerabilities from being exploited if the developer 
forgets to add the necessary checks. 

As discussed in section III.C, the risk of a small team of 
developers adding a critical bug to their application is far greater 
than the RTOS having some critical vulnerability if it has a large 
community, is actively used, and is getting tested meticulously. 
Even though the entire application is not memory-safe by 
combining Rust and C, it significantly improves the confidence 
in the product without having to rewrite everything in Rust. This 
PoC indicates that Rust and C can coexist to improve IoT 
devices' stability, safety, and security. 

V. CRYPTO BENCHMARK 
The PoC was designed to evaluate the feasibility of Rust for 

embedded systems and how the development differs from 
C/C++. However, it is not suited for making statements about 
other metrics like execution time and memory footprint due to 
its limited scope. The former is especially important for battery-
powered devices as execution time is usually directly related to 
battery life. Therefore, a crypto benchmark was created with 
hashing (SHA256), encrypting (AES-CCM, AES-GCM, 
CHACHA20-POLY1305), and decrypting using MbedTLS (C) 
[34] and RustCrypto (Rust) [35]. This provides a practical 
comparison as these are arguably the most used libraries of their 
respective language for bare-metal environments and both have 
been audited by third parties. 

A. Results 
The results listed in Table IV show that there seems to be no 

correlation between execution time and language selection. 
TABLE IV: RELATIVE DIFFERENCE IN EXECUTION TIME FOR CRYPTOGRAPHIC 

ALGORITHMS WHEN SWITCHING FROM MBEDTLS (C) TO RUSTCRYPTO 
(RUST). 

Algorithm From C to Rust 

SHA256 (16 B) - 13 % 
SHA256 (64 KiB) - 9 % 

AES128-CCM (16 B) + 145 % 
AES128-CCM (64 KiB) + 73 % 
AES128-GCM (16 B) + 101 % 

AES128-GCM (64 KiB) + 20 % 
CHACHA20-POLY1305 (16 B) - 53 % 

CHACHA20-POLY1305 (64 KiB) - 52 % 
 

Assumably, the implementation of the algorithms and the 
efficiency of the libraries themselves are more important for the 
resulting execution time. For example, the RustCrypto 
implementation of SHA256 completely unrolled all for loops 
which is probably responsible for the faster execution. However, 
this also results in a far larger memory footprint which is not 
always desirable or feasible. 

B. The Computer Language Benchmarks Game 
The Computer Language Benchmarks Game [36] uses ten 

simple but computationally expensive problems for 
benchmarking a large number of languages. Everyone can 
submit their optimized solutions, and many programmers use 
this as a challenge to squeeze every last bit of performance out 
of the benchmark of their favorite language. C, C++, and Rust 
share the podium on all of these benchmarks. We have awarded 
each language with points according to the achieved ranks: three 
points for 1st, two for 2nd, and one for 3rd place. The resulting 
scoreboard in Table V shows that these languages should be 
indistinguishable for most developers and use cases in regard to 
theoretical performance. 

TABLE V: SCOREBOARD FOR THE COMPUTER LANGUAGE BENCHMARKS 
GAME. 

Language Points 

C++ 21 
Rust 20 

C 19 
 

VI. CONCLUSIONS 
Memory safety is essential for ensuring the security, safety, 

dependability, and even basic functionality of devices. 
Exploiting memory vulnerabilities easily leads to a fully 
compromised device, as conventional countermeasures are 
infeasible for most embedded systems. Our analysis, as well as 
today’s vulnerabilities and 0-day exploits, indicate that tools like 
static and dynamic code analysis provide only inadequate 
protection, as even the tech giants with almost unlimited 
resources still struggle with memory safety. Rust not only 
prevents memory bugs due to its memory safety guarantees but 
also significantly improves the development experience 
compared to C/C++. Furthermore, no significant difference in 
performance could be detected, which is especially important for 
battery-powered devices. Of course, Rust’s advantages and 
challenges compared to C/C++ must be weighed carefully 
before switching languages. However, having C and Rust 
coexist in an application allows for a successive transition 
without starting from scratch. 
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