
Electric Power Systems Research 211 (2022) 108203

Available online 21 June 2022
0378-7796/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Convolutional neural nets with hyperparameter optimization and feature
importance for power system static security assessment

Miguel Ramirez-Gonzalez a,*, Felix Rafael Segundo Sevilla a, Petr Korba a,
Rafael Castellanos-Bustamante b

a Institute of Energy Systems and Fluid Engineering, School of Engineering, Zurich University of Applied Sciences, 8401 Winterthur, Switzerland
b Transmission and Distribution Department, National Institute for Electricity and Clean Energy, 62490 Cuernavaca, Morelos, Mexico

A R T I C L E I N F O

Keywords:
Power system security assessment
Convolutional neural networks
Hyperparameter optimization
Feature importance
Machine learning

A B S T R A C T

Static security assessment (SSA) is fundamental in electrical network analysis. However, the growing complexity
and variability of grid’s operating conditions can make it tedious, slow, computationally intensive, and limited or
impractical for on-line applications when traditional approaches are considered. Since this may hinder the
emerging analytical duties of system operators, data-driven alternatives are required for faster and sophisticated
decision-making. Although different machine learning algorithms (MLAs) could be applied, Convolutional
Neural Networks (CNNs) are one of the most powerful models used in many advanced technological de-
velopments due to their remarkable capability to identify meaningful patterns in challenging and complex data
sets. According to this, a CNN based approach for fast SSA of power systems with N-1 contingency is presented in
this paper. To contribute to the automation of model building and tuning, a settings-free strategy to optimize a
set of hyperparameters is adopted. Besides, permutation feature importance is considered to identify only a
subset of key features and reduce the initial input space. To illustrate the application of the proposed approach,
the simulation model of a practical grid in Mexico is used. The superior performance of the CNN alternative is
demonstrated by comparing it with two popular MLAs.

1. Introduction

The digitalization of power systems is intended to improve the effi-
ciency, productivity, and autonomy of their processes. However, the
incorporation and massive deployment of new devices and technologies
for this purpose is resulting in more complex topologies and structures,
and in even more diverse system operating conditions and scenarios. All
this continuous development of the grid is bringing about new chal-
lenges in terms of ensuring network security, resiliency, and stability.
Since traditional power system analysis approaches are mainly based on
physical modeling and numerical computations, they are time
consuming and computationally intensive, particularly for on-line ap-
plications. Therefore, it is recognized that they cannot longer effectively
address emerging analytical needs and requirements of modern elec-
trical networks [1].

In general, the security of a power system is related to its ability to
provide nominal voltage and maintain system frequency within a certain
tolerant band to cope with imminent disturbances/contingencies

without power supply interruptions [2]. Among different operating is-
sues, power system security is of vital importance due to the significant
social, economic, and political impact it may have when it is endangered
[3]. In this context, the static security analysis is a fundamental part of
the security assessment in electrical networks that focuses on the
steady-state response of the grid under a predefined set of credible
contingencies. Essentially, its objective is to perform an evaluation of the
condition of the system (secure or insecure) in terms of the transgression
of any load and voltage boundaries following the trip or loss of assets on
the grid [4]. The traditional technique to investigate this issue has been
by solving load flow equations repeatedly, while examining the security
constraints for each simulation result. Given that a considerable amount
of simulations are required to analyze all possible contingencies over a
broad range of potential operating conditions with the traditional
approach, alternative solutions based on machine learning have recently
received much interest due to their capability to extract valuable in-
formation from large and complex datasets. Particularly, the recent
improvements and performance achieved by deep learning methods in a

* Corresponding author.
E-mail address: ramg@zhaw.ch (M. Ramirez-Gonzalez).

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

https://doi.org/10.1016/j.epsr.2022.108203
Received 31 August 2021; Received in revised form 21 April 2022; Accepted 15 June 2022

mailto:ramg@zhaw.ch
www.sciencedirect.com/science/journal/03787796
https://www.elsevier.com/locate/epsr
https://doi.org/10.1016/j.epsr.2022.108203
https://doi.org/10.1016/j.epsr.2022.108203
https://doi.org/10.1016/j.epsr.2022.108203
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epsr.2022.108203&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Electric Power Systems Research 211 (2022) 108203

2

wide range of applications have positioned these machine learning al-
gorithms as some of the most popularly used [5,6].

Despite the successful application of deep learning techniques in
different power system areas, their use within power system static se-
curity assessment is relatively new [1,3,6]. For example, convolutional
neural networks (CNNs) were proposed in [7] considering N-1 contin-
gency criteria. In that work, data such as the topology of the system and
power injections at different buses are used as input to the classification
model for security evaluation purposes. In [8], deep learning models
based also on CNNs are trained on a large database to assess both N-1
security and small-signal stability, where input information such as
active power, reactive power, and voltage at each node is arranged into
three squared matrices (similar to the typical arrays or channels used in
image classification) to uniquely represent the state of the power system.
Static security assessment is also addressed in [9] through deep learning
algorithms and architectures, where the system’s power flows are
approximated according to productions, consumptions, and grid topol-
ogy information to assist decisions of human operators.

Irrespective of the favorable results reported in the aforementioned
research works, improvements in the methodologies are still possible
and are highlighted next. For example, the explicit use of grid topology
information in the form of bus admittance matrix to detect system to-
pology changes may not be feasible for practical applications in systems
with a considerable number of buses. On the other hand, representing
each sample data as independent power injection and voltage matrices
of the same order as the number of buses in the system is impractical
because of the final arrangement dimensions. Moreover, the prerequisite
of having measurements from every node in the system is unrealistic
since, for example, the installation of advanced metering devices at each
bus for this purpose, such as phasor measurement units, is economically
unfeasible and technically challenging. For this reason, strategies to
optimally allocate metering infrastructure have to be investigated [10].
In addition, the lack of an automated and systematic approach to sup-
port the development of more efficient deep learning models, with more
suitable hyperparameters, has to be considered since this issue may
affect the overall process of model development and the algorithm’s
capacity to learn [11,12].

Based on the issues above, the main challenge addressed in this paper
has to do with the development of an advanced, effective, and efficient
methodology for fast and reliable decision making concerning the static
security assessment of power systems under N-1 contingency. Therefore,
CNNs are trained and used here to classify the security status of a
practical sample network according to categories such as secure, alarm
and insecure. The input data of the proposed CNN, which are the voltage
magnitudes, as well as active and reactive power injections at systems
nodes, are arranged into 3xn matrices for each sample instance, where n
refers to the total number of buses considered for this data-driven
application. Besides, target outcomes for supervised learning, which
represent the class labels associated to each example, are determined
according to a predefined security index based on transmission line
loading and bus voltage violations. In order to contribute to the auto-
mation of the machine learning process, a model hyperparameter opti-
mization alternative is carried out in this work based on a settings-free
and derivative-free strategy called Jaya Optimization Algorithm (JOA).
Furthermore, a feature importance approach is also applied in this sense
to identify a subset of features that mostly impact model predictions and
reduce the features of the initial dataset. The effectiveness of the pro-
posed approach in making predictions and generalizing to new data is
compared to Support Vector Machine and K-Nearest Neighbor based
alternatives. The main contributions of the paper can be summarized as
follows:

• The development of an alternative data-driven solution for power
system static security assessment using CNNs.

• The formulation and application of a settings-free optimization
strategy for the automated and systematic selection of different CNN
model hyperparameters.

• The exploration and use of permutation feature importance to reduce
the number of input features and guide the location of measuring
technologies for the application at hand.

The paper is organized as follows. A brief description of CNNs and
their main building components is provided in Section 2. The sample
power system used for the studies is presented in Section 3. The
approach for the static security assessment of the system with CNNs,
including dataset generation, model architecture, optimization algo-
rithm for selected hyperparameters, and the technique to identify the
relevant features that mostly impact the predictions of the CNN model, is
described in Section 4. On the other hand, obtained simulation results
with the proposed alternative are presented and discussed in Section 5.
Finally, concluding remarks are provided in Section 6.

2. Convolutional neural networks (CNNs)

CNNs are one of the most powerful deep learning models mostly used
in the field of computer vision and imaging. However, due to their high
level of accuracy in learning and generalizing complex non-linear
functions and patterns, this class of networks are now receiving
increasing attention in a wide range of academic and industrial tasks
[13,14]. Briefly, the main building blocks of CNNs can be described as
follows [13–15]:

• Convolutional layers, which are composed of feature detectors or
filters, and feature maps. In general, the task of a convolutional layer
is to filter a given input and transform it into a set of feature maps.
Feature detectors are drawn across the layeŕs input while computing
the dot product at each particular position. This process is repeated
for all input cells according to a predefined stride. The output is a
group of stacked activation maps (one feature map for each consid-
ered filter).

• Pooling layers, which basically down-sample the previous layeŕs
activation maps and reduce the spatial size of the representation.
They are intended to consolidate all the relevant features learned and
derived through a previous convolutional layer. Pooling layers can
help in controlling overfitting of the training dataset for a better
generalization of the features represented by the network. They can
use very simple operations such as the maximum or average of the
elements involved in a given receptive field to produce a pooled
feature map.

• Fully connected layers, which are represented by typical feed-
forward neural network layers. They are constructed at the end of
the CNN architecture, after all features have been identified and
extracted by convolutional layers and consolidated by pooling
layers. Fully connected layers are included to complete the final
classification tasks.

Based on this description, the basic architecture of a CNN is illus-
trated in Fig. 1, where the details about convolution and pooling oper-
ations are shown only for exemplification purposes.

CNNs are especially useful for identifying patterns in data sets, and
automatically and directly recognizing various characteristics, without
the need to extract them manually. Training filters applied to each input
object allow to extract both simple and very complex characteristics that
unambiguously define the object under consideration [13,16].

3. Test power system

An isolated section of the Mexican Electric Grid located on the state
of Baja California Sur (BCS), in northwestern Mexico, is considered as
the sample power system for the studies presented here. The BCS system

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

3

represents a relatively small network whose generation is based mainly
on a series of small fossil fuel-fired generating units distributed across
the state. Electric power to main load centers is provided through
transmission lines and power sub-stations operating at 230 kV and 115
kV. For illustrative purposes, the BCS grid can be divided into three
transmission zones (Z1, Z2 and Z3), and represented here by the sche-
matic diagram in Fig. 2, where the relative location of power plants is
denoted by white circles and different load buses can be identified by
black circles. While Z1 and Z2 are interconnected by a 115 kV double
circuit transmission line, the interconnection between Z2 and Z3 com-
prises a 115 kV and a 230 kV double circuit tie line.

A simulation model that portrays a base case scenario related to the
maximum load demand during 2012, and consists of 81 buses, 20 gen-
erators, 28 loads, 50 lines, and 52 transformers, is used here to represent
the network under consideration.

4. Static security assessment with CNNs

4.1. Dataset generation

In order to provide representative samples of both normal and un-
usual system operating conditions and situations, a suitable collection of
data is fundamental for building and training the machine learning al-
gorithm under consideration for the prediction of the system security

status. In this case, a relatively large and diverse training dataset, with a
variety of operating points, will potentially benefit model generalization
to new, unseen data.

For illustrative purposes of the system under investigation, the
required training dataset was generated through simulations consid-
ering a relatively large range of system operating conditions and N-1
security criterion following transmission line outages as system contin-
gencies. Therefore, the active and reactive power of the loads in the
sample grid were varied between 50% and 125% of their value, as
compared to the base case scenario. Furthermore, the power supplied by
synchronous generators was correspondingly altered in order to balance
the load demand changes. In this case, active power and bus voltage at
each generator were varied randomly within a predefined range (ac-
cording to a normal distribution). Based on this, voltage magnitudes,
and active and reactive power injections at system nodes were collected
as examples of model inputs.

In order to quantify the system security condition in a suitable way
for each corresponding instance, a static security index (SSI) was
computed according to line loading and bus voltage violations [7,17], as
given in the following expression:

SSI =

[
∑

j

(Δvu
j

Du
v

)2

+
∑

j

(
Δvl

j

Dl
v

)2

+
∑

k

(
Δik

Di

)2
]1

2

(1)

where Δvu
j and Δvl

j refer to bus voltage deviations beyond predefined
upper and lower alarm limits, respectively, Δik represents line loading
deviations based on the power flow through the line and a given alarm
limit, and Du

v , Dl
v, and Di denote normalization factors calculated from

the distance between alarm and security limits for bus voltage and line
loading levels. Considering SSI values, input patterns were labelled ac-
cording to classes such as secure, alarm and insecure, based on the
following evaluation:

System status =

⎧
⎨

⎩

Secure if SSI = 0
Alarm if 0 < SSI ≤ 1

Insecure if SSI > 1
(2)

As result, a dataset with a total of 6539 examples of associated input-
output pairs was obtained for model training and testing. It is worth
mentioning here that only voltage magnitudes, and active and reactive
power injections at buses with more than two connected branches were
considered to reduce the input space. Finally, arranging the resulting
data into 3 × 1 arrays for each bus, an input dataset of dimension 6539
× 3 × 50 was created. In this study, the full dataset was divided such that
30% of the total input-output pairs were used for testing and the
remaining 70% were used for model training. Furthermore, 30% of the
training samples were assigned to the validation set. Naturally, prior to
be used, the input samples of the whole dataset are normalized in the
range 0–1. This was accomplished here by subtracting the corresponding
minimum value for collected voltage magnitudes and involved power
injections at system nodes, and then dividing by the range between
respective maximum and minimum values. On the other side, targets
were one-hot encoded [13], and the categorical feature was transformed
into an all-zero vector of multiple true/false features, with a 1 in the
appropriate position to indicate the presence of a particular categorical
value.

4.2. CNN model architecture

The selection of an optimal architecture for a particular application
of CNNs is in general a demanding task due to the degrees of freedom
involved. In this sense, hyperparameters such as number of layers,
kernel sizes, dropout, learning rates, etc., play a key role in the success of
CNNs for a given problem [18]. Nevertheless, depending on the appli-
cation and the dataset, attempting to tune all hyperparameters of a CNN
would be time-consuming and computationally intensive. Therefore, a

Fig. 1. Basic architecture of CNNs.

Fig. 2. Test power system.

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

4

priory knowledge of the process is essential, so that only a subset of these
can be selected for refined tuning [19].

In this work, a CNN model with two convolutional layers and one
max-pooling layer as feature extractors, followed by one fully connected
layer to interpret these features and one output layer for three-class
predictions is considered, as illustrated in Fig. 3. In this architecture,
kernels of size 2 × 3 and 1 × 3 were employed for each convolutional
layer, respectively. In addition, the Rectified Linear Unit (ReLU) func-
tion was used on each “Activation” block, and batch normalization was
included to improve the learning convergence.

The pooling layer was configured here with a maximum value
function over a 1 × 3 window size. The flatten block at the end of this
process is used to reshape the output of the dropout layer into one-
dimensional vector before going through the densely connected classi-
fier. While ReLu activation is used for the first dense layer, the final
output layer was set up with the Softmax function. For performance
optimization purposes, the number of filters in the convolutional layers
(flt1 and flt2, respectively), the number of units (nou) in the first layer of
the fully connected network, and the dropout rate (dpr) were selected to

be determined in this study through a settings-free optimization method,
as presented in the following Sections.

4.3. Jaya optimization algorithm (JOA)

Many popular population-based optimization algorithms such as
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) depend
on several algorithm-specific control parameters that may impact their
overall performance (for example, mutation and crossover rates in GA,
and inertia weights and cognitive and social acceleration factors in
PSO). Generally, these parameters are to be tuned for the best settings in
the desired application, and the effort to adjust them increases with the
quantity of parameters and their intrinsic interactions. On the other
hand, JOA is a relatively new and settings-free optimization method,
simpler to use and implement as compared to related algorithms
controlled by specific parameters [20].

Based on a predefined fitness function, the basic operating principle
of JOA is to minimize the cost function value to achieve an optimal
result by avoiding the worst solution and quickly moving toward the
best solution. Considering a candidate solution xi at the t-th iteration, the
iterative process for this purpose can be expressed as follows:

xt
i = xt−1

i + rand1
(
xbest − xt−1

i

)

−rand2
(
xworst − xt−1

i

) (3)

where xbest and xworst represent the best and worst performing solutions
available, respectively. Similarly, rand1 and rand2 refer to random
numbers in the range 0 – 1 for each search variable. While the second
term in (3) represents the tendency of the solution to always try to get
closer to the optimal solution in each iteration, the last term in the
expression has to do with moving away from the worst solution [20].
Based on (3), new candidate solutions are generated and evaluated, and
old candidate solutions are replaced only if the new solutions perform
better according to the achieved fitness function value. This iterative
process is illustrated through the flowchart in Fig. 4. A detailed

Fig. 3. CNN architecture. Fig. 4. Flowchart of JOA.

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

5

description of JOA and its engineering applications can be found in [20,
21].

4.4. Permutation feature importance (PFI)

Since the predictive power of a trained model may be linked mainly
to a reduced number of features from the entire and original input space,
the identification of these relevant features may avoid the use of
redundant information, increase the interpretability of the model for the
problem at hand by reducing complexity, decrease computational
burden and training time, and even boost the performance of the model
[22]. Furthermore, from an online security assessment application point
of view with PMUs, the number of measuring points to obtain the
required information to be fed into the machine learning model would
also be reduced, leading to a reduction in the number of these units.

In general, feature importance refers to the identification of a subset
of features that mostly impact the predictions of an already trained
model. In particular, PFI represents an inspection technique based on
scores associated with model prediction performances when a single
feature in the data is randomly shuffled. Basically, if the prediction error
rises after the permutation of values of a given feature, then we can
assume that this feature may be more important than some other one in
terms of the obtained related errors. If this error is practically unaf-
fected, then the model is essentially ignoring the given feature [22].

Fig. 5 illustrates in a simple way the concept behind PFI, where a
particular feature Fb of a certain dataset is randomly shuffled (while the
values of all other features and targets are left unchanged), and then the
model is used to make predictions. This process is applied to every
feature in the data (one at a time).

In order to calculate a mean feature importance (MFI) score for each
particular input feature, the whole process of permutation and compu-
tation of modeĺs prediction error needs to be repeated several occasions
(for example ten times) [23]. In this way, the MFI score for feature f can
be determined according to the following expression:

MFIf =
100

(
AM − AMper

f

)

AMper
f

(4)

where AM is the accuracy of the model without feature shuffling, and
AMper

f denotes the achieved average accuracy after permutation of
feature f. It is worth mentioning here that, in this work, the dataset
features refer to the considered buses of the system, where each
collected sample for V, P and Q variables is arranged in a corresponding
array for each bus. Therefore, permuting the information of a particular
bus in the dataset means to randomly interchange the position of the
arrays within the whole set of sample arrays for that bus.

5. Simulation results

5.1. Optimization of selected hyperparameters

The following constrained optimization problem was formulated for
the determination of the CNN model’s hyperparameters indicated in

Section 4.2, particularly the filters for convolutional layers (flt1 and flt2),
the number of units in the first layer of the fully connected network
(nou), and the dropout rate (dpr):

Minimize J subject to :

Λmin
i ≤ Λi ≤ Λmax

i , i = 1, .., 4
(5)

where Λi represents each of the selected hyperparameters, and J refers to
the fitness function to be minimized, which in this case is defined as:

J = c1

(
1

Tra acc

)

+ c2

(
1

Val acc

)

(6)

with Tra_acc and Val_acc denoting the model training and validation
accuracies, respectively, and c1 and c2 being weighting factors. For the
minimization of (6) using JOA in Section 4.3, all candidate solutions are
updated according to (3), and then integer variables such as the number
of convolutional filters, and the number of neurons in the first dense
layer are rounded to the nearest integer value before being evaluated
[24]. The iterative application of the dropout rate proceeds as directly
determined from (3). Now, since the model is re-trained for every
combination of hyperparameters being tried, it is clear that the execu-
tion time for the evaluation of a given set of candidate solutions at each
generation of hyperparameter optimization will proportionally grow as
the population size is increased, which at some point will become a very
computationally expensive process. Therefore, a relatively small popu-
lation size of 5 members was used here considering that it can still
provide competitive results with acceptable convergence rates [25]. In
addition, it is also worth mentioning that the categorical cross-entropy
loss function [16] and the Adam optimizer [26] were employed in the
studies to guide the learning process of the CNN models.

By implementing the JOA based process in Python, setting the pop-
ulation size to five elements, and fixing the number of generations to
fifty, candidate solutions were iteratively evaluated to find the foremost
model performance. By using a computer with a processor Intel Core
i7–8665 U, CPU @ 1.90 GHz, 16.0 RAM, the hyperparameter optimi-
zation task took an average of 8 h, and the time taken to go over 250
epochs of network training for each candidate solution was around 115
s. Naturally, the use of some more powerful computational resources can
favorably impact this time. The convergence of the algorithm for the
minimization of the cost function is illustrated in Fig. 6, where results
with a Particle Swarm Optimization algorithm [27] have also been
included for comparison. The corresponding best final solutions after
several independent runs are presented in Table 1.

Based on the performance shown in Fig. 6, and the fact that JOA has
no dependance at all on algorithm-specific parameters, a summary of the
CNN model with the solutions provided by JOA is given in Table 2,
where the output shape of each layer, size of weights, and number of

Fig. 5. Random permutation of the values of feature Fb. Fig. 6. Algorithm convergence during cost function minimization.

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

6

trainable parameters are included (the symbol * is used here as a general
denotation for the batch size).

5.2. Model accuracy and loss curves for selected solution

Visualization of CNN model performance over several epochs rep-
resents one common way to review and determine how well it is learning
and generalizing during training on both the training and validation
datasets [24]. In this manner, the model behavior to learning issues such
as underfitting or overfitting can be diagnosed. According to this, model
accuracy and loss achieved during training using the best set of selected
hyperparameters after JOA based optimization are correspondingly
given in Fig. 7 and Fig. 8.

Based on the selected dataset, and from the results displayed in
Figs. 7 and 8, it can be observed that the model has been sufficiently
trained over the indicated number of epochs since both relatively high
model accuracy and low loss are achieved at the end of training. Since
the model losses converges to a minimum value, with reduced gap

between the training and validation loss as depicted in Fig. 8 on the far
right, a reasonably good fit can be identified. In this case, continued
training of the fitted model will potentially make it start memorizing the
training data and lead to an overfit, which will affect the model capa-
bility to generalize and predict accurately.

5.3. Model performance metrics

To measure the performance of the model in making predictions and
generalizing to new, previously unseen data, common evaluation met-
rics for classification tasks such as Accuracy, Precision, Recall, and F1-
Score [24] were used, which are described next.

• Accuracy refers to the number of correct predictions divided by the
total number of predictions for a given dataset. It is the most typical
evaluation metric for classification problems; however, it may lead
to misleading results for problems with unbalanced classes. Classi-
fication accuracy can be determined according to the following
expression:

Accuracy =
Number of correct predictions
Total number of predictions

(7)

• Precision can be defined as the number of true positives results
divided by the total number of positive instances that were predicted
by the model. Precision is not concerned with false negatives and is
computed as indicated below:

Precision =
True Positives

True Positives + False Positives
(8)

• Recall is an evaluation metric that quantifies the number of correct
positive cases predicted against all positive instances in the dataset.
Therefore, it gives an indication of the proportion of actual positives
correctly identified. It is calculated as follows:

Recall =
True Positives

True Positives + False Negatives
(9)

• F1-Score combines precision and recall into a single measure to get
an indication of the model performance when both false positive and
false negative errors are of great concern. The computation of this
metric is:

Table 1
Best final solutions.

Algorithm Parameter Value Jmin

JOA flt1 80 202.58
flt2 40
nou 81
dpr 0.209

PSO flt1 77 202.83
flt2 38
nou 100
dpr 0.440

Table 2
Model summary.

Layer Outputshape Size of weights Bias Parameters

Conv2D_1
& Activation

(*, 2, 48, 80) (2, 3, 1, 80) 80 560

BatchNorm (*, 2, 48, 80) 160
Conv2D_2

& Activation
(*, 2, 46, 40) (1, 3, 80, 40) 40 9640

BatchNorm (*, 2, 48, 40) 80
MaxPool2D (*, 2, 15, 40)
Dropout (*, 2, 15, 40)
Flatten (*, 1200)
Dense_1

& Activation
(*, 81) (1200, 81) 81 97,281

Dense_2
& Activation

(*, 3) (81, 3) 3 246

Total trainable parameters 107,967

Fig. 7. Model accuracy.

Fig. 8. Model losses.

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

7

F1 − Score = 2
Precision⋅Recal

Precision + Recal
(10)

After performing the optimization of selected hyperparameters, the
evaluation metrics described above were computed for both the training
and test datasets, and the results are given in Table 3. For comparison
purposes with the CNN model, corresponding results with two popular
and widely used machine learning algorithms such as Support vector
Machine (SVM) and K-Nearest Neighbor (KNN) are also included. For
the application presented in this work, since the impact of misclassifying
a given sample belonging to the Insecure class will be more critical than
having to examine an irrelevant False Positive instance for this class, the
Recall measure becomes relevant here. In general, as it can be seen from
Table 3, the CNN model shows the best classification performance in this
study to previously unseen data, according to the considered metrics.

The response of the CNN model on the test dataset is further illus-
trated through the confusion matrix in Fig. 9, which provides details
about the predicted results (columns) as compared to the true values
(rows). In this representation, the diagonal elements indicate the in-
stances correctly predicted by the classifier.

5.4. Model based on permutation feature importance scores

In order to find out the impact of input features on the predictions of
the model that has already being trained, relative importance scores
were computed according to the permutation technique described in
Section 4.4. Thereby, the mean importance score for each column of the
involved dataset, after independently shuffling each column ten times, is
illustrated in Fig. 10.

As it can be seen in Fig. 10, the information from some buses turns
out to be irrelevant or less important and does not contribute at all to the
predictions of the model in this case. Consequently, if buses with an
importance score for instance larger than 0.01 are chosen here, then
only 26 buses out of 50 will be kept: 10, 11, 12, 13, 14, 15, 19, 20, 21,
23, 25, 26, 29, 30, 31, 33, 34, 36, 38, 39, 41, 42, 43, 44, 45, and 46. Now,
by training a new CNN model with information from these buses only,
and the same architecture as in Fig. 3, the results for the performance
metrics with the new model are given in Table 4.

It can be seen from Tables 3 and 4 that the performance of the two
CNN models is very comparable, and that the removed information was
in fact relatively irrelevant based on the computed performance
importance scores. After dataset reduction through PFI, three of the
remaining buses belong to Z1, fourteen to Z2, and nine to Z3, as high-
lighted in blue color in Fig. 11.

From the results in Fig. 11, it is worth noting the following related to
the features determined as relevant (through PFI) for model prediction:
(a) all buses where power plants are connected to the main transmission
network have been selected, and (b) all buses except one associated to
the Z1-Z2 and Z2-Z3 tie lines have also been included. These results can
be exploited in practice to better allocate a minimum set of involved
measuring devices.

Finally, it is worth emphasizing that after considering the compu-
tational time to classify the test data set, it was found that this CNN

model can take only around 0.0906 s in the computer used, as compared
to 16.017 s taken by the traditional power flow simulations.

6. Conclusions

An approach for the static security assessment of power systems
using CNNs has been presented in this work. In this regard, the simu-
lation model of a practical power grid located on the state of Baja Cal-
ifornia Sur, in northwestern Mexico, was considered for illustrative
purposes. According to the proposed CNN structure, the formulation and
application of a settings-free optimization strategy based on JOA
allowed for the automated and systematic selection of different hyper-
parameters, which contributes to maximizing model performance and
reducing the human effort dedicated to build and tune CNN models.
Afterwards, the use of permutation feature importance in the trained
network provided insights about its most relevant input features for
target prediction, which in practice can be used to choose the best
location of a set of measuring devices considered for the application at
hand. Then, a new CNN model was trained using only these identified
features, and comparable results as with the original dataset were

Table 3
Performance metrics.

Model Dataset Metric
Accuracy Precision Recall F1-score

CNN Training 99.45% 99.37% 99.55% 99.46%
Test 98.88% 98.73% 98.95% 98.83%

SVM Training 98.01% 98.14% 97.83% 97.93%
Test 97.45% 97.50% 97.35% 97.42%

KNN Training 97.97% 97.87% 97.75% 97.81%
Test 97.04% 96.82% 96.78% 96.80%

Fig. 9. Confusion matrix with CNN model applied to the test dataset.

Fig. 10. Permutation feature importance scores (averaged and normalized).

Table 4
Performance metrics with reduced input space.

Model Dataset Metric
Accuracy Precision Recall F1-score

CNN Training 99.47% 99.47% 99.45% 99.47%
Test 98.67% 98.71% 98.53% 98.62%

M. Ramirez-Gonzalez et al.

Electric Power Systems Research 211 (2022) 108203

8

achieved. The reduction in the complexity and dimension of input data
can in general contribute to simplifying the problem under consider-
ation, decreasing the computational burden for model training, and
accelerating the implementation of the solution.

By comparison against conventional machine learning alternatives
such as Support Vector Machine and K-Nearest Neighbor, the effec-
tiveness and superior performance of the proposed approach in making
predictions and generalizing to new data was demonstrated. Besides, as
compared to traditional power flow simulations, the time required to
classify for example the test data set was radically reduced with the
obtained CNN model, which shows its potential for online application.
Finally, it is worth mentioning that although the hyperparameter opti-
mization process of the model took about 8 h with the used hardware,
the availability of some more powerful computational resources or high-
performance and distributed computing schemes can significantly
reduce this time.

CRediT authorship contribution statement

Miguel Ramirez-Gonzalez: Conceptualization, Methodology, Soft-
ware, Investigation, Writing – original draft, Writing – review & editing.
Felix Rafael Segundo Sevilla: Validation, Writing – review & editing,
Visualization. Petr Korba: Resources, Writing – review & editing, Su-
pervision. Rafael Castellanos-Bustamante: Resources, Writing – re-
view & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

The authors acknowledge the Swiss National Science Foundation
(SNSF) under the project number PZENP2_173628 of the program
Ambizione Energy Grant (AEG).

References

[1] M.S. Ibrahim, W. Dong, Q. Yang, Machine learning driven smart electric power
systems: current trends and new perspectives, Appl. Energy 272 (2020) 1–19.

[2] J. Machowski, Z. Lubosny, J.W. Bialek, J.R. Bumby, Power System Dynamics:
Stability and Control, John Wiley & Sons, NJ, 2020.

[3] O.A. Alimi, K. Ouahada, A.M. Abu-Mahfouz, A review of machine learning
approaches to power system security and stability, IEEE Access 8 (2020)
113512–113531.

[4] M. Gholami, M.J. Sanjari, M. Safari, M. Akbari, M.R. Kamali, Static security
assessment of power systems: a review, Int. Trans. Electr. Energy Syst. 30 (9)
(2020) 1–23.

[5] K. Senthilnathan, B. Shanmugam, D. Goyal, I. Annapoorani, R. Samikannu, Deep
Learning Applications and Intelligent Decision Making in Engineering, IGI Global,
PA, 2021.

[6] A.K. Ozcanli, F. Yaprakdal, M. Baysal, Deep learning methods and applications for
electrical power systems: a comprehensive review, Int. J. Energy Res. 44 (9) (2020)
7136–7157.

[7] Y. Du, F. Li, C. Huang, Applying deep convolutional neural network for fast
security assessment with N-1 contingency, in: Proc. IEEE Power & Energy Society
General Meeting, Aug. 2019, pp. 1–5.

[8] J.M. Hidalgo, F. Hancharou, F. Tams, S. Chatzivasileiadis, Deep learning for power
system security assessment, in: Proc. IEEE Milan PowerTech, June 2019, pp. 1–6.

[9] B. Donnot, Deep Learning Methods for Predicting Flows in Power Grids: Novel
Architectures and Algorithms (Doctoral Thesis), University of Paris-Saclay, Paris,
France, 2019.

[10] Y. Xu, Y. Zhang, Z. Yang, R. Zhang, Intelligent Systems for Stability Assessment and
Control of Smart Power Grids, CRC Press, FL, 2021.

[11] Agrawal T, Hyperparameter Optimization in Machine Learning, Apress, NY, 2021.
[12] F. Hutter, L. Kotthoff, J. Vanschoren, Automated Machine Learning: Methods,

Systems, Challenges, Springer, Cham, 2019.
[13] D. Sarkar, R. Bali, T. Sharma, Practical Machine Learning with Python, Apress, NY,

2018.
[14] O.G. Yalcin, Applied Neural Networks with TensorFlow, 2, Apress, NY, 2021.
[15] N.K. Manaswi, Deep Learning with Applications Using Python, Apress, NY, 2018.
[16] M. Sewak, M.R. Karim, P. Pujari, Practical Convolutional Neural Networks, Packt

Publishing, Birmingham, 2018.
[17] I. Bhatt, A. Dhandhia, V. Pandya, Static security assessment of power system using

radial basis function neural network module, in: Proc. IEEE International WIE
Conference on Electrical and Computer Engineering, Dec. 2017, pp. 1–5.

[18] L Hahn, L. Roese-Koerner1, K. Friedrichs, A. Kummert, Fast and reliable
architecture selection for convolutional neural networks, in: Proc. European
Symposium on Artificial Neural Networks, April 2019, pp. 179–184.

[19] F. Chollet, Deep Learning with Python, Manning Publications Co., USA, 2018.
[20] R. Venkata-Rao, Jaya: a simple and new optimization algorithm for solving

constrained and unconstrained optimization problems, Int. J. Ind. Eng. Comput. 7
(2016) 19–34.

[21] R. Venkata-Rao, Jaya: An Advanced Optimization Algorithm and Its Engineering
Applications, Springer, Cham, 2019.

[22] C. Molnar, Interpretable Machine Learning: A Guide For Making Black Box Models
Interpretable, Leanpub, 2019.

[23] A. Fisher, C. Rudin, F. Dominici, All models are wrong, but many are useful:
learning a variable’s importance by studying an entire class of prediction models
simultaneously, J. Mach. Learn. Res. 20 (2019) 1–81.

[24] X.-.S. Yang, Z. Cui, R. Xiao, A. Hossein, M. Karamanoglu, Swarm Intelligence and
Bio-Inspired Computation: Theory and Applications, Elsevier Inc., USA, 2013.

[25] R.A. Zitar, M.A. Al-Betar, M.A. Awadallah, I.A. Doush, K. Assaleh, An intensive and
comprehensive overview of JAYA algorithm, its versions and applications, Arch.
Comput. Methods Eng. 29 (2021) 763–792.

[26] M. Moocarme, M. Abdolahnejad, R. Bhagwat, Deep Learning with Keras, Packt
Publishing, Birmingham, 2020.

[27] K.E. Parsopoulus, M.N. Vrahatis, “Particle swarm optimization and intelligence:
advances and applications,” USA: IGI Global, 2010.

Fig. 11. Selected buses (in blue color) after PFI.

M. Ramirez-Gonzalez et al.

http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0001
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0001
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0002
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0002
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0003
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0003
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0003
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0004
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0005
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0006
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0006
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0006
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0007
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0008
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0008
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0009
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0009
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0009
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0010
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0010
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0011
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0012
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0012
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0013
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0013
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0014
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0015
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0016
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0016
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0017
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0017
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0017
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0018
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0018
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0018
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0019
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0020
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0020
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0020
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0021
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0021
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0023
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0023
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0023
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0024
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0024
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0025
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0025
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0025
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0026
http://refhub.elsevier.com/S0378-7796(22)00412-6/sbref0026

	Convolutional neural nets with hyperparameter optimization and feature importance for power system static security assessment
	1 Introduction
	2 Convolutional neural networks (CNNs)
	3 Test power system
	4 Static security assessment with CNNs
	4.1 Dataset generation
	4.2 CNN model architecture
	4.3 Jaya optimization algorithm (JOA)
	4.4 Permutation feature importance (PFI)

	5 Simulation results
	5.1 Optimization of selected hyperparameters
	5.2 Model accuracy and loss curves for selected solution
	5.3 Model performance metrics
	5.4 Model based on permutation feature importance scores

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

