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A B S T R A C T   

Static security assessment (SSA) is fundamental in electrical network analysis. However, the growing complexity 
and variability of grid’s operating conditions can make it tedious, slow, computationally intensive, and limited or 
impractical for on-line applications when traditional approaches are considered. Since this may hinder the 
emerging analytical duties of system operators, data-driven alternatives are required for faster and sophisticated 
decision-making. Although different machine learning algorithms (MLAs) could be applied, Convolutional 
Neural Networks (CNNs) are one of the most powerful models used in many advanced technological de
velopments due to their remarkable capability to identify meaningful patterns in challenging and complex data 
sets. According to this, a CNN based approach for fast SSA of power systems with N-1 contingency is presented in 
this paper. To contribute to the automation of model building and tuning, a settings-free strategy to optimize a 
set of hyperparameters is adopted. Besides, permutation feature importance is considered to identify only a 
subset of key features and reduce the initial input space. To illustrate the application of the proposed approach, 
the simulation model of a practical grid in Mexico is used. The superior performance of the CNN alternative is 
demonstrated by comparing it with two popular MLAs.   

1. Introduction 

The digitalization of power systems is intended to improve the effi
ciency, productivity, and autonomy of their processes. However, the 
incorporation and massive deployment of new devices and technologies 
for this purpose is resulting in more complex topologies and structures, 
and in even more diverse system operating conditions and scenarios. All 
this continuous development of the grid is bringing about new chal
lenges in terms of ensuring network security, resiliency, and stability. 
Since traditional power system analysis approaches are mainly based on 
physical modeling and numerical computations, they are time 
consuming and computationally intensive, particularly for on-line ap
plications. Therefore, it is recognized that they cannot longer effectively 
address emerging analytical needs and requirements of modern elec
trical networks [1]. 

In general, the security of a power system is related to its ability to 
provide nominal voltage and maintain system frequency within a certain 
tolerant band to cope with imminent disturbances/contingencies 

without power supply interruptions [2]. Among different operating is
sues, power system security is of vital importance due to the significant 
social, economic, and political impact it may have when it is endangered 
[3]. In this context, the static security analysis is a fundamental part of 
the security assessment in electrical networks that focuses on the 
steady-state response of the grid under a predefined set of credible 
contingencies. Essentially, its objective is to perform an evaluation of the 
condition of the system (secure or insecure) in terms of the transgression 
of any load and voltage boundaries following the trip or loss of assets on 
the grid [4]. The traditional technique to investigate this issue has been 
by solving load flow equations repeatedly, while examining the security 
constraints for each simulation result. Given that a considerable amount 
of simulations are required to analyze all possible contingencies over a 
broad range of potential operating conditions with the traditional 
approach, alternative solutions based on machine learning have recently 
received much interest due to their capability to extract valuable in
formation from large and complex datasets. Particularly, the recent 
improvements and performance achieved by deep learning methods in a 
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wide range of applications have positioned these machine learning al
gorithms as some of the most popularly used [5,6]. 

Despite the successful application of deep learning techniques in 
different power system areas, their use within power system static se
curity assessment is relatively new [1,3,6]. For example, convolutional 
neural networks (CNNs) were proposed in [7] considering N-1 contin
gency criteria. In that work, data such as the topology of the system and 
power injections at different buses are used as input to the classification 
model for security evaluation purposes. In [8], deep learning models 
based also on CNNs are trained on a large database to assess both N-1 
security and small-signal stability, where input information such as 
active power, reactive power, and voltage at each node is arranged into 
three squared matrices (similar to the typical arrays or channels used in 
image classification) to uniquely represent the state of the power system. 
Static security assessment is also addressed in [9] through deep learning 
algorithms and architectures, where the system’s power flows are 
approximated according to productions, consumptions, and grid topol
ogy information to assist decisions of human operators. 

Irrespective of the favorable results reported in the aforementioned 
research works, improvements in the methodologies are still possible 
and are highlighted next. For example, the explicit use of grid topology 
information in the form of bus admittance matrix to detect system to
pology changes may not be feasible for practical applications in systems 
with a considerable number of buses. On the other hand, representing 
each sample data as independent power injection and voltage matrices 
of the same order as the number of buses in the system is impractical 
because of the final arrangement dimensions. Moreover, the prerequisite 
of having measurements from every node in the system is unrealistic 
since, for example, the installation of advanced metering devices at each 
bus for this purpose, such as phasor measurement units, is economically 
unfeasible and technically challenging. For this reason, strategies to 
optimally allocate metering infrastructure have to be investigated [10]. 
In addition, the lack of an automated and systematic approach to sup
port the development of more efficient deep learning models, with more 
suitable hyperparameters, has to be considered since this issue may 
affect the overall process of model development and the algorithm’s 
capacity to learn [11,12]. 

Based on the issues above, the main challenge addressed in this paper 
has to do with the development of an advanced, effective, and efficient 
methodology for fast and reliable decision making concerning the static 
security assessment of power systems under N-1 contingency. Therefore, 
CNNs are trained and used here to classify the security status of a 
practical sample network according to categories such as secure, alarm 
and insecure. The input data of the proposed CNN, which are the voltage 
magnitudes, as well as active and reactive power injections at systems 
nodes, are arranged into 3xn matrices for each sample instance, where n 
refers to the total number of buses considered for this data-driven 
application. Besides, target outcomes for supervised learning, which 
represent the class labels associated to each example, are determined 
according to a predefined security index based on transmission line 
loading and bus voltage violations. In order to contribute to the auto
mation of the machine learning process, a model hyperparameter opti
mization alternative is carried out in this work based on a settings-free 
and derivative-free strategy called Jaya Optimization Algorithm (JOA). 
Furthermore, a feature importance approach is also applied in this sense 
to identify a subset of features that mostly impact model predictions and 
reduce the features of the initial dataset. The effectiveness of the pro
posed approach in making predictions and generalizing to new data is 
compared to Support Vector Machine and K-Nearest Neighbor based 
alternatives. The main contributions of the paper can be summarized as 
follows:  

• The development of an alternative data-driven solution for power 
system static security assessment using CNNs.  

• The formulation and application of a settings-free optimization 
strategy for the automated and systematic selection of different CNN 
model hyperparameters.  

• The exploration and use of permutation feature importance to reduce 
the number of input features and guide the location of measuring 
technologies for the application at hand. 

The paper is organized as follows. A brief description of CNNs and 
their main building components is provided in Section 2. The sample 
power system used for the studies is presented in Section 3. The 
approach for the static security assessment of the system with CNNs, 
including dataset generation, model architecture, optimization algo
rithm for selected hyperparameters, and the technique to identify the 
relevant features that mostly impact the predictions of the CNN model, is 
described in Section 4. On the other hand, obtained simulation results 
with the proposed alternative are presented and discussed in Section 5. 
Finally, concluding remarks are provided in Section 6. 

2. Convolutional neural networks (CNNs) 

CNNs are one of the most powerful deep learning models mostly used 
in the field of computer vision and imaging. However, due to their high 
level of accuracy in learning and generalizing complex non-linear 
functions and patterns, this class of networks are now receiving 
increasing attention in a wide range of academic and industrial tasks 
[13,14]. Briefly, the main building blocks of CNNs can be described as 
follows [13–15]:  

• Convolutional layers, which are composed of feature detectors or 
filters, and feature maps. In general, the task of a convolutional layer 
is to filter a given input and transform it into a set of feature maps. 
Feature detectors are drawn across the layeŕs input while computing 
the dot product at each particular position. This process is repeated 
for all input cells according to a predefined stride. The output is a 
group of stacked activation maps (one feature map for each consid
ered filter).  

• Pooling layers, which basically down-sample the previous layeŕs 
activation maps and reduce the spatial size of the representation. 
They are intended to consolidate all the relevant features learned and 
derived through a previous convolutional layer. Pooling layers can 
help in controlling overfitting of the training dataset for a better 
generalization of the features represented by the network. They can 
use very simple operations such as the maximum or average of the 
elements involved in a given receptive field to produce a pooled 
feature map.  

• Fully connected layers, which are represented by typical feed- 
forward neural network layers. They are constructed at the end of 
the CNN architecture, after all features have been identified and 
extracted by convolutional layers and consolidated by pooling 
layers. Fully connected layers are included to complete the final 
classification tasks. 

Based on this description, the basic architecture of a CNN is illus
trated in Fig. 1, where the details about convolution and pooling oper
ations are shown only for exemplification purposes. 

CNNs are especially useful for identifying patterns in data sets, and 
automatically and directly recognizing various characteristics, without 
the need to extract them manually. Training filters applied to each input 
object allow to extract both simple and very complex characteristics that 
unambiguously define the object under consideration [13,16]. 

3. Test power system 

An isolated section of the Mexican Electric Grid located on the state 
of Baja California Sur (BCS), in northwestern Mexico, is considered as 
the sample power system for the studies presented here. The BCS system 
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represents a relatively small network whose generation is based mainly 
on a series of small fossil fuel-fired generating units distributed across 
the state. Electric power to main load centers is provided through 
transmission lines and power sub-stations operating at 230 kV and 115 
kV. For illustrative purposes, the BCS grid can be divided into three 
transmission zones (Z1, Z2 and Z3), and represented here by the sche
matic diagram in Fig. 2, where the relative location of power plants is 
denoted by white circles and different load buses can be identified by 
black circles. While Z1 and Z2 are interconnected by a 115 kV double 
circuit transmission line, the interconnection between Z2 and Z3 com
prises a 115 kV and a 230 kV double circuit tie line. 

A simulation model that portrays a base case scenario related to the 
maximum load demand during 2012, and consists of 81 buses, 20 gen
erators, 28 loads, 50 lines, and 52 transformers, is used here to represent 
the network under consideration. 

4. Static security assessment with CNNs 

4.1. Dataset generation 

In order to provide representative samples of both normal and un
usual system operating conditions and situations, a suitable collection of 
data is fundamental for building and training the machine learning al
gorithm under consideration for the prediction of the system security 

status. In this case, a relatively large and diverse training dataset, with a 
variety of operating points, will potentially benefit model generalization 
to new, unseen data. 

For illustrative purposes of the system under investigation, the 
required training dataset was generated through simulations consid
ering a relatively large range of system operating conditions and N-1 
security criterion following transmission line outages as system contin
gencies. Therefore, the active and reactive power of the loads in the 
sample grid were varied between 50% and 125% of their value, as 
compared to the base case scenario. Furthermore, the power supplied by 
synchronous generators was correspondingly altered in order to balance 
the load demand changes. In this case, active power and bus voltage at 
each generator were varied randomly within a predefined range (ac
cording to a normal distribution). Based on this, voltage magnitudes, 
and active and reactive power injections at system nodes were collected 
as examples of model inputs. 

In order to quantify the system security condition in a suitable way 
for each corresponding instance, a static security index (SSI) was 
computed according to line loading and bus voltage violations [7,17], as 
given in the following expression: 

SSI =
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where Δvu
j and Δvl

j refer to bus voltage deviations beyond predefined 
upper and lower alarm limits, respectively, Δik represents line loading 
deviations based on the power flow through the line and a given alarm 
limit, and Du

v , Dl
v, and Di denote normalization factors calculated from 

the distance between alarm and security limits for bus voltage and line 
loading levels. Considering SSI values, input patterns were labelled ac
cording to classes such as secure, alarm and insecure, based on the 
following evaluation: 

System status =

⎧
⎨

⎩

Secure if SSI = 0
Alarm if 0 < SSI ≤ 1

Insecure if SSI > 1
(2) 

As result, a dataset with a total of 6539 examples of associated input- 
output pairs was obtained for model training and testing. It is worth 
mentioning here that only voltage magnitudes, and active and reactive 
power injections at buses with more than two connected branches were 
considered to reduce the input space. Finally, arranging the resulting 
data into 3 × 1 arrays for each bus, an input dataset of dimension 6539 
× 3 × 50 was created. In this study, the full dataset was divided such that 
30% of the total input-output pairs were used for testing and the 
remaining 70% were used for model training. Furthermore, 30% of the 
training samples were assigned to the validation set. Naturally, prior to 
be used, the input samples of the whole dataset are normalized in the 
range 0–1. This was accomplished here by subtracting the corresponding 
minimum value for collected voltage magnitudes and involved power 
injections at system nodes, and then dividing by the range between 
respective maximum and minimum values. On the other side, targets 
were one-hot encoded [13], and the categorical feature was transformed 
into an all-zero vector of multiple true/false features, with a 1 in the 
appropriate position to indicate the presence of a particular categorical 
value. 

4.2. CNN model architecture 

The selection of an optimal architecture for a particular application 
of CNNs is in general a demanding task due to the degrees of freedom 
involved. In this sense, hyperparameters such as number of layers, 
kernel sizes, dropout, learning rates, etc., play a key role in the success of 
CNNs for a given problem [18]. Nevertheless, depending on the appli
cation and the dataset, attempting to tune all hyperparameters of a CNN 
would be time-consuming and computationally intensive. Therefore, a 

Fig. 1. Basic architecture of CNNs.  

Fig. 2. Test power system.  
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priory knowledge of the process is essential, so that only a subset of these 
can be selected for refined tuning [19]. 

In this work, a CNN model with two convolutional layers and one 
max-pooling layer as feature extractors, followed by one fully connected 
layer to interpret these features and one output layer for three-class 
predictions is considered, as illustrated in Fig. 3. In this architecture, 
kernels of size 2 × 3 and 1 × 3 were employed for each convolutional 
layer, respectively. In addition, the Rectified Linear Unit (ReLU) func
tion was used on each “Activation” block, and batch normalization was 
included to improve the learning convergence. 

The pooling layer was configured here with a maximum value 
function over a 1 × 3 window size. The flatten block at the end of this 
process is used to reshape the output of the dropout layer into one- 
dimensional vector before going through the densely connected classi
fier. While ReLu activation is used for the first dense layer, the final 
output layer was set up with the Softmax function. For performance 
optimization purposes, the number of filters in the convolutional layers 
(flt1 and flt2, respectively), the number of units (nou) in the first layer of 
the fully connected network, and the dropout rate (dpr) were selected to 

be determined in this study through a settings-free optimization method, 
as presented in the following Sections. 

4.3. Jaya optimization algorithm (JOA) 

Many popular population-based optimization algorithms such as 
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) depend 
on several algorithm-specific control parameters that may impact their 
overall performance (for example, mutation and crossover rates in GA, 
and inertia weights and cognitive and social acceleration factors in 
PSO). Generally, these parameters are to be tuned for the best settings in 
the desired application, and the effort to adjust them increases with the 
quantity of parameters and their intrinsic interactions. On the other 
hand, JOA is a relatively new and settings-free optimization method, 
simpler to use and implement as compared to related algorithms 
controlled by specific parameters [20]. 

Based on a predefined fitness function, the basic operating principle 
of JOA is to minimize the cost function value to achieve an optimal 
result by avoiding the worst solution and quickly moving toward the 
best solution. Considering a candidate solution xi at the t-th iteration, the 
iterative process for this purpose can be expressed as follows: 

xt
i = xt−1

i + rand1
(
xbest − xt−1

i

)

−rand2
(
xworst − xt−1

i

) (3)  

where xbest and xworst represent the best and worst performing solutions 
available, respectively. Similarly, rand1 and rand2 refer to random 
numbers in the range 0 – 1 for each search variable. While the second 
term in (3) represents the tendency of the solution to always try to get 
closer to the optimal solution in each iteration, the last term in the 
expression has to do with moving away from the worst solution [20]. 
Based on (3), new candidate solutions are generated and evaluated, and 
old candidate solutions are replaced only if the new solutions perform 
better according to the achieved fitness function value. This iterative 
process is illustrated through the flowchart in Fig. 4. A detailed 

Fig. 3. CNN architecture.  Fig. 4. Flowchart of JOA.  
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description of JOA and its engineering applications can be found in [20, 
21]. 

4.4. Permutation feature importance (PFI) 

Since the predictive power of a trained model may be linked mainly 
to a reduced number of features from the entire and original input space, 
the identification of these relevant features may avoid the use of 
redundant information, increase the interpretability of the model for the 
problem at hand by reducing complexity, decrease computational 
burden and training time, and even boost the performance of the model 
[22]. Furthermore, from an online security assessment application point 
of view with PMUs, the number of measuring points to obtain the 
required information to be fed into the machine learning model would 
also be reduced, leading to a reduction in the number of these units. 

In general, feature importance refers to the identification of a subset 
of features that mostly impact the predictions of an already trained 
model. In particular, PFI represents an inspection technique based on 
scores associated with model prediction performances when a single 
feature in the data is randomly shuffled. Basically, if the prediction error 
rises after the permutation of values of a given feature, then we can 
assume that this feature may be more important than some other one in 
terms of the obtained related errors. If this error is practically unaf
fected, then the model is essentially ignoring the given feature [22]. 

Fig. 5 illustrates in a simple way the concept behind PFI, where a 
particular feature Fb of a certain dataset is randomly shuffled (while the 
values of all other features and targets are left unchanged), and then the 
model is used to make predictions. This process is applied to every 
feature in the data (one at a time). 

In order to calculate a mean feature importance (MFI) score for each 
particular input feature, the whole process of permutation and compu
tation of modeĺs prediction error needs to be repeated several occasions 
(for example ten times) [23]. In this way, the MFI score for feature f can 
be determined according to the following expression: 

MFIf =
100

(
AM − AMper

f

)

AMper
f

(4)  

where AM is the accuracy of the model without feature shuffling, and 
AMper

f denotes the achieved average accuracy after permutation of 
feature f. It is worth mentioning here that, in this work, the dataset 
features refer to the considered buses of the system, where each 
collected sample for V, P and Q variables is arranged in a corresponding 
array for each bus. Therefore, permuting the information of a particular 
bus in the dataset means to randomly interchange the position of the 
arrays within the whole set of sample arrays for that bus. 

5. Simulation results 

5.1. Optimization of selected hyperparameters 

The following constrained optimization problem was formulated for 
the determination of the CNN model’s hyperparameters indicated in 

Section 4.2, particularly the filters for convolutional layers (flt1 and flt2), 
the number of units in the first layer of the fully connected network 
(nou), and the dropout rate (dpr): 

Minimize J subject to :

Λmin
i ≤ Λi ≤ Λmax

i , i = 1, .., 4
(5)  

where Λi represents each of the selected hyperparameters, and J refers to 
the fitness function to be minimized, which in this case is defined as: 

J = c1

(
1

Tra acc

)

+ c2

(
1

Val acc

)

(6)  

with Tra_acc and Val_acc denoting the model training and validation 
accuracies, respectively, and c1 and c2 being weighting factors. For the 
minimization of (6) using JOA in Section 4.3, all candidate solutions are 
updated according to (3), and then integer variables such as the number 
of convolutional filters, and the number of neurons in the first dense 
layer are rounded to the nearest integer value before being evaluated 
[24]. The iterative application of the dropout rate proceeds as directly 
determined from (3). Now, since the model is re-trained for every 
combination of hyperparameters being tried, it is clear that the execu
tion time for the evaluation of a given set of candidate solutions at each 
generation of hyperparameter optimization will proportionally grow as 
the population size is increased, which at some point will become a very 
computationally expensive process. Therefore, a relatively small popu
lation size of 5 members was used here considering that it can still 
provide competitive results with acceptable convergence rates [25]. In 
addition, it is also worth mentioning that the categorical cross-entropy 
loss function [16] and the Adam optimizer [26] were employed in the 
studies to guide the learning process of the CNN models. 

By implementing the JOA based process in Python, setting the pop
ulation size to five elements, and fixing the number of generations to 
fifty, candidate solutions were iteratively evaluated to find the foremost 
model performance. By using a computer with a processor Intel Core 
i7–8665 U, CPU @ 1.90 GHz, 16.0 RAM, the hyperparameter optimi
zation task took an average of 8 h, and the time taken to go over 250 
epochs of network training for each candidate solution was around 115 
s. Naturally, the use of some more powerful computational resources can 
favorably impact this time. The convergence of the algorithm for the 
minimization of the cost function is illustrated in Fig. 6, where results 
with a Particle Swarm Optimization algorithm [27] have also been 
included for comparison. The corresponding best final solutions after 
several independent runs are presented in Table 1. 

Based on the performance shown in Fig. 6, and the fact that JOA has 
no dependance at all on algorithm-specific parameters, a summary of the 
CNN model with the solutions provided by JOA is given in Table 2, 
where the output shape of each layer, size of weights, and number of 

Fig. 5. Random permutation of the values of feature Fb.  Fig. 6. Algorithm convergence during cost function minimization.  
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trainable parameters are included (the symbol * is used here as a general 
denotation for the batch size). 

5.2. Model accuracy and loss curves for selected solution 

Visualization of CNN model performance over several epochs rep
resents one common way to review and determine how well it is learning 
and generalizing during training on both the training and validation 
datasets [24]. In this manner, the model behavior to learning issues such 
as underfitting or overfitting can be diagnosed. According to this, model 
accuracy and loss achieved during training using the best set of selected 
hyperparameters after JOA based optimization are correspondingly 
given in Fig. 7 and Fig. 8. 

Based on the selected dataset, and from the results displayed in 
Figs. 7 and 8, it can be observed that the model has been sufficiently 
trained over the indicated number of epochs since both relatively high 
model accuracy and low loss are achieved at the end of training. Since 
the model losses converges to a minimum value, with reduced gap 

between the training and validation loss as depicted in Fig. 8 on the far 
right, a reasonably good fit can be identified. In this case, continued 
training of the fitted model will potentially make it start memorizing the 
training data and lead to an overfit, which will affect the model capa
bility to generalize and predict accurately. 

5.3. Model performance metrics 

To measure the performance of the model in making predictions and 
generalizing to new, previously unseen data, common evaluation met
rics for classification tasks such as Accuracy, Precision, Recall, and F1- 
Score [24] were used, which are described next.  

• Accuracy refers to the number of correct predictions divided by the 
total number of predictions for a given dataset. It is the most typical 
evaluation metric for classification problems; however, it may lead 
to misleading results for problems with unbalanced classes. Classi
fication accuracy can be determined according to the following 
expression: 

Accuracy =
Number of correct predictions
Total number of predictions

(7)    

• Precision can be defined as the number of true positives results 
divided by the total number of positive instances that were predicted 
by the model. Precision is not concerned with false negatives and is 
computed as indicated below: 

Precision =
True Positives

True Positives + False Positives
(8)    

• Recall is an evaluation metric that quantifies the number of correct 
positive cases predicted against all positive instances in the dataset. 
Therefore, it gives an indication of the proportion of actual positives 
correctly identified. It is calculated as follows: 

Recall =
True Positives

True Positives + False Negatives
(9)    

• F1-Score combines precision and recall into a single measure to get 
an indication of the model performance when both false positive and 
false negative errors are of great concern. The computation of this 
metric is: 

Table 1 
Best final solutions.  

Algorithm Parameter Value Jmin 

JOA flt1 80 202.58 
flt2 40 
nou 81 
dpr 0.209 

PSO flt1 77 202.83 
flt2 38 
nou 100 
dpr 0.440  

Table 2 
Model summary.  

Layer Outputshape Size of weights Bias Parameters 

Conv2D_1 
& Activation 

(*, 2, 48, 80) (2, 3, 1, 80) 80 560 

BatchNorm (*, 2, 48, 80)   160 
Conv2D_2 

& Activation 
(*, 2, 46, 40) (1, 3, 80, 40) 40 9640 

BatchNorm (*, 2, 48, 40)   80 
MaxPool2D (*, 2, 15, 40)    
Dropout (*, 2, 15, 40)    
Flatten (*, 1200)    
Dense_1 

& Activation 
(*, 81) (1200, 81) 81 97,281 

Dense_2 
& Activation 

(*, 3) (81, 3) 3 246 

Total trainable parameters 107,967  

Fig. 7. Model accuracy.  

Fig. 8. Model losses.  
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F1 − Score = 2
Precision⋅Recal

Precision + Recal
(10)   

After performing the optimization of selected hyperparameters, the 
evaluation metrics described above were computed for both the training 
and test datasets, and the results are given in Table 3. For comparison 
purposes with the CNN model, corresponding results with two popular 
and widely used machine learning algorithms such as Support vector 
Machine (SVM) and K-Nearest Neighbor (KNN) are also included. For 
the application presented in this work, since the impact of misclassifying 
a given sample belonging to the Insecure class will be more critical than 
having to examine an irrelevant False Positive instance for this class, the 
Recall measure becomes relevant here. In general, as it can be seen from 
Table 3, the CNN model shows the best classification performance in this 
study to previously unseen data, according to the considered metrics. 

The response of the CNN model on the test dataset is further illus
trated through the confusion matrix in Fig. 9, which provides details 
about the predicted results (columns) as compared to the true values 
(rows). In this representation, the diagonal elements indicate the in
stances correctly predicted by the classifier. 

5.4. Model based on permutation feature importance scores 

In order to find out the impact of input features on the predictions of 
the model that has already being trained, relative importance scores 
were computed according to the permutation technique described in 
Section 4.4. Thereby, the mean importance score for each column of the 
involved dataset, after independently shuffling each column ten times, is 
illustrated in Fig. 10. 

As it can be seen in Fig. 10, the information from some buses turns 
out to be irrelevant or less important and does not contribute at all to the 
predictions of the model in this case. Consequently, if buses with an 
importance score for instance larger than 0.01 are chosen here, then 
only 26 buses out of 50 will be kept: 10, 11, 12, 13, 14, 15, 19, 20, 21, 
23, 25, 26, 29, 30, 31, 33, 34, 36, 38, 39, 41, 42, 43, 44, 45, and 46. Now, 
by training a new CNN model with information from these buses only, 
and the same architecture as in Fig. 3, the results for the performance 
metrics with the new model are given in Table 4. 

It can be seen from Tables 3 and 4 that the performance of the two 
CNN models is very comparable, and that the removed information was 
in fact relatively irrelevant based on the computed performance 
importance scores. After dataset reduction through PFI, three of the 
remaining buses belong to Z1, fourteen to Z2, and nine to Z3, as high
lighted in blue color in Fig. 11. 

From the results in Fig. 11, it is worth noting the following related to 
the features determined as relevant (through PFI) for model prediction: 
(a) all buses where power plants are connected to the main transmission 
network have been selected, and (b) all buses except one associated to 
the Z1-Z2 and Z2-Z3 tie lines have also been included. These results can 
be exploited in practice to better allocate a minimum set of involved 
measuring devices. 

Finally, it is worth emphasizing that after considering the compu
tational time to classify the test data set, it was found that this CNN 

model can take only around 0.0906 s in the computer used, as compared 
to 16.017 s taken by the traditional power flow simulations. 

6. Conclusions 

An approach for the static security assessment of power systems 
using CNNs has been presented in this work. In this regard, the simu
lation model of a practical power grid located on the state of Baja Cal
ifornia Sur, in northwestern Mexico, was considered for illustrative 
purposes. According to the proposed CNN structure, the formulation and 
application of a settings-free optimization strategy based on JOA 
allowed for the automated and systematic selection of different hyper
parameters, which contributes to maximizing model performance and 
reducing the human effort dedicated to build and tune CNN models. 
Afterwards, the use of permutation feature importance in the trained 
network provided insights about its most relevant input features for 
target prediction, which in practice can be used to choose the best 
location of a set of measuring devices considered for the application at 
hand. Then, a new CNN model was trained using only these identified 
features, and comparable results as with the original dataset were 

Table 3 
Performance metrics.  

Model Dataset Metric 
Accuracy Precision Recall F1-score 

CNN Training 99.45% 99.37% 99.55% 99.46% 
Test 98.88% 98.73% 98.95% 98.83% 

SVM Training 98.01% 98.14% 97.83% 97.93% 
Test 97.45% 97.50% 97.35% 97.42% 

KNN Training 97.97% 97.87% 97.75% 97.81% 
Test 97.04% 96.82% 96.78% 96.80%  

Fig. 9. Confusion matrix with CNN model applied to the test dataset.  

Fig. 10. Permutation feature importance scores (averaged and normalized).  

Table 4 
Performance metrics with reduced input space.  

Model Dataset Metric 
Accuracy Precision Recall F1-score 

CNN Training 99.47% 99.47% 99.45% 99.47% 
Test 98.67% 98.71% 98.53% 98.62%  
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achieved. The reduction in the complexity and dimension of input data 
can in general contribute to simplifying the problem under consider
ation, decreasing the computational burden for model training, and 
accelerating the implementation of the solution. 

By comparison against conventional machine learning alternatives 
such as Support Vector Machine and K-Nearest Neighbor, the effec
tiveness and superior performance of the proposed approach in making 
predictions and generalizing to new data was demonstrated. Besides, as 
compared to traditional power flow simulations, the time required to 
classify for example the test data set was radically reduced with the 
obtained CNN model, which shows its potential for online application. 
Finally, it is worth mentioning that although the hyperparameter opti
mization process of the model took about 8 h with the used hardware, 
the availability of some more powerful computational resources or high- 
performance and distributed computing schemes can significantly 
reduce this time. 
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