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Workshops of the Eighth International Brain-Computer Interface 
Meeting:  BCIs: The Next Frontier 
Abstract 

The Eighth International Brain-Computer Interface (BCI) Meeting was 

held June 7-9th, 2021 in a virtual format.  The conference continued the BCI 

Meeting series’ interactive nature with 21 workshops covering the bread of 

topics in BCI (also called brain-machine interface) research.  Some 

workshops provided detailed examinations of methods, hardware, or 

processes.  Others focused on BCI applications or user groups.  Several 

workshops continued consensus building efforts designed to create BCI 

standards and improve comparisons between studies and the potential for 

meta-analysis and large multi-site clinical trials.  Ethical and translational 

considerations were the primary topic for some workshops or an important 

secondary consideration.  The range of BCI applications continues to 

expand, with more workshops focusing on approaches that can extend 

beyond the needs of those with physical impairments.  This paper 

summarizes each workshop, provides background information and 

references for further study, summarizes discussions, and describes the 

resulting conclusion, challenges, or initiatives.   

Keywords: brain-computer interface; brain-machine interface, 

neuroprosthetics; conference;  

Introduction 

The field of brain-computer interface (BCI) research has many names, most 
historically originating from related research domains with converging objectives.  
The terms BCI and brain-machine interface (BMI) are quite common and the term 
neuroprosthetic also applies.  In general, a BCI is a device that interprets 
information directly from the brain to provide a means of interacting with 
technology. Brain activity can be measured using either implanted electrodes or 
external sensors. The technology can be operated through a variety of methods, 
including a direct connection between the brain and the effector (e.g., to operate a 
prosthetic), or a secondary interface such as a keyboard display (e.g., for 
communication).  Recent work has also used electrical stimulation of the brain itself 
to “close the loop” and provide sensory feedback about the state of the technology.  
The defining feature of a BCI is that the brain activity itself is interpreted, the 



 

 

information to control a device is not derived from activity propagated through 
peripheral nerves. Many BCIs were initially developed for use by people with 
physical impairments, but the current broad range of applications also targets other 
neurological and cognitive impairments, abled-bodied users, and even 
opportunities for human enhancement.  The 8th International Brain-Computer 
Interface Meeting provided a venue for exploration of the breadth of BCI topics and 
this paper is designed to provide a window into the workshops that occurred at that 
Meeting.     

The BCI Meeting Series 
The 8th International Brain-Computer Interface Meeting was originally 

scheduled to be held in 2020.  However, due to travel restrictions and health 
concerns during the global pandemic, the 2020 in-person meeting was postponed 
to June 7-9th, 2021 and ultimately converted to a virtual meeting format.  The goal 
of the BCI Meeting Series (1999 [1] 2002 [2], 2005 [3], 2010 [4], 2013 [5, 6], 2016 
[7-9], and 2018 [10, 11]) is to create a single venue for people representing all the 
diverse backgrounds, disciplines, expertise, and application areas necessary for 
successful and practical BCI research and development.   

The Eighth International Brain-Computer Interface (BCI) Meeting was hosted in 
the Pheedloop platform (Toronto, Ontario, Canada), which managed individual 
sessions using the Zoom platform (San Jose, California, USA).  Poster sessions 
and social events were held on the GatherTown platform (gather.town).  This 
Meeting was attended by 395 delegates from 35 countries, a significant growth 
from the 50 delegates in 1999 [1], although not quite as many as the previous in-
person meeting in 2018.  Respondents to the 2021 BCI Meeting evaluation survey 
identified themselves as 40% students, 13% postdocs, 25% faculty members, and 
22% other.  The BCI Meeting Series is intentionally designed to promote 
interaction between different groups and different career stages and has advanced 
the careers of numerous BCI researchers.  Many activities are designed to provide 
educational content and networking opportunities for students and early-career 
investigators.  The 2021 BCI Meeting had a theme of "BCIs: The Next Frontier." 
The workshops of the BCI Meeting Series provide examples of how BCIs are 
advancing the frontiers of science and details on both how close we are to realizing 
new applications and the challenges that remain to be overcome.  The workshop 
summaries presented here serve as an overview of the current status of BCI 
research and development and present a roadmap to the next steps needed to 
advance that frontier.   

 

Organization of Workshop Summaries 
Workshops for the BCI Meetings are proposed by members of the BCI 

community, then evaluated and curated by the Program Committee.  For the virtual 
BCI Meeting of 2021, the workshops were assigned to four different schedule slots 
with three to four workshops running concurrently. In addition, six of the workshops 
volunteered to run as part of a five-month preliminary series of “BCI Thursdays.”  
These workshops were the same length and format as the workshops that 



 

 

occurred during the Meeting, but did not overlap with other BCI Society events and 
had a separate registration structure.  However, they retained the strong emphasis 
on attendee participation that is central to workshops of the BCI Meeting series.  
The BCI Thursday series also included free events designed to provide technical 
background for students on cutting-edge topics in BCI research.   

The workshop summaries presented here are divided into three themes and 
ordered to provide a progression of topics.  They can be read sequentially as an 
overview of the field or separately to provide detail on a topic of interest.  However, 
acronyms are only defined on their first use.  For each summary, we report the 
primary organizer, who is also a co-author of this paper, and list all additional 
presenters. Each summary is designed to introduce the workshop topic, the latest 
developments or central ideas presented in the workshop, and the topics of 
discussion and eventual conclusions. Of course, nothing will substitute for the 
actual experience of being part of an interactive workshop, even a workshop in a 
virtual platform.  However, the summaries are intended to at least provide an 
overview and pointers to the information that workshop attendance would have 
provided. Further, the summaries provide the key points, conclusions, or 
consensus opinions that resulted from the workshop discussions and may include 
opportunities to participate in ongoing discussions or collaborations.    

Each workshop focused on a specific topic area, yet these topics overlap and 
complement each other, so that the summaries sometimes create a mosaic 
examining related ideas from different angles and at other times build on each 
other.  For example, the workshops “Toward an international consensus on user 
characterization and BCI outcomes in settings of daily living” and “On the need of 
good practices and standards for Benchmarking Brain-Machine Interfaces” 
examine different aspects of standards.  Similarly, BCI use for children and people 
with congenital disabilities are examined in the pair of workshops “The design of 
effective BCIs for children” and “Non-invasive BCIs for people with cerebral palsy.”   

Three general themes provide the structure for this article, although many 
alternative organizations could be proposed.  The themes are independent of the 
time slot in which the workshop occurred.  The first theme is Tools and Methods 
and contains workshops providing detailed examination of a particular hardware, 
software, or analysis method.  The second theme is BCIs for Specific Populations 
or Applications and is less concerned with hardware and software than with the 
outcome produced or the common considerations for working with a specific group.  
The final theme is Expanding BCI Usability and Availability.  The workshops in this 
theme focus on big picture topics such as standards, translational issues, and 
ethics as well as the expansion of BCIs into the broad consumer market through 
applications such as entertainment and human enhancement.    

The trajectory of these three themes, and the workshop summaries presented 
here, creates a progression from foundational topics to translational efforts for 
standardized clinical applications and BCIs for the population at large.  Together 
these workshops show the diversity of BCI applications and intended users and the 
complexity of the issues that must be solved to make BCIs into useful tools for the 
many intended user groups.   



 

 

Tools and Methods 

Focal Bi-Directional Brain Computer Interfacing with Concentric 
Electrode Technology 
Organizer:  Charles Anderson (Colorado State University) 
Additional Presenters: Walter Besio (University of Rhode Island and CREMedical), Barry Oken (Oregon 
Health & Science University), Myles McLaughlin (KU Leuven) 

 
This workshop focused on EEG BCI experiments and stimulation studies using 

tripolar concentric-ring electrodes (TCREs) and the advantages of this technology 
over conventional disc electrodes. Compared to conventional disc electrodes, 
TCREs have significantly better spatial resolution and signal-to-noise ratio [12-14]. 
TCREs increase signal bandwidth for high-frequency signals useful for localizing 
epileptic brain regions and possibly imagined movements [15, 16]. Imagined 
movement BCI improved significantly with TCREs [17, 18]. TCREs’ increased 
spatial resolution and signal-to-noise ratio may enable discrimination between 
finger movements, currently only possible with implanted electrodes. Experiments 
involving real and imagined finger movements found that EEG from TCREs 
produced significantly better discrimination among movements of individual fingers 
(about 70% correct classification) than conventional disc electrodes (about 40%) 
[19]. 

TCREs are safe for stimulation [20, 21], and can be used for seizure control 
[22-26]. The stimulation can block epileptogenesis [27] and alter neurotransmitters 
to increase the effectiveness of anti-seizure drugs [28-30]. Stimulation experiments 
are underway to determine if transcranial focal stimulation via concentric ring 
electrodes is effective for modulating human brains. 

Pain is a common medical problem but difficult to objectify as a personal 
experience of a sensation. Using TCREs both to selectively stimulate pain fibers 
and to record pain-related evoked potentials (PREPs) is one method of objectifying 
pain sensation [31-37].  Custom-made concentric stimulating electrodes can 
selectively stimulate pain afferents where conventional electrical stimulation with 
mono- or bi-polar stimulating electrodes failed. TCREs delivered paired electrical 
stimulations to the dorsal non-dominant hand. PREPs were recorded at Cz 
referenced to ear. For control participants, average PREP N1-P2 amplitude was 
significantly diminished by electroacupuncture. In another experiment control 
participants showed the expected habituation of PREP N1-P2 amplitude over time, 
but those with chronic low back pain showed an increase in PREP amplitude, 
presumably a physiological marker of central sensitization, the increased 
responsiveness to sensory information such as nociception.  

TCREs on the skull under the skin may be an effective middle ground between 
implanted stimulation electrodes and the non-invasive but less effective 
transcranial stimulation. TCREs provide higher magnitude stimulation in gray and 
white matter than transcranial stimulation. Focused and unfocused stimulation on 
neurons have been studied in Macaque. Increased spatial precision with TCREs 
was demonstrated when stimulating rat motor cortex area for rear limb movement. 



 

 

Conventional electrodes produced movement in both contralateral and ipsilateral 
limbs, but TCREs only produced contralateral limb movement [38]. 

Discussion covered practical considerations and design variations, including 
different numbers of rings and different spacing.  TCREs sizes include 10mm, 
6mm, 4mm, and even 3.5mm.  TCREs use 10-20 paste, but work on using gels 
and possible dry electrode designs are being considered. Caps to hold TCREs 
were described, but need work for the smallest TCREs. Two disadvantages of 
TCREs are the need for a custom pre-amplifier from CREMedical and for precise 
scalp placement because higher spatial precision means steep attenuation over 
short distances. Laplacian transforms can be applied to EEG recorded from 
conventional disc electrodes, but 92 disc electrodes are required to obtain results 
similar to that provided by one TCRE. Publicly available sample data recorded from 
TCREs can be found at 
https://www.cs.colostate.edu/~anderson/res/eeg/tripolar/tripolar.zip. 

 

Invasive brain computer interface technology: Open loop and closed 
loop decoding applications 
Organizer: Christoph Kapeller (g.tec medical engineering GmbH, Austria) 
Additional Presenters:  Kyousuke Kamada, MD, PhD, (Megumino Hospital, Japan); Aysegul Gunduz, PhD, 
(University of Florida, USA); Peter Brunner, PhD, (Washington School of Medicine, St. Louis, USA); Kai Miller, 
MD, PhD, (Mayo Clinic Rochester, Minnesota, USA) 

 
The workshop discussed state-of-the art BCI applications using open-loop and 

closed-loop decoding and neuromodulation.  Implementation of these experimental 
setups in existing BCI platforms was also discussed. 

Invasive electroencephalographic (iEEG) signals, such as electrocorticography 
(ECoG) or stereo EEG, contain information with high spatial and temporal 
resolution [39]. Several invasive BCIs have been realized over the past two 
decades.  Closed-loop invasive BCIs have been used for control of  prosthetic 
limbs [40] as well as avatars or cursors [41, 42].  Open-loop invasive BCIs have 
been used for decoding of speech [43-46], movements [47, 48] and vision [49, 50]. 
Establishing useful invasive BCI applications requires interdisciplinary efforts for 
the development of sensors and machine learning algorithms, with specialized 
efforts to make the resulting technology practical for a medical environment and 
matched to each individual’s clinical indications. Further, the risk of implanting 
sensors has to be surpassed by the benefit that the BCI provides to meet the 
specific need of each patient [51].  

Recent developments showed a transition from proof-of-concept 
demonstrations to clinical applications, including open-loop decoding for brain 
mapping [52-54] and BCI implants [55]. Such implants can provide ALS patients 
with a powerful BCI [42] and will be further investigated over the next years. The 
concept of open-loop electrical brain stimulation for neuromodulation has been 
widely used in presurgical brain mapping. Stimulating the somatosensory cortex 
can induce sensation in individual fingers [56], while stimulating the visual cortex 
causes illusory percepts like appearing faces or moving rainbows [57]. Open-loop 
deep brain stimulation (DBS) has been utilized for more than 40 years to manage 



 

 

tremor [58].  More recently DBS has been used to treat Parkinson’s disease, 
Tourette syndrome, dystonia, and depression [59]. Closed-loop stimulation based 
on iEEG signals improves the battery lifetime during the treatment of Tourette 
syndrome [60] and essential tremor [61]. Most of the aforementioned studies 
required the integration of sensors and amplifiers into signal processing platforms 
that are capable of real-time processing and synchronized with the patient’s 
condition and/or stimulus presentation. Example BCI platforms in the workshop 
were BCI2000 [62] and the rapid prototyping platform g.HIsys in MATLAB/Simulink 
[63]. 

Riemannian Geometry Methods for EEG preprocessing, analysis and 
classification 
Organizer: Louis Korczowski (Siopi.ai)  
Additional Presenters:  Marco Congedo (GIPSA-lab, CNRS, Université Grenoble- Alpes), Florian Yger 
(LAMSADE, CNRS, Univ. Paris-Dauphine, PSL Research Univ.), Sylvain Chevallier (LISV - UVSQ - Univ. 
Paris-Saclay), Pierre Clisson (Timeflux Research Group), Quentin Barthélemy (Foxstream) 

 
Riemannian Geometry (RG) is a subject of growing interest within the BCI 

community. Machine learning methods based on RG have demonstrated 
robustness, accuracy and transfer learning capabilities for the classification of 
motor imagery [64], ERPs [65], SSVEPs [66], sleep stages [67], and other mental 
states [68]. This workshop provided an overview of RG, demonstrating its practical 
use for signal pre-processing, data analysis, mental state classification, and 
regression.  

RG was first applied to BCI in 2010 [64].  Key articles highlighting different 
applications of RG include multi-class classification (e.g. minimum distance-to-
mean (MDM) classifier) [69], transfer learning (e.g. Riemannian Procrustes 
Analysis) [70, 71], the first online BCI system using it (e.g. Brain Invaders) [65, 72], 
and milestone-like performance of RG methods in international competitions [73, 
74]. Intrinsic properties of RG methods were discussed to explain their 
performances (e.g., simple parametrization of models, robustness induced by 
affine-invariant metrics) but also some drawbacks and how they can be managed 
(e.g. sensitivity to rank deficiency at high dimensionality) [75, 76]. Interestingly, RG 
can be used in combination with other effective methods such as common-spatial 
pattern and/or deep learning to outperform methods using Euclidean space alone, 
e.g. by projecting data in a tangent space [74]. 

The ecosystem of open-source libraries (that was scattered and scarce before) 
is now mature enough to improve several steps of the BCI system. For example, 
Riemannian methods outperforms Euclidean methods in accuracy and simplicity in 
use cases such as automatic artifact detection (e.g., Riemannian potato) [77, 78] or 
ERP classification (e.g. MDM with super covariance matrix). These performances 
are tested using the fair benchmarking approach [79] and are easy to replicate in 
online BCI thanks to libraries such as Timeflux [80]. 

Despite its performance advantages, publication data from 
https://www.dimensions.ai/ show that articles mentioning new contribution of 
“Riemannian Geometry” applied to BCI has remained in the range of 7 to 21 per 
year in the period 2016-2020 (mean citations : 27.71). For comparison, mention of 



 

 

"common-spatial patterns" associated with BCI increased from 71 to 119 articles 
per year (mean citations: 20.75) and "deep learning" from 15 to 179 articles per 
year (mean citations : 11.67) in the same period.  

We argue that the gap between the observed performance of RG applied to 
BCI and the proposal number of contributions in this field may be attributed to 
some combination of a perceived lack of easily accessible resources to make RG 
widely available to BCI research (e.g. 65.7% of respondents to the workshop 
questionnaire had never used RG before ) and the lack of reproducible tools for 
benchmarking different methods while taking into consideration datasets 
heterogeneity (discussed at the previous BCI meeting workshop [81]). 

This workshop was created to address these issues by increasing awareness of 
available resources for RG  and encourage benchmarking with tools such as 
MOABB on a larger scale of datasets [79].  We encourage everyone to report 
benchmarking results.  Further, we invite everyone to join us by using the open-
source RG tools, and by contributing to the improvement of these tools either by 
providing feedback, or contributing to the open source project pyriemann.  All the 
workshop resources are accessible, including slides, code tutorial, online demo, 
exhaustive workshop Q&A, and linked data: https://github.com/lkorczowski/BCI-
2021-Riemannian-Geometry-workshop. 

  

Open-source Python tools for BCIs 
Organizer: Pierre Clisson (Timeflux Research Group) 
Additional Presenters: Raphaëlle Bertrand-Lalo (Timeflux Research Group), Sylvain Chevallier (LISV, 
Université Paris-Saclay), Marco Congedo (GIPSA-lab, CNRS, Université Grenoble-Alpes) 
 

Python started as a general-purpose programming language but has evolved 
into a tool of choice for the scientific community, quickly overtaking specialized 
languages such as R and MATLAB [82]. Several factors account for its success: 
Python is easy to learn, has a strong community, and benefits from a rich and 
efficient data science ecosystem. 

This workshop had a two-fold objective: give an overview of the Python BCI 
landscape and provide hands-on instructions on a few chosen open-source tools. 

As a foundation for the focus on practical BCI, we first reviewed the main BCI 
paradigms and the typical workflow of a BCI pipeline. We discussed common 
challenges for BCI applications: the need for precise synchronization of the EEG 
signal and the stimuli, the difficulty of obtaining good quality signals in real-life 
conditions, and the challenges of calibration. 

Riemannian geometry (RG) for EEG-based BCI [65, 83] has produced state-of-
the-art results in international competitions [76]. Machine-learning algorithms 
based on RG offer many advantages. They are computationally efficient and thus 
suitable for online applications. They usually converge to optimal results relatively 
quickly, reducing calibration duration (ongoing studies on transfer learning are 
attempting to remove this phase completely [70] [84]). Finally, they do not depend 
on the BCI paradigm and work equally well for ERP, SSVEP, and motor imagery 
tasks. 



 

 

PyRiemann [85] is an actively maintained Python package for manipulating 
covariance matrices. It implements multiple data transformation techniques and 
classification methods. Workshop participants were guided through a Python 
notebook and instructed on using this library with concrete examples. 

The RG framework includes multiple signal classification strategies and BCI 
researchers use many other algorithms, such as Logistic Regression, Regulated 
LDA, Support Vector Machines, and Neural Networks [86]. Valid comparisons 
between methods are essential. The Mother Of All BCI Benchmarks (MOABB) [79, 
87] project offers comprehensive comparison tools that enable ranking new and 
existing algorithms with publicly available datasets, paving the way for reproducible 
research. We reviewed a practical example and explained the underlying code. 

Timeflux (https://timeflux.io/) [80] is an open-source framework for building 
online BCIs. It is capable of acquiring, recording, and processing biosignals in real-
time. It can also present precisely scheduled stimuli. It works hand-in-hand with 
PyRiemann and MOABB and rests on the shoulders of standard libraries such as 
Pandas [88], Scikit-learn [89], Lab Streaming Layer [90], and HDF5 [91]. It comes 
with a rich set of nodes and plugins for dynamic epoching, matrix manipulation, 
digital signal processing, machine learning, and other tools. It also provides a 
convenient JavaScript API for developing web interfaces. We reviewed the 
architectural principles of Timeflux and explained how to use it to design a P300 
speller, finishing with a functional demo that runs in a web browser. 

We only introduced the potential of the Python language for the BCI field. For 
instance, we only briefly described MNE [92], a full-fledged framework for offline 
analysis of EEG and MEG signals. This workshop provided a good starting point 
for further exploration. The presentation slides, notebooks, and code are publicly 
available [93]. 

Artificial Intelligence in Brain-Computer Interfacing 
Organizer: Moritz Grosse-Wentrup (University of Vienna)  
Additional Presenters:  Tonio Ball (University of Freiburg), Aldo Faisal (Imperial College London), Gernot 
Müller-Putz (Graz University of Technology) 
 

Artificial intelligence (AI) methods in general, and deep learning algorithms in 
particular, have revolutionized the field of machine learning [94]. Current AI 
systems outperform human experts in various cognitively challenging tasks [95, 96] 
and have enabled scientific insights that arguably could not have been obtained by 
human intelligence alone [97]. More recently, deep learning methods have been 
adapted to and developed for brain decoding and BCI systems [98, 99]. Building on 
a long history of discussions on the benefits of nonlinear decoding methods in BCI 
[100], this workshop discussed whether AI can outperform traditional BCI machine 
learning methods and which challenges should be addressed to realize the full 
potential of AI in BCI.  

The consensus on the current performance of AI-BCI methods was that they 
perform essentially on par with the best non-deep decoding algorithms. However, a 
rigorous comparison of state-of-the-art Riemannian decoding methods [76, 101] 
with AI algorithms has yet to be done. The workshop participants concluded that a 
large-scale brain decoding challenge, e.g., hosted by a major AI or machine 



 

 

learning conference, would be well suited for realizing a fair comparison of 
competing decoding architectures (e.g., https://beetl.ai/). 

The workshop participants then considered which issues prevent, at least so 
far, AI methods from revolutionizing BCI systems in the same way they have 
already transformed other data-driven applications. The primary bottleneck 
identified in the discussion was the absence of large-scale datasets in the field of 
BCI. These datasets would ideally comprise thousands or even millions of BCI 
users from heterogeneous settings, i.e., including numerous experimental 
paradigms, recording setups, and user groups. While the workshop participants 
acknowledged the efforts of the BCI community to record large-scale datasets 
[102], they also noted that collecting datasets on a similar scale as those available 
in other scientific disciplines [103] is probably beyond the capabilities of the 
academic community. Consequently, the discussion shifted to the role of 
commercial BCI applications in recording and providing access to large-scale 
datasets. Several consumer EEG headsets have reached market readiness with 
the expectation of prompt deployment in passive BCI applications[104]. 
Comprehensive access to data recorded by these applications could provide the 
large-scale datasets required to realize the full potential of AI-BCI systems. In 
particular, the heterogeneous nature of such data, which stands in contrast to the 
homogeneous data typically recorded in academic settings, could be considered 
an advantage.  The diversity of data might be leveraged to create feature 
representations that are user- as well as hardware-independent. Such feature 
representations would be essential to realize zero-training BCIs for commercial 
applications [105-107]. 

However, leveraging commercially recorded EEG datasets poses significant 
practical, legal, and ethical challenges. It is unclear what incentives companies 
would have to share their data publicly. Also, procedures would have to be 
developed that realize informed consent and honor data privacy regulations. The 
workshop participants considered an active engagement of the BCI community 
with industrial partners essential to make large-scale datasets a reality and realize 
the full potential of AI-BCI systems. 

 

Adaptation in closed-loop BCIs 
Organizer: Tetiana Aksenova (University Grenoble Alpes, CEA, LETI, CLINATEC)  
Additional Presenters: Amy L. Orsborn (University of Washington), Martin Bogdan, Sophie Adama 
(Universität Leipzig), Blaise Yvert (U1205 Inserm, University Grenoble Alpes), José del R. Millán (University of 
Texas at Austin), Jean Faber (Universidade Federal de São Paulo) 

 
BCI decoders calibrated in an open-loop, offline paradigm but then applied in 

close-loop, online paradigm show a significant drop in decoding performance. 
Adaptive algorithms in a close-loop session decrease this shortcoming by directly 
adjusting BCI parameters to incoming data. In addition, both the user and machine 
learn in a closed-loop BCI.  

Closed-loop paradigms are often applied to BCIs that decode motor signals.  
Intracranial ECoG [108, 109] from a participant with tetraplegia was decoded with a 
fully adaptive decoder to operate a 4-limb exoskeleton. The decoder used an 



 

 

adaptive Markov mixture of multilinear experts [110] to switch between 
independent decoders (experts) to interpret multiple degrees of freedom.   

Closed-loop paradigms enable user/decoder co-adaptation to maximize 
performance through synergistic user-machine interactions between the two 
learners [e.g., 111]. However, learning trajectory models are needed to optimize 
these co-adaptive systems. A new game-theoretic model of co-adaptation [112] 
provides a framework to analyze system equilibria and predicts learning 
trajectories, but requires validation. 

The balance of decoder vs patient adaptation is important. EEG-based motor 
BCIs illustrate the pros and cons of extensive machine-learning adaptation. Non-
supervised context-aware algorithms can rapidly adapt so users can use a 
language model-based speller [113] without a calibration phase [114, 115]. 
However, this does not promote user learning—EEG patterns for BCI commands 
actually became less separable with practice rather than improving [115]. True 
mutual learning, where decoder and user learn from each other, seems to require 
slow decoder adaptation to promote improved EEG features [116] as seen in 
several longitudinal studies [117].  

Mutual learning implies cortical plasticity and the BCI use as a 
neurorehabilitation tool specifically designed to support plasticity (i.e., user 
learning).  A clinical trial in patients with severe hand plegia from stroke compared 
the effect of BCI-operated vs random functional electrical stimulation. Only the BCI 
group had significant and clinically important functional improvement and a 
significant increase of functional connectivity in the damaged sensorimotor 
hemisphere [118]. Regulation of the magnitude of the required EEG response was 
critical to keep the patient’s attention high and promote recovery.  

Hybrid BCIs (HBCIs) integrate brain and non-brain data sources with different 
classifiers schemes (serial, parallel, mixed) to achieve better results [119]. Thus, 
neuroplasticity can happen in multiple dimensions and temporal scales. Different 
learning times are associated with different physiological systems such as 
autonomic learning (heart/breath adaptation) [120, 121], motor learning (agency 
and control refinement) [122, 123], central learning (cortical adaptations) [124], and 
cognitive learning (embodiment, ownership and spatial perception) [125]. HBCIs 
therefore present a more complex challenge for balancing classifier adaptation rate 
vs. neural plasticity.  

Adaptive BCIs also exist for non-motor applications. The hybrid Adaptive 
Decision Making system was designed for a patient with complete locked-in 
syndrome (CLIS) and uses multiple EEG features (Granger causality, the 
imaginary part of the coherency, and multiscale sample entropy) to increase the 
probability of correctly evaluating consciousness level [126]. Caregiver 
observations regarding the patient’s state were input into the machine learning 
system to personalised consciousness level estimation. An adaptive speech BCI 
application illustrates the risk of audio contamination of neuronal activity recordings 
[127]. 

Group discussion placed a priority on developing better understanding of co-
adaptation from both theoretical and experimental viewpoints to optimize BCI 
training and user benefit. 



 

 

Optimising BCI performance by integrating information on the user's 
internal state 
Organizer: Sebastian Halder (University of Essex) 
Additional Presenters: Philipp Ziebell, University of Würzburg), Angela Riccio (Fondazione Santa Lucia), 
Yiyuan Han (University of Essex)  

 
Ideally, a BCI could detect the physical and mental state of the user and adapt 

accordingly to allow optimal BCI control for both unimpaired and motor impaired 
end-users. This adaptation could (1) determine when to start, pause or stop a BCI 
session, (2) adapt parameters of the BCI session such as trial length, stimulus and 
feedback modality or (3) switch between BCI and other assistive technology types. 
User-centered design (UCD) is critical to optimize BCI control in this manner [128]. 
In general terms, an assistive technology should enable a person with a disability 
to overcome barriers in daily life, education, work, or leisure [129]. This can only be 
achieved if the needs and requirements of the user are investigated [130, 131]. 
Regarding BCI design, the cognitive [132-134] and physical [135, 136] 
characteristics of end-users need to be considered [132, 133]. Based on this 
knowledge, we can implement a system that adapts to the internal state of the 
user.  

The UCD evaluation process is built around metrics to determine effectiveness 
(accuracy in percent of correct responses), efficiency (information transfer rate in 
bits/min and subjective workload) and satisfaction (via visual analogue scale, 
questionnaire, or user interview) [137, 138]. These metrics should also inform 
earlier stage BCI development before end-user evaluation [139, 140]. Further 
factors should be considered when designing the BCI paradigm, for instance, the 
design of tasks, feedback, instructions, and signal processing [86, 141-143]. 
Performance may improve via engaging task design (e.g., a “Star Wars Mission” 
task) and exploring different stimulus modalities (such as auditory and tactile) and 
better understanding of the mechanisms underlying training with a BCI [140, 144]. 

User characteristics ranging from physiological (e.g., the amplitude of the 
sensorimotor rhythm during rest [145]) to psychological (e.g., the ability to 
concentrate [132, 146]) can influence performance in varying degrees. For 
example, a user with a traumatic brain injury may be in a minimally conscious state 
with only transient windows of consciousness [147, 148]. Identifying such windows 
is an undeniable prerequisite to BCI control [149]. Evaluation of the efficacy of such 
measures and any new measures that will be developed can be accomplished 
during pharmacologically induced loss of consciousness such as the Wada test 
[150]. More subtle influences on BCI control may arise due to mood and 
motivation, fatigue and workload or whether the user is experiencing pain, which 
can be detected using integrative features such as phase-based connectivity [151-
153]. Ideally, the BCI could adapt to all changes in the users’ state. Doing this 
efficiently requires knowledge of features in the EEG (or other signals) that reflect 
the state of the user.  

Many challenges must be resolved before the full potential of the state of the 
user can be reliably used to optimize BCI performance. The main challenge comes 
from the variety of states that need to be decoded, each requiring the identification 



 

 

of signal features that reflect these states, and integrating real-time identification of 
the states into the BCI design and usage environment. 

BCIs for Specific Populations or Applications 

The design of effective BCIs for children 
Organizers: James J.S. Norton (National Center for Adaptive Neurotechnologies), Disha Gupta (National 
Center for Adaptive Neurotechnologies), Eli Kinney-Lang (University of Calgary) 
Additional Presenters: Kim Adams (University of Alberta), Tom Chau (University of Toronto), Erica Floreani 
(University of Calgary), Kathleen M. Friel (Burke Neurological Institute), Dion Kelly (University of Calgary), 
Adam Kirton (University of Calgary), Ilyas Sadybekov (University of Calgary), Corinne Tuck (Glenrose 
Rehabilitation Hospital-I CAN Centre) 

 
BCIs have the potential to enhance, restore, or replace function in children with 

neurodevelopmental disorders, neurodegenerative disorders, and severe motor 
disabilities caused by stroke, spinal cord injury, or other acquired injuries [154-
157]. However, few studies have investigated BCIs for children [158-161] and 
these studies show conflicting results; it remains unclear whether children—
especially those with neurological disabilities—can effectively use BCIs. Thus, this 
workshop was organized into three discussion panels that: 

1. Examined how BCIs can improve children’s quality-of-life –Children can 
use BCIs to [162] communicate, play games, and express themselves 
creatively. The greatest benefit BCIs offer children with motor disabilities is a 
sense of control, motivating children to engage more with BCIs and enabling 
them to practice repetitive tasks that lead to learning. Thus, the child’s 
perception of a successful BCI may not match that of a researcher.  For 
example, operating a BCI using a combination of brain activity and artifacts 
may improve the child’s life and be considered a success from the child’s 
perspective.  Therefore, special consideration is needed to simultaneously 
engage children in activities that are educational, therapeutic, meet the 
goals of researchers, and are engaging for the children. Recommended 
strategies are gamification [163-167] and close interdisciplinary 
collaboration between diverse experts.  

2. Discussed the interfacing, signal-processing, and physiological 
challenges encountered during the design of BCIs for kids – 
Developing BCIs for children presents unique signal acquisition, data 
analysis, and reporting challenges [154]. Signal acquisition hardware for 
pediatric BCIs needs to be more portable, lighter, more comfortable, and 
easier to use (e.g., faster setup, dry electrodes, robust to artifacts). 
Presently only a few signal analysis pipelines exist for pediatric BCIs [168, 
169], due in part to differences in the EEG from children compared to adults 
[170]. For example, P300 timing varies more in children and BCIs may be 
more fatiguing for children. Improved and consistent reporting of 
demographic information and experimental details would allow for better 
cross-study analyses. Lastly, improved user interfaces are an area of critical 
need for pediatric BCIs. 



 

 

3. Considered the use of BCIs for children as augmentative and alternative 
communication devices and for rehabilitation in clinical settings – The 
design of BCIs for communication and rehabilitation in children benefits from 
a patient-centered and neurologic deficit specific approach [161, 171]. For 
example, many children express an interest in using BCIs for gaming and 
social play. Collaborative and competitive interactions between family 
members, and especially siblings, are a critical social outlet for children with 
motor deficits that motivate them to use BCIs. Neurological deficits may be 
caused by damage to small areas of the brain that were acquired very early 
in life. Thus, the brain may reorganize and researchers should work with 
clinicians to consider neuroplasticity in the design of BCIs for children [172, 
173]. In addition, working with clinicians and families will increase 
awareness of the potential of BCIs for children [174].  

As members of the pediatric BCI community, we must put children first, 
understand what children want out of BCIs, and make it happen.  

  
 

Non-invasive BCIs for people with cerebral palsy 
Organizer:  Jane E. Huggins (University of Michigan) 
Additional Presenters: Katya Hill (University of Pittsburgh), Petra Karlsson (Cerebral Palsy Alliance, 
University of Sydney), Reinhold Scherer (University of Essex) 

 
This workshop included extensive discussion about BCI design considerations 

for people with cerebral palsy (CP), the most common childhood physical disability 
[175].  CP is caused by injury or genetic abnormalities affecting the brain early in 
life leading to 15-19% without a communication method even with assistive 
technology [176-179]. However, BCIs that provide augmentative and alternative 
communication (AAC) for individuals with adult-onset impairments may 
unintentionally rely on skills that people with CP have not had an opportunity to 
learn.  

Issues from the workshop Design of Effective BCIs for Children apply to 
children and adults with CP because of missed educational opportunities.  Even 
those who have successful communication technology may need a BCI as age 
increases the severity of motor impairments. This makes BCI a competitive access 
option. For example, a participant with CP had similar communication rates on an 
AAC device with head-pointer access (1.33 words-per-minute, wpm) and BCI 
access (1.29 wpm).   

Overall, BCI studies with people with CP show mixed results [162, 180, 181].  
Some comparisons of BCI designs showed that SSVEP and SMR designs were 
preferred to the P300 design and had better performance [181]. Other comparisons 
of naïve users showed that some had significant SMR-BCI control (2 classes, 
82±12%), others significant SSVEP-BCI control (4 classes, 43±7%), but few could 
use both and some could not use any BCI [182, 183].   

Such results raise the specter that current BCI methods may not be appropriate 
for people with CP.  If a person has no voluntary motor control, can they operate a 



 

 

motor imagery BCI?  Can people with limited access to schooling count flashes of 
a P300 BCI or perform mental arithmetic or spatial navigation?    

EEG recordings are complicated in people with CP due to head shape 
variations or improper electrode cap fit [184, 185] as head asymmetry is reported 
among 40% of people with the most severe impairments from CP [186] and 
microcephaly at 30% [187] to 60% [188]. Abnormal neuroanatomy can also cause 
unusual localization of cortical function [189]. The impact on BCI is uncertain, but 
people with severe CP can benefit from individualized electrode locations [184, 
190].  

Extraneous movements, which are common [191], can also create EEG 
artifacts [e.g., [182]] and may make it difficult to focus on the BCI display. Further, 
gaze or visual impairments including ptosis (drooping) of the eye lid, nystagmus, 
and cerebral visual impairment (CVI) can lead to difficulty interpreting visual stimuli 
[192]for an SSVEP or P300 BCI device or visual feedback for an SMR BCI.  Thus, 
special care is needed to understand how well the user can interpret visually 
presented information.  

Indeed, user-centered design is important throughout BCI design and user 
training. Acclimation regimes may be needed with step-by-step introduction of 
individual BCI concepts.  Family interactions, cooperation, and competition can 
increase motivation and engagement, which are essential for learning, but not a 
guarantor of good performance [193]. These factors are crucial as people with CP 
may have a long history of unsuccessful attempts to operate technology. Thus, the 
ideal BCI would be calibrated without the user following instructions, have intuitive 
operation and be inherently engaging.  In addition, systems should build on familiar 
concepts, such as row-column scanning, to simplify the transition from calibration 
to end-use [183].   

Ultimately, we need improved understanding of the effect of CP on EEG, user-
centered design to match the BCI to the interest and needs of individual users, and 
user-tailored training paradigms.  Finally, it is vital to recognize that for children 
with congenital disabilities, technology use and even communication itself, are 
skills that must be taught.    

    
 

From Speech Decoding to Speech Neuroprostheses 
Organizer: Christian Herff (Maastricht University) and Sergey Stavisky (University of California, Davis)  
Additional Presenters: Jon Brumberg (Kansas University), Phil Kennedy (Neural Signals Inc.), Miguel 
Angrick (University of Bremen), Julia Berezutskaya (Radboud University), Qinwan Rabbani (Johns Hopkins 
University) 

 
Despite impressive recent results in decoding speech from neural recordings, 

there remain many challenges to achieving a real-time, large-vocabulary BCI for 
restoring lost speech. In this workshop, five of these challenges, and potential 
solutions, were discussed. 

First, existing speech decoding demonstrations have not yet achieved 
consistently intelligible outputs. Multiple groups presented new decoding 
architectures, including recurrent neural networks and GANs. Workshop 



 

 

participants agreed that these modern machine learning approaches should benefit 
from additional data in future studies, and noted that all of the work presented used 
less than 20 minutes of neural recordings. Further, their performance did not 
saturate with training data quantity subsampled within these limited datasets. 

A second challenge is how to obtain highly informative neural correlates about 
speech intent. Previous research almost exclusively relied on ECoG signals, which 
are not regularly used for long-term measurement. However, high-quality speech 
decoding and synthesis can also be achieved using penetrating microarrays 
implanted in the dorsal motor cortex [194], even though that area is not typically 
associated with speech production [195]. These Utah arrays have been used for 
multiple-year recordings in a number of participants and achieved high 
performance in, e.g., online decoding of attempted handwriting in people with 
tetraplegia [196] or speech perception decoding [197]. Alternatively, stereotactic 
EEG, which is very similar to Deep Brain Stimulation electrodes [198] that routinely 
remain implanted for decades, was proposed for high-quality speech synthesis. 
The neurotrophic electrode, an entirely different type of electrode with good long-
term potential [199], was also proposed for speech neuroprosthesis [200]. 

Third, a functioning neuroprosthesis needs to generate or decode speech in or 
near real-time [45]. However, previous studies demonstrating speech synthesis 
[44, 201] or speech recognition [202, 203] from ECoG data have primarily (except 
for [204, 205]) been done offline on previously recorded overt or whispered 
speech. Approaches that process and decode intracranial EEG in real-time will 
provide direct feedback to the patient. This has been done using imagined speech 
processes [206], building on prior work such as [207]. Recent progress towards a 
low latency (250 ms) ECoG speech synthesis pipeline shows proof-of-concept 
open-loop results. A non-invasive EEG neuroprosthesis based on an artificial vocal 
tract model [207] provides auditory and visual feedback to the user and might 
therefore help train speech neuroprosthesis users and pilot online speech BCI 
methods. 

Fourth, the field would benefit from better speech synthesis performance 
metrics. Recent works typically uses variants on measuring correlation between 
true and decoded audio (e.g. for spectral or pitch features), which are poor proxies 
for intelligibility. Workshop participants agreed that adopting subjective intelligibility 
metrics is important, but this may need to wait until decoding performance is good 
enough for these metrics to become relevant (or else they will suffer from floor 
effects). 

Fifth, all presenters agreed that data sharing is key to accelerating progress. 
One recently shared large dataset of speech perception in fMRI, ECoG, and sEEG, 
along with the associated impressive reconstruction quality provides the public 
research community with a fully annotated dataset [208]. 

 

Brain-computer interfaces for the assessment of patients with disorders 
of consciousness 
Organizer: Christoph Guger (g.tec Guger Technologies OG)  
Additional Presenters:  Damien Coyle, (Ulster University), Kyousuke Kamada, (Hokashin Group Megumino 
Hospital), Rossella Spataro, (University of Palermo), Jing Jin, (East China University), Steven Laureys, (Brain 



 

 

Centre & GIGA Consciousness, Coma Science Group, University and University Hospital of of Liege, Belgium; 
International Disorders of Consciousness Institute, Hangzhou Normal University, China; CERVO Brain 
Research, U Laval) 

 
Bedside evaluation to assess conscious awareness after coma requires 

inferences based on patients’ motor responsiveness [209] with limited diagnostic 
precision and prognostic information, increasing the ethical difficulty of decisions 
on life-prolonging therapies. Technologies such as functional neuroimaging and 
BCIs provide objective tools for diagnostic, prognostic and therapeutic purposes 
[210]. About two thirds of patients clinically diagnosed with “unresponsive 
wakefulness syndrome (UWS)” (or “persistent vegetative state”) may show residual 
brain activity in PET studies [211] and are hence actually in a minimally conscious 
state (MCS) with a better chance of recovery.  

BCIs can help reduce the diagnostic and prognostic uncertainty of both acute 
and chronic disorders of consciousness [212, 213].  BCI should first be used to 
establish a reliable and reproducible response to a simple command.  Then one 
can attempt functional communication with simple yes/no questions and eventually 
spelling or message creation [212, 213].  The mindBEAGLE (g.tec medical 
enginering GmbH ) uses auditory P300, vibro-tactile P300 and motor imagery 
paradigms for these steps and rehabilitation protocols. Paradigms include a quick 
(2-8 minute) system calibration or patient assessment. Other BCI systems have 
also been designed for this purpose, including using auditory sensorimotor rhythm 
feedback for those with visual impairments [214, 215].  

BCI assessment of DOC with locked-in and completely locked-in patients found 
9 out of 12 patients could demonstrate command following by answering  YES/NO 
questions [216]. Building on the pilot of 15 patients reported in [215], the workshop 
reported an update with 25 patients who each participated in 10, one-hour motor 
imagery BCI sessions. Of these, 5/9 UWS, 7/11 MCS, and 3/4 locked-in syndrome 
demonstrated significant capacity to modulate brain activity in stage I (assessment) 
and progressed to stage II/III (auditory feedback training and Q&A response).  All 
participants in stage II/III responded significantly to YES/NO questions. Another 
study with unresponsive patients showed 3 out of 12 patients could successfully 
answer the YES/NO questions on some assessment days [217], showing that 
these patients have fluctuations in consciousness that can be detected by BCI 
systems.   

BCIs can also help predict eventual recovery. Auditory P300 and vibro-tactile 
P300 provided a predictor of functional recovery for two patients with DOC. One 
patient did not show any auditory P300 or vibro-tactile P300 after three weeks and 
coma continued for more than 6 months. A second patient responded to auditory 
P300 and vibro-tactile P300 and after 6 months had recovered from coma and 
understood verbal commands. Such patients may benefit not only from BCI 
assessment, but also from BCI-based rehabilitation [218]. Longitudinal observation 
of 12 DOC patients showed that achieving mindBEAGLE classification accuracy of 
at least 50% predicts recovery of behavioural responsiveness (after six months) as 
measured by the coma-recovery scale revised (CRS-R) [219]. Moreover, 12 of 20 
patients showed CRS-R score improvement after 10 sessions of a vibrotactile 
stimulation protocol [218]. 



 

 

BCI can also evaluate the effectiveness of other treatments for arousing DOC 
patients by analyzing EEG recorded during mental tasks before and after 
intervention.  BCI methods have been used to assess the effectiveness of spinal 
cord stimulation and deep brain stimulation surgeries in arousing vegetative 
patients. Auditory, vibro-tactile, or motor imagery-based BCI systems have been 
used to assess 5 unresponsive patients and 3 vegetative patients in this on-going 
study.  

BCIs are being cross-validated against neuroimaging techniques such as PET 
and fMRI [220]. The current challenge is to integrate BCIs with our increasing 
scientific understanding of recovery from severe brain injury to optimized the 
trajectory of clinical care after coma and improve the quality-of-life in disorders of 
consciousness and locked-in syndrome [221]. 

 

The promise of BCI-driven functional recovery after stroke: leveraging 
current evidence to define next steps 
Organizer: A Nicole Dusang (Brown University/Providence VA Medical Center/ Massachusetts General 
Hospital) 
Additional Presenters:  Murat Akcakaya (University of Pittsburgh); Febo Cincotti (Sapienza University); 
Cuntai Guan (Nanyang Technological University); Christoph Guger (g.tec medical engineering GmbH); 
Kyousuke Kamada (Asahikawa Medical University); David Lin (Massachusetts General Hospital/ Providence 
VA Medical Center); Donatella Mattia (Fondazione Santa Lucia IRCCS); José del R. Millán (University of 
Texas at Austin); Ander Ramos-Murguialday (University of Tübingen / TECNALIA Research and Innovation); 
Vivek Prabhakaran (University of Wisconsin-Madison); and George F. Wittenberg (Pittsburgh VA Healthcare 
System / University of Pittsburgh) 

 
Stroke is a leading cause of long-term disability worldwide, and 30–50% of 

stroke patients experience limited recovery. Rehabilitative EEG-BCIs are a 
promising neurotechnology for restoration of function after stroke. The hypothesis 
behind rehabilitative BCIs is that coupling neural activity with sensory feedback of 
limb movement induces cortical plasticity, improving functional recovery. This 
workshop featured twelve researchers developing rehabilitative EEG-BCIs for 
functional recovery from ten institutions around the globe. Presenters were split 
into two panels to consider how to translate this technology from the lab to the 
clinic. Randomized controlled trials (RCTs) have demonstrated the benefit of 
Rehabilitative EEG-BCIs, but employed diverse control methods, therapy doses, 
dosing intervals, and different types of neural dynamics and sensory feedback.  

 Panel 1 discussed optimal EEG-BCI support for stroke rehabilitation. Spatial 
neglect is an often overlooked deficit in stroke patients though it can significantly 
impact a patient’s response to therapeutic intervention [222]. Technology is needed 
to objectively map neglect, quantify changes during recovery, and provide a 
rehabilitation platform to target spatial neglect. Although BCI addresses a gap in 
standard neurorehabilitation medicine [223], it still lacks an American Heart 
Association (AHA) class and evidence rating. BCIs empirically measure the signals 
of the damaged cortex and patients’ functional disability during recovery. 
Rehabilitative EEG-BCIs restore the neural activity-functional output connection, 
supporting the retraining of neural activity. This is demonstrated by a RCT 
evaluating an EEG-BCI intervention for distal upper extremity function in a chronic 



 

 

stroke population [224]. Results showed 64% of participants made significant gains 
in both primary and secondary outcome measures.  

Panel 2 reflected on stakeholders’ needs for translating this promising 
technology to a clinical environment. Though RCTs have demonstrated the 
therapeutic efficacy of rehabilitative EEG-BCIs, commercialization requires clear 
clinical and economic benefit and reliable function within the rigors and 
environment of long-term clinical use. BCI-FES systems must address both 
patients’ and clinicians’ needs [118]. Patients need an effective and engaging 
rehabilitation platform, while clinicians require a plug-n-play system with remote 
technical assistance and joint analysis. Unanswered questions remain along the 
spectrum of basic research to patient care [225]. The field has yet to determine the 
optimal neural modalities or features for rehabilitative EEG-BCIs, resulting in 
significant feature extraction variability in current EEG-BCI platforms. Additionally, 
past and current RCTs employed diverse outcome measures since no measure is 
clearly best for capturing recovery. Further, stroke is itself a heterogeneous 
condition and much remains unknown about the relationship between the type and 
location of damage and resulting deficits. The RecoveriX system (Guger 
Technologies), a certified medical product, analyzes motor imagery to trigger FES 
for upper and /or lower limbs. RecoveriX has shown effectiveness for spasticity 
reduction and movement restoration in upper and lower limbs [226, 227]. 

Convincing clinicians, patients, and payers that Rehabilitative BCIs are a worthy 
technology for investment was felt to require a large, multi-site, randomized control 
trial study, incorporating methods to minimize, or scientifically account for, 
heterogeneity between technology and control populations at various sites. Ideally, 
it will also address knowledge gaps such as long-term effects, dose-response 
curves, patient stratification, control features, and a comprehensive outcome 
evaluation. 

Towards the decoding of neural information for motor control: present 
and future approaches 
Organizer: Gernot Müller-Putz (Graz University of Technology)  
Additional Presenters: Andrea I. Sburlea (Graz University of Technology), Valeria Mondini (Graz University 
of Technology), Damien Coyle (Ulster University), Cuntai Guan (NTU Singapore), Tonio Ball (University of 
Freiburg) 

 
For people with a cervical spinal cord injury (SCI) from trauma or disease, 

upper extremity function is often reduced or lost, resulting in dependency on a 
caregiver or family member for most daily activities. BCI researchers have for 
decades worked to derive motor commands directly from brain activity to bypass 
the interrupted spinal cord pathways and establish direct control of a 
neuroprosthetics device [228] or robotic arm/exoskeleton [229]. Implantable BCI 
approaches have produced many advances [230, 231], however, in recent years, 
non-invasive approaches have moved beyond proof of concepts [232-234] and 
made major steps towards full arm control. This workshop focused on state-of-the-
art approaches to non-invasive neural control of movement.  

Non-invasive detection of multiple types of hand movements have been 
reported, including for people with cervical SCI [235, 236]. Analysis of movement-



 

 

related cortical potentials (MRCP) can detect and decode single hand movements 
[237] or movement attempts (e.g., hand open vs. hand close) or even different 
grasps (e.g., palmar vs. lateral grasp) [238, 239].  

Understanding the neural and behavioral mechanisms involved in grasping is 
important for successful decoding. Investigations included the relationship between 
the broad-band EEG representation of observing and executing a large variety of 
hand-object interactions and the muscle and kinematic representations associated 
with the grasping execution [240]. Object properties and grasp types can be 
decoded during the planning and execution of the movement. Properties of the 
objects could be decoded even during the observation stage, while the grasp type 
could be accurately decoded even during the object release stage [241].  

While the decoding of arm/hand trajectories has mainly been shown in 
intracortical recordings, major steps in the non-invasive field have been 
demonstrated. Closed-loop continuous decoding of executed [242, 243] but also 
attempted arm movement [244] has been done from low frequency EEG. 
Movement parameters like position and velocity, necessary for decoding [245, 246] 
were presented. In particular, the contribution of non-directional movement-
parameters (distance and speed) has been highlighted [247-249]. Also, the first 
evidence for online decoding of attempted continuous movement has been 
reported [244]. Eye movement artifacts present a special challenge for all non-
invasive decoding studies. Participants must be permitted to use their gaze to 
follow the feedback, electroc-oculogram (EOG) signals must therefore be removed 
from the EEG online [250]. 

In addition to decode of low frequency EEG components, decoding of executed 
and imagined 3D reaching tasks have involved delta frequencies, but also alpha, 
low and high beta frequencies [251, 252]. These studies include decoding of 3D 
lower limb movements that could be important for gait rehabilitation [253]. 

In the area of motor imagery and stroke rehabilitation, deep learning methods 
and convolutional neural networks (CNN) have been used for participant specific 
[254, 255], participant-independent [256], and adaptive classifiers [257]. CNNs 
have also been used in assistive robot control with online adaptive motor 
classification [258]. 

Beyond the pure application of CNNs for decoding [98], the internal data 
representation and the effects of hidden unit activations provide possible insights 
into what the units of such networks learn and the possible hierarchical 
organization of spectral features [259]. These first insights may open a new way of 
understanding brain processes.  

Biomimetic approaches to restore somatosensation 
Organizer: Robert Gaunt (University of Pittsburgh) 
Additional Presenters: Sliman Bensmaia (University of Chicago), Karthik Kumaravelu (Duke University), 
Alberto Mazzoni (Scuola Superiore Sant’Anna), Emily Gracyzk (Case Western Reserve University), Luke 
Bashford (California Institute of Technology), Chris Hughes (University of Pittsburgh) 

 
Rapid advances in BCI capabilities to decode and restore upper limb motor 

functions [260] often ignore the accompanying sensory losses. Strategies to 
restore somatosensation include intracortical microstimulation [261, 262], cortical 



 

 

epidural stimulation [263-265], peripheral nerve stimulation [266-268] and spinal 
cord stimulation [269]. Regardless of approach, it is difficult to select stimulus 
parameters that improve the quality of conscious percepts and maximize functional 
capabilities. This workshop explored the idea of using biomimicry as a framework 
to create stimulus trains. Biomimetic stimulation leverages knowledge of intact 
somatosensory neurophysiology with the intuition that stimulation parameters that 
evoke patterns of neural activity that match normal patterns will improve perception 
and function. 

Decades of work characterizing skin mechanoreceptor responses in the hand 
during object manipulation [270] were integrated into TouchSim to accurately 
simulate primary afferent responses to a mechanical input [271]. The simulated 
population-level activity resembles the spatiotemporal dynamics of somatosensory 
neurons in the cortex during the same mechanical stimuli [272], with large transient 
signals at contact onset and offset [270, 273]. However, simply replacing recorded 
or simulated spikes with stimulation pulses does not replicate the sensation. 
Additional computations are required to address anatomical complexities and 
electrical stimulation biophysics. A simulation platform using genetic algorithms 
and finite element models of the cortex, populated with realistic neurons, was 
developed to address these complexities [274]. Critically, the stimulus trains 
created through simulation more faithfully represented the desired cortical activity 
than stimulus trains designed using standard methods. 

The utility of this computational tool and the principles of biomimicry were 
tested in peripheral nerve stimulation experiments in amputees. As a baseline, 
linear stimulation encoding schemes that did not capture important features of 
natural neural coding were effectively used by participants [266]. Similarly, event-
based stimulation encoding that mimicked the natural onset-offset dynamics of 
primary afferents was also effective [275]. However, in a direct comparison, 
TouchSim was used to create multiple stimulation trains that were increasingly 
biomimetic. The most natural sensations were obtained with the stimulus trains that 
maximized biomimicry [276]. In other experiments, early work suggested that a 
particular biomimetic train could improve naturalness [268]. Upon repetition, and 
despite considerable effort to combine modeled fascicle recruitment with 
biomimetic and non-biomimetic stimulation trains, just two of five participants 
reported more natural sensation using biomimetic trains, highlighting the limitations 
of single-subject studies of perception. 

Two different aspects of biomimicry were explored in human intracortical BCIs. 
Motor imagery and actual movement evoke similar brain activity. To explore this 
concept for somatosensation, neural activity patterns were recorded in 
somatosensory cortex and the supramarginal gyrus during imagined sensations 
[277]. Different imagined sensations were encoded stably in the somatosensory 
cortex, suggesting that imagined sensation could guide stimulus train design, even 
in people left insensate from their injury. Finally, in a direct test of biomimetic 
principles, intracortical stimulus trains using fixed amplitudes and frequencies were 
compared to trains with stimulation amplitudes modulated by cortical activity 
patterns recorded from non-human primates [273]. The participant frequently rated 
the biomimetic trains as more natural, especially when the overall intensity was 
matched. 



 

 

In summary, biomimicry is a principled and likely fruitful approach to create 
stimulation trains to restore somatosensation. Simulation and modelling tools can 
help design these trains, which have outperformed less realistic trains in both the 
peripheral and central nervous systems. Nevertheless, considerable development 
is still necessary, and these results must be validated in larger numbers of 
participants. 

Expanding BCI Usability and Availability  

Toward an international consensus on user characterization and BCI 
outcomes in settings of daily living 
Organizers: Mariska Vansteensel (UMC Utrecht) and Nataliya Kosmyna (Massachusetts Institute of 
Technology) 
Additional Presenters: Andrew Geronimo (Department of Neurosurgery, Penn State College of Medicine, 
Hershey, PA, USA), Katya Hill (AAC-BCI iNNOVATION LAB, University of Pittsburgh, Pittsburgh, PA, USA), 
Theresa Vaughan (National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, 
USA) 

 
BCI research is growing fast, and implantable and non-invasive communication-

BCIs are being introduced to people with significant motor disability for 
independent use in daily living situations [e.g., 42, 278, 279-285], allowing end-
users to participate in research and development experiments and provide critical 
input into iterative user-centered design [286]. Such studies are crucial for the 
development of usable communication-BCIs and for their eventual widespread 
implementation to resolve the communication problems of people with diseases 
such as amyotrophic lateral sclerosis. However, most studies include only limited 
numbers of participants.  Since the target user population for communication-BCIs 
is relatively small [287], large studies may not actually be possible. For translation 
of communication-BCIs to practical use, it is therefore essential to compare results 
across studies and in this way learn about environmental and participant/user 
characteristics affecting BCI performance [e.g., 288, 289, 290] and the different 
usability perspectives of users, caregivers and other stakeholders. Such 
comparison will strongly benefit from standardized reporting about 
users/participants and their environment, and from the use of similar metrics to 
assess BCI performance and outcome [291]. This workshop was designed to 
initiate a consensus list of reporting recommendations, specifically directed at the 
use of communication-BCIs in the daily life settings of people with significant motor 
disability. After brief presentations to introduce the topics of discussion [196, 292-
301], workshop participants shared their experiences and built consensus in 
breakout rooms. Key outcomes of these discussions include: 

1. Standardization is hard. Standardization is a hard and complex task. Part 
of this complexity comes from the different focus areas of experiments 
designed by different disciplines.  

2. Age group matters. Adult and pediatric BCI users need different training 
procedures and different primary outcome measures. But researchers need 
as much comparison as possible. 



 

 

3. Meeting users’ end goals is paramount. For any system to be introduced 
in their environment, end-users should be strongly involved in BCI design, 
goal setting, and outcome measure selection. Even existing standard 
metrics for reporting BCI system performance must be adapted to the goals 
of the end-user. 

4. Needs of primary users and their caregiver(s) may be different. A BCI 
has multiple types of end-users and researchers must report on how well a 
BCI meets the needs and goals of both primary and secondary (e.g. 
caregivers) users. 

5. Different tasks produce different outcomes. BCI outcome measures 
should consider the importance of each task to be conducted with the BCI, 
as well as the desired and accomplished frequency of conducting each task.  

6. Fatigue strongly affects BCI performance. Both cognitive and physical 
fatigue need to be assessed and reported on.  

7. Medication can affect brain signals. The effect of medication should not 
be underestimated, but medication use is seldom reported in papers. 

As our next steps, we plan to engage in the bigger discussion about 
standardization, to collect more input from BCI researchers, and to use all collected 
information for a formal publication on reporting recommendations related to user 
characterization and outcome measures for the use-case of communication-BCIs 
in settings of daily living. 

On the need of good practices and standards for Benchmarking Brain-
Machine Interfaces 
Organizer: Ricardo Chavarriaga (Zurich University Applied Sciences, ZHAW Switzerland) 
Additional Presenters: Paul Sajda (Columbia University, USA), José Contreras-Vidal (IUCRC BRAIN, 
University of Houston, USA), Luigi Bianchi (“Tor Vergata” University of Rome, Italy), Zach McKinney (Scuola 
Superiore Sant’Anna, Italy), Laura Y. Cabrera (The Pennsylvania State University, USA) 

 
Translating Brain-Machine Interface (BMI) systems onto real applications 

requires accepted, well-defined criteria to assess their effectiveness, usability, and 
safety. Benchmarking, specification, and performance evaluation are perceived as 
main priorities for standardization in the field [291, 302, 303].  This workshop 
discussed translational challenges, and ethical issues of BMI systems, as well as 
existing initiatives to address them. 

The Future Neural Therapeutics technology roadmap [304] analyzes closed-
loop neurotechnologies aimed at treating movement disorders and neurological 
diseases. This document summarizes the state of the art and identifies key 
technological challenges required to successfully develop a new generation of 
these technologies, including computational power, robustness and safety, 
usability and appropriate regulatory frameworks. As BMIs approach commercial 
availability, attention must be paid to concerns generated by the possibility of 
repurposing, misusing, or maliciously using consumer-oriented neurotechnology. 
These concerns include overstated claims on their efficacy or the influence of 
neurotechnology in markets related to employment or cognitive enhancement [305-
307]. Moreover, widespread use of consumer-oriented technology can lead to 



 

 

indiscriminate collection of neural data or user harm due to maladaptive processes 
triggered by neurostimulation devices. 

The neuroethics subcommittee of the IEEE Brain Initiative focuses on the 
ethical and societal issues related to research and development of 
neurotechnologies  They developed the IEEE Neuroethics Framework 
(https://brain.ieee.org/publications/ieee-neuroethics-framework/), a collective effort 
to evaluate the ethical, legal, social, and cultural issues that arise with the 
deployment of neurotechnologies and provide explicit guidance on how to address 
them. The framework is organized as a matrix that covers existing and emerging 
neurotechnologies for both current and foreseen applications. This framework is 
conceived as a living document that will evolve with the technology. Participation in 
this effort is open to interested participants. 

Despite the large number of BMI publications, it is seldom possible to evaluate, 
verify or compare published results. Meta-analyses showed that a significant 
number of BCI publications lack necessary information [308, 309]. However, two 
standardization activities are addressing this issue. The IEEE Standards Working 
Group P2794: Reporting Standard for in vivo Neural Interface Research (RSNIR) 
(https://sagroups.ieee.org/2794/) aims to improve the transparency, interpretability, 
and replicability of neural interface research by specifying a set of technological 
and methodological characteristics to be reported in scientific literature and 
technical documentation.  

They recently published a set of preliminary requirements for implantable neural 
interfaces [310] and are seeking broad community input and participation to ensure 
the Standard reflects the needs of a more diverse range of neuroscience and 
neurotechnology stakeholders, including device regulators, funding officers, 
clinicians, and end users. Information on providing such input can be found through 
the working group website. Another standardization project, IEEE P2731: Standard 
for a Unified Terminology for Brain-Computer Interfaces (BCI) 
(https://sagroups.ieee.org/2731/) aims at developing a comprehensive BCI 
lexicography and a functional model of BCI systems [311-313].  It is also working 
on identifying the required information to be stored in BCI files to enable efficient 
sharing of data and tools among stakeholders [314]. These activities can contribute 
to the development of standard experimental and usage protocols, benchmarking 
procedures, and increased interoperability of neurotechnology systems.  

Overall, this workshop highlighted the need to continuously evaluate the state-
of-the-art and the implications of neurotechnologies. This requires multi-
stakeholder, anticipatory processes for developing appropriate tools -including 
ethical and technical guidelines, standards, and regulatory instruments- that allow 
translation of neurotechnologies for both consumer and medical applications [315-
317]. 
 

Lessons from successfully implanted neurotechnology 
Organizer: Erik Aarnoutse (Brain Center, University Medical Center Utrecht) 
Additional Presenters: Fabien Sauter-Starace (CEA, LETI, Clinatec, University of Grenoble); Leigh 
Hochberg (Brown University; Massachusetts General Hospital; Providence VA Medical Center), RI Aysegul 
Gunduz (J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida) 



 

 

 
Over the last 16 years, various clinical trials of implantable neurotechnology in 

humans have demonstrated successful applications. This technology has enabled 
users to move arms [318, 319], walk [108], and communicate [42] and has also 
alleviated disease symptoms [61]. Clinical trials require a great deal of effort but 
are an important and informative step along the route to wide availability of 
neurotechnology for users in need.  

The route from design to clinical trial was illustrated by the Wimagine implant to 
operate an exoskeleton [108]. First, the medical needs of people with quadriplegia 
were combined with the neurosurgical requirements: no transcutaneous 
connection, no limit to battery lifetime and limited invasiveness. This created 
design choices of wireless data transmission, inductive charging, and epidural 
ECoG electrodes. Technical requirements were a trade-off between wishes and 
constraints. Animal studies assessed signal stability [320]. Regulatory compliance 
to the EU Medical Device Regulation meant proving compliance to ISO standards 
for quality management and standards for mechanical, electrical, and thermal 
safety, biocompatibility, and software. The clinical trial with bilateral implants has 
enrolled two patients so far [108]. Training was progressive by adding more 
complexity in the adaptive machine learning algorithm, from brain switch to 3D + 
pronation/supination [321]. The signal proved to be stable over months. The 
exoskeleton was only used in the laboratory. 

The 17 years of BCI research with penetrating multi-electrode arrays produced 
many lessons [318]. Participants are colleagues, but also customers. They request 
new features (user needs), which are added to the design [196, 322]. The 
participants’ motive is to advance science, they do not expect gain for themselves. 
However, the obligation of the field is to give users gain in daily life as soon as 
technology allows it [42, 285]. Neuroethics is important here. Hardware advances 
ease the technical constraints making neural data ever easier to gather and use.  

With the entry of industry in this field, the question of the role of academia 
becomes more important, where academia is better equipped to ask fundamental 
(hypothesis based) questions of neuroscience. Development is important but is not 
easy to publish. Mainly, academia investigates (hardware agnostic) decoding 
principles.  

A good example of the input of academic expertise is seen in the use of cortical 
ECoG recordings as part of essential tremor DBS therapy [61]. This cross-field 
input produced knowledge on biomarkers both for fundamental questions and 
treatment efficacy. Here, user needs for individualized therapy, reduction of side 
effects [323], and increased battery life were addressed. The research triggered a 
new hardware design that reduced stimulation artefacts. 

So, academia provides design input (user needs, technical requirements, 
decoding principles) for future neurotechnology for home use. Academia seeks to 
create knowledge, optimize designs, and provide a foundation of information that 
can support translation of BCI to commercial availability.   We have also identified 
barriers that must be overcome for home use (wireless link, power constraints, 
limits on the number of electrodes, portability, larger scale manufacturing). 
Overcoming these barriers requires more time and money than academia has, but 



 

 

the generation of this knowledge by academic reduces the risk for industry and 
thus advances the likelihood that BCI will become widely, commercially available.  

 

Next steps for practically useful BCI ethics 
Organizer: Brendan Allison (UC San Diego) 
Additional Presenters: Pim Haselager (Radboud University Nijmegen), Dr. Sonja Kleih-Dahms, (University of 
Würzburg), Donatella Mattia (Fondazione Santa Lucia, IRCCS) 

 
 This workshop was designed not for review or abstract academic discourse, 

but to develop practical next steps for BCI-related ethical issues. The organizers 
briefly presented examples of these issues [324-328] to promote discussion.  

A public database of ethical use cases was proposed to raise awareness with 
an associated forum where people could share their perspectives on each case. 
The ethical use cases could also help professors and others who want to teach 
BCI ethics. Further discussion and development of ethical use cases would benefit 
from an ongoing collaborative effort, perhaps via online seminars, to develop a 
framework, assign people to develop different use cases, and create an online 
database. These efforts might be hosted by the BCI Society.  

An immediate ethical concern is that research study participants do not usually 
keep the devices used in the study. Thus, people with disabilities may regain the 
ability to communicate or control a device with an experimental BCI, but then lose 
that ability when their study participation ends. Workshop contributors agreed that 
this is a serious and currently unresolved problem. Most funding sources do not 
support leaving devices with patients, nor providing ongoing technical support. 
However, several researchers include such considerations in their research plans.  
Possible next steps include raising awareness of this problem (such as through an 
online forum, survey, paper, or approaching journalists) and further engagement of 
funding organizations. 

The rise of “Big BCI” through the recent initiation of BCI projects by high-profile 
companies creates its own set of ethical concerns. Workshop participants desired 
collaboration between the huge companies working on BCIs and the existing BCI 
community on efforts such as an online workshop or paper. This step was hoped to 
foster joint work on proposed ethical guidelines and regulatory issues.  

Another concern comes from the many online articles and videos with 
misinformation about BCIs from different groups, including some manufacturers, 
neurofeedback practitioners, enthusiasts, and conspiracy theorists. Of course, 
such misinformation will continue indefinitely to some extent, but might be reduced 
through next steps such as publicly commenting on inaccuracies and producing 
and promoting high-quality information about BCIs. Indeed, some for-profit and 
non-profit entities do provide good BCI content. The ongoing increase in online 
BCI-related classes, conferences, workshops, competitions, and other activities 
has led to ample recorded material from reputable organizers and speakers that is 
usually available for free.  

Many participants had seen online postings from, and/or been directly 
contacted by, people who believe that they are being involuntarily mind-controlled 
by a BCI or a similar device. A few participants reported trying to direct such 



 

 

persons to appropriate mental health professionals, but without apparent success. 
Next steps at this time are not obvious aside from a possible paper or position 
statement with suggested guidelines, developed with mental health experts.  

The workshop focused on specific, actionable next steps to raise awareness of 
ethical issues in BCI and further engage relevant groups through workshops, 
papers, online discussions and a database of use cases and surveys [329-331]. 

 

Brain-Computer Interfaces for Human Enhancement 
Organizer: Davide Valeriani (Neurable Inc.) 
Additional Presenters: Riccardo Poli (University of Essex), Maryam Shanechi (University of Southern 
California), Hasan Ayaz (Drexel University), Nataliya Kosmyna (MIT Media Lab), Yannick Roy (NeuroTechX), 
Marcello Ienca (ETH Zurich) 
 

This workshop highlighted recent advances in BCI technologies that go beyond 
clinical applications and instead focus on augmenting human capabilities. The 
workshop brought together neuroscientists, engineers, neuro-ethicists, 
entrepreneurs and researchers at the cutting-edge of BCI development for human 
augmentation. Discussion focused on current trends and future prospects, as well 
as the critical role played by international communities such as NeuroTechX in 
educating and stimulating interest in BCI and neurotechnologies. 

BCIs for cognitive human augmentation are intended to improve the process of 
acquiring knowledge and communicating with other individuals [332]. Passive BCIs 
can enhance individual decision-making in target detection by recognizing event-
related potentials [333] or aggregating brain activity from multiple people [334]. 
Collaborative BCIs can also decode decision confidence from brain activity and 
use it to weigh individual opinions, leading to significant improvements in group 
performance in a variety of tasks [335-337]. These BCIs can also facilitate human-
machine teaming in face recognition [338]. 

Combining brain recording (e.g., EEG, fNIRS) and stimulation (e.g., tDCS, 
TMS) improves processing speed [339] and spatial working memory [340], and 
introduces novel communication forms, such as brain-to-brain communication 
[341]. Moreover, it enables the development of BCIs capable of regulating 
abnormal mental states, with direct applications in the treatment of mental 
disorders [342, 343]. 

BCIs and other wearables support studying the brain in complex environments 
and diverse domains, a research field called neuroergonomics [344]. Advances in 
recording technologies, such as EEG and fNIRS, enable study in operational and 
realistic settings to monitor cognitive function, improve human-to-human 
communication, and enhance human-machine interaction [345]. Moreover, the 
integration of brain recordings with other physiological signals can provide 
biofeedback to users through audio, light, or haptic inputs, promoting performance, 
attention, and overall well-being [346]. These hybrid, multimodal BCIs will also help 
increase the reliability, accuracy, and commercial potential of non-invasive BCIs, 
which can be limited by the low signal-to-noise ratio of non-invasive neural 
recordings. Yet to implement multimodal BCIs we need to identify relationships 



 

 

between modalities and develop new techniques to integrate neural recordings at 
different scales. 

While neuroscience and neuro-engineering have shown that it is technically 
possible to develop BCIs that augment human capabilities in a variety of domains, 
neuro-ethicists are working to identify which applications are morally desirable 
[316]. Two main ethical principles should guide the development of BCIs for human 
augmentation: (1) cognitive liberty, which protects the rights of individuals to make 
free and competent decisions on using such devices, and (2) fair and equitable 
access to enhancement, which ensures they are available to everyone, regardless 
of race, gender or socioeconomic status. As with all biomedical devices, safety and 
data privacy are key pillars to make these devices ethically acceptable. 

Overall, the workshop showcased the tremendous advantages of expanding 
BCIs from assistive devices to technologies for human enhancement, with a variety 
of potential applications. The most promising approaches seem to be the fusion of 
different physiological signals and integration with artificial intelligence, with a 
continuous awareness of the ethical challenges of enhancement applications. 

 
 

Brain-Computer Interfaces for outside the lab: Neuroergonomics for 
human-computer interaction, education and sport 
Organizers: Antonia Thelen (eemagine Medical Imaging Solutions GmbH, Berlin, Germany)  
Additional Presenters: Fabien Lotte, (Inria Bordeaux Sud-Ouest); Camille Jeunet (CNRS, Bordeaux 
Neurocampus); Frédéric Dehais (ISAE-SUPAERO, Toulouse); Patrique Fiedler (TU Ilmenau, Ilmenau); Martijn 
Schreuder (ANT-Neuro, Enschede) 

 
Traditionally, BCI research has been bound to the investigation of perceptual, 

cognitive and motor processes within stationary, hardware-intensive laboratory 
setups. While these studies provide intriguing real-time insights into such 
processes, the translation of these findings into real-world brain interactions is 
limited. The emergence of lightweight, high-density EEG solutions has permitted 
the extension of BCI applications into mobile setups within real-world 
situations. Use of high-density EEG enables the simultaneous utilization of different 
sensor configurations, providing greater adaptability with a single hardware setup. 

This workshop focused on the efforts undertaken towards the 
instrumentalization of EEG and specifically BCI techniques within the field of 
neuroergonomics. The panel comprised experts who strove to provide 
methodological strategies to facilitate the transition of BCI applications into real-
world and/or every-day settings. First, advances and current limitations of existing 
solutions were discussed. Second, an outlook upon possible new technological 
and methodological innovations was presented which could provide new avenues 
of interacting with the world by implementing systems with an explicit awareness of 
the concepts of embodied cognition.  Embodied cognition, as described in [347], 
acknowledges that physical elements of the world are often integrated seamlessly 
into our cognitive processes in a way not easily captured by static diagrams with 
separate boxes for sensory inputs and physical outputs.  Instead, cognition 
happens in conjunction and in parallel with the sensorimotor loops that provide 



 

 

interactions with the world.  Various neuroergonomics applications of BCI use 
outside the lab were also discussed, including evaluating 3D User Interfaces [348], 
Sport Science [349, 350] and Aviation [351].  

Specifically, the robustness of signal processing methods used by BCI 
classifiers was discussed. How to apply such algorithms reliably across a large 
variety of application fields and how to make them cope with inter- and intra-
individual variability is still a topic under investigation [352]. The contribution of 
state-of-the-art, lightweight, dry sensors resulting in varying signal-to-noise ratios 
and their impact upon such signal processing algorithms was highlighted [353, 
354]. Moreover, the tradeoff between laboratory-based and real-world applications 
was discussed with regards to sensor application within these fundamentally 
different environments [350, 355]. Lastly, discussion focused on difficulties 
encountered when translating BCI-based interventions across different 
demographics, specifically differences in cognitive states and/or perceptual 
processes that were investigated within a research context or focused on 
clinical/therapeutic interventions.  

Taken together, the workshop provided an overview of current advances made 
within the field of neuroergonomics.  

    

Brain-Computer Interfaces for Art, Entertainment, and Domestic 
Applications 
Organizer: Anton Nijholt (University of Twente) 
Additional Presenters:  Christoph Guger (g;tec medical engineering GmbH); Elisabeth Hildt (Illinois Institute 
of Technology); Erika Mondria (University of Art and Design); Ellen Pearlman (Massachusetts Institute of 
Technology); Stephanie Scott (Colorado State University); Aleksander Valjamae (Tallinn University)  

 
BCI technology enables neurophysiological data from an individual user’s 

affective and mental state to be used for online adaption of system and interaction 
methods [356]. Artistic, domestic, or entertainment use of such information shift the 
focus from efficiency to the importance of affect in social and playful interactions 
such as in family, community, playful, and artistically challenging situations. This 
workshop addressed the use of BCI for artistic, entertainment, educational, and 
health applications. 

BCI has been used for many artistic applications  [357-359].  In general, artistic 
projects reduce inhibitions and encourage people to engage with unfamiliar 
technologies such as BCI. Synergies of design, art, and research have shown 
interesting results which may also enrich clinical settings. 

BCIs have been used for creative arts therapy [360, 361] as part of a 
conceptual framework bringing together several disciplines for researching the 
expansion of treatment modalities in the intersection of art, technology, and 
therapeutics. A recent insight is that a post-phenomenological approach towards 
human-technology interaction and technological artifacts in general will be useful 
when applied to BCI for therapy, art, and creative expression. In this approach 
user-specific needs for enabling self-expression are integrated in a 
transdisciplinary design perspective on meaningful and self-expressive 



 

 

communication exploring brain activity underlying artistic creation and using 
neurofeedback research [362]. 

The BR41N.IO BCI Hackathon series, now in its 5th year [363, 364], provides 
opportunities for team-based development of new BCI applications within 24 hours. 
During the 2021 BCI & Neurotechnology Spring School, 321 developers, artists, 
programmers, and hackers participated in 38 teams and created many interesting 
and cutting-edge new applications or improved the signal processing of BCI data 
sets. 

In neurotheatre and neurocinema research [365, 366], new media art and 
neurotechnologies allow for co-creation between actors, director, and audience to 
shape a performance by emotional experiences using BCI and other sensors and 
multisensory actuators. From a research perspective, neurotheatre can be seen as 
a novel integrative research environment for prototyping and exploring new social 
neuroscience paradigms, like collective decision making or shared affective 
experiences. From a societal perspective, the fusion of science, technology, and 
arts allows for so-called design fiction, a design practice aiming at exploring and 
criticizing possible futures by creating speculative, and often provocative, scenarios 
narrated through designed artifacts. 

Affective brain-computer music [367, 368] Interface applications use affective 
BCIs for music-making and music listening. Given recent developments in direct-
to-consumer devices (wearable BCIs, headphone sensors) and music streaming 
services these BCI applications aim at influencing the user’s affective state (mood 
enhancement) by individualized music choices. Exaggerated claims about 
capabilities, increasing dependency on technology and limiting one’s own 
capabilities, and privacy issues arising from long-term monitoring of a user's 
affective state are  pitfalls related to a potential future, relatively widespread use of 
EEG-based affective brain-computer music interfaces in entertainment contexts 
[369]. 

A brain opera called “Noor” provides an example that combines these concepts 
through the use of artificial intelligence (AI). In “Noor”, biometric variables, including 
BCI are integrated with natural language processing and machine learning. In the 
near-future, such integrated systems will be tasked with more responsibilities 
relating to many aspects of human congress, often with confusing legal oversight 
and minimal accountability, potentially leading to scenarios enforcing dystopic 
digital societies of control [370-372]. 

The workshop discussions revealed consensus about the benefit of the joint 
effort of art and science research for BCI research in general and the acceptance 
of BCI for the general public. 

Conclusion 

Together, these workshops provide foundational information, explore diverse 
applications for different populations, and further develop big picture ideas for new 
frontiers of BCI use.  Many of these ideas will be further developed in the 
workshops of the planned in-person Ninth International Brain-Computer Interface 
Meeting, currently scheduled for June 7-10th, 2022 in the Sonian Forest, Brussels, 
Belgium.   
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