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Abstract—In search and rescue missions, drone oper-
ations are challenging and cognitively demanding. High
levels of cognitive workload can affect rescuers’ perfor-
mance, leading to failure with catastrophic outcomes. To
face this problem, we propose a machine learning algorithm
for real-time cognitive workload monitoring to understand if
a search and rescue operator has to be replaced or if more
resources are required. Our multimodal cognitive workload
monitoring model combines the information of 25 features
extracted from physiological signals, such as respiration,
electrocardiogram, photoplethysmogram, and skin temper-
ature, acquired in a noninvasive way. To reduce both sub-
ject and day inter-variability of the signals, we explore
different feature normalization techniques, and introduce a
novel weighted-learning method based on support vector
machines suitable for subject-specific optimizations. On an
unseen test set acquired from 34 volunteers, our proposed
subject-specific model is able to distinguish between low
and high cognitive workloads with an average accuracy
of 87.3% and 91.2% while controlling a drone simulator
using both a traditional controller and a new-generation
controller, respectively.

Index Terms— Cognitive Workload Monitoring, Physio-
logical Signals, Machine Learning, Human-Robot Interac-
tion, Wearable Systems, Search and Rescue Missions.

[. INTRODUCTION

HANKS to recent enhancements in both robotics and

human-robot interfaces, the interest in deploying robots in
search and rescue (SAR) missions is growing [1]. However,
limitations exist in their effective and efficient utilization in
real-life missions. The main limitation is that robot teleopera-
tion is a non-intuitive and challenging task. Thus, SAR robots
are still constrained to simple missions and highly trained pro-
fessionals. [2], [3]. Moreover, rescuers have to simultaneously
focus on multiple tasks and deal with both scarcity of human
resources and time pressure. This situation is cognitively
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highly demanding and can negatively affect performance [4],
[5]. Consequently, operating under high cognitive workload
(CWL) may severely compromise the execution of a mission
and leads to failure with catastrophic outcomes [6]. Therefore,
there is a need to monitor CWL to ensure efficient execution
of SAR missions.

To assess CWL, researchers typically use surveys [7], per-
formance metrics [8], [9], and information from physiological
signals [10]. However, surveys only provide subjective and
sporadic measurements, and are not always reliable [11]. Al-
though performance metrics provide objective measurements,
reliable metrics are difficult to set as every rescue mission
is unique. On the other hand, physiological signals can be
noninvasively acquired without disturbing the rescuers’ work.
Thus, the use of physiological signals seem the most promising
solution to assess Cognitive Workload Monitoring (CWM)
[10], [12], [13].

Several studies combine physiological signals with different
machine-learning algorithms for CWM in different fields [13],
[14]. However, to the best of our knowledge, we are the first to
address CWM of drone pilots involved in SAR missions [8],
[15], [16]. Now, we extend our previous works by presenting a
subject-specific CWM approach based on noninvasive physio-
logical signals that is suitable for new drone control solutions,
such as FlyJacket [17]. In particular, this work proposes the
following contributions:

o We explore different feature normalization techniques to

reduce both inter-subject and inter-day variability;

e« We provide a new weighted-learning method for Sup-
port Vector Machine (SVM), suitable for subject-specific
optimizations. This SVM based method uses two regu-
larization terms, one for learning the general behaviour
and another for tuning the model to fit the characteristics
of a particular data subset;

o We prove the ability of our method to detect low and
high CWL levels while controlling a drone simulator
with traditional and advanced controllers, achieving an
accuracy of 87.3% and 91.2%, respectively. These results
are obtained on unseen data acquired from 34 participants
while flying a drone simulator and mapping a graphic
representation of a disaster situation. Our results are
higher than the latest state-of-the-art studies in SAR
missions with drones (see Table I).

1. RELATED WORK

CWL characterization and estimation have been addressed
by a large number of studies [12], [25], which characterize
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TABLE |
SUMMARY OF THE STATE-OF-THE-ART STUDIES USING MULTIPLE PHYSIOLOGICAL SIGNALS
Study Performed Tasks Physiological Signals Window Length  Classifier Results
(Overlap) (Classes) Acc. Sens. Spec.

Momeni et al. [15] Simulated SAR with drones  ECG, RSP, PPG, SKT 60s (30s) XGB (2) 86%" - -
Dell’Agnola et al. [18]  Simulated SAR with drones  ECG, RSP, PPG, SKT 60s (0s) XGB (2)  802%"  79.6%"  71.7%"
Montesinos et al. [19] Arithmetic tasks ECG, PPG, RSP, SKT, EDA  60s (30s) RF (2) 84.13%" - -
Chen et al. [20] Real car driving ECG, RSP, EDA 100s (90s) SVM (3) 89.7% 88.5% 94.2%
Solovey et al. [21] Driving in highway ECG, EDA 30s (0s) LR (2) 90% - -
Giakoumis et al. [22] Video-game ECG, EDA 25s (0s) LDA (2) 94.96% 94.96% 94.96%
Tjolleng et al. [23] Simulated driving task ECG 100s (0s) ANN (3) 82% 78% 91%
Gjoreski et al. [24] Daily life activities PPG, SKT, EDA 300s (150s) SVM (2) 98.96% 70.44% 99.88%

ECGe-electrocardiogram, RSP-respiratory activity, PPG-photoplethysmogram, SKT-skin temperature, EDA-electrodermal activity. XGB-Extreme Gradient
Boosting, RF-Random Forest, SVM-Support Vector Machine, LR-Logistic Regression, LDA-Linear Discriminant Analysis, ANN-Artificial Neural Network.
* Results based on an unseen test set, all the other are limited to cross-validation.

either the performance or the distress of a person involved in
a particular task or situation. In this section, we review the
state-of-the-art machine learning (ML) techniques detecting
CWL induced by high cognitive tasks. In particular, we ana-
lyze those works using unobtrusively measured physiological
signals. Although interesting for their results, studies relying
on obtrusive measurements (e.g., electroencephalography [26])
are not included in this analysis since their integration into a
jacket is difficult or unattainable. The same applies to works
placing sensors in locations other than the torso, such as the
head [27].

Table I summarizes the most recent and significant studies
including the performed task to induce CWL, measured phys-
iological signals, signal segmentation (i.e., window length and
overlap), applied machine-learning methods, targeted classes,
and classification results (i.e., Accuracy, Sensitivity, and Speci-
ficity). Our analysis identifies the following common method-
ological steps: signal acquisition and preprocessing (filtering
and segmentation), feature extraction, feature normalization,
dimension reduction or feature selection, and classification
or regression. However, although the methodology is well
established, discrepancies are found in different steps. Hence,
in the following, we review these discrepancies.

First, significant differences have been observed on the
physiological measures, which are electrodermal activity
(EDA) [19]-[22], [24], [28], electrocardiogram (ECG) [18],
[20]-[23], [29], photoplethysmogram (PPG) [15], respiratory
activity (RSP) [15], [20], and peripheral skin temperature
(SKT) [15], [18]. Although using multiple physiological sig-
nals can increase the detection accuracy of CWL levels [15],
the type and number of signals, and in particular the features
set, often differ and strictly depend on the case study (e.g.,
the type of task used to induce different levels of CWL) [10],
[29]. Thus, there is no clear definition of the best selection of
signals and features to assess CWL in general.

Then, the segmentation window used to extract the features
from the signals also depends on the case study. In particular,
the window lengths reported in Table I vary from 25 to
300 seconds. Moreover, different window overlaps are applied
either to increase the size of the dataset [15] or to provide more
frequent estimations in time [20], [24]. These differences can
be explained by the fact that physiological methods do not
provide a direct measurement of the workload, but rather they
give information about how the individuals themselves respond
to a particular load [10]. So, a different signal segmentation
may be applied depending on the dynamic of the physiological
response induced by a particular CWL.

An additional aspect observed in our literature review is that
features are often normalized to standardize their ranges. The

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

normalization help to reduce intra- and inter-subject variability
caused by age, time of day and other factors [30]. However,
not all studies report whether a normalization was applied
[30], or clearly explaining how it was done and distinguishing
between training and test sets. To properly emulate and test
the system’s behaviour, test data should be normalized based
on the parameters obtained from the training set [30].

Moreover, the choice of machine-learning methods clearly
differ. The train data size and the system requirements spec-
ification (e.g., computational complexity, power and latency)
may explain the different selections of machine-learning al-
gorithms. In fact, as most of the studies typically start with
a limited amount of data, simple models like Support Vector
Machine (SVM) [20], [24], [31], Linear Discriminant Analysis
(LDA) [22], [28], Logistic Regression (LR) [21], and Decision
Tree (DT) [19], are the most used machine-learning tech-
niques. In contrast, complex models such as Artificial Neural
Networks (ANN) [23], Random Forest (RF) [19], [31], and
very recent models like Extreme Gradient Boosting (XGB)
[15], have been less used so far. In any case, even if SVM has
been the most used classifier in this field, there is no consistent
indication of whether it is the best model or not for different
case studies.

Finally, our review shows that the highest accuracy levels
are in the range of 80 to 99%. This wide range is mainly
due to the diverse experimental protocols, methodologies,
and number of considered classes in each study. Also, the
highest accuracies reported by different studies may be af-
fected by overfitting since their model evaluation is limited
to cross-validation [20]-[24]. However, a proper estimation of
a model’s generalization power requires a final test on new
unseen data, a set never used in training [15], [18], [19].

In conclusion, there is a need to investigate further the
contribution of each physiological signal, the impact of data
normalization, and the performance of the selected classifier
on unseen data in the context of rescue missions with drones,
which are not appropriately covered in the literature.

Besides, workload is multidimensional [7] and results from
the aggregation of three broad aspects [10], [32]. First, the
workload depends on the task’s type (mental or physical
demand), and the load level (e.g., tasks amount and difficulty).
Second, it is affected by time, namely, by the duration of
the temporal demand. Third, the subjective psychological
experiences modulate the level of workload perceived by a
subject (i.e., subject’s capabilities, learning skills, and effort).
So, it is necessary to investigate CWL in the particular field of
interest and, also, consider each person’s subjective workload
level, as suggested in [33].
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Fig. 1.
with solid lines represent the final system.

[1l. CWM SYSTEM

The general design of an ML algorithm suitable to develop
a wearable embedded system for online CWM is shown in
Fig. 1, namely, blocks with solid lines. Instead, the blocks
with dashed lines represent the different statistical pattern
recognition methods applied to experimental data for design-
ing such a system. All our analyses are done offline, but the
final system is tested, emulating online processing (i.e., using
causal spectral filters and computing the features using past
information).

The system is divided into three main steps shown in
Fig. 1 with the dotted lines, i.e., Signal Acquisition and
Preprocessing, Feature Extraction and Selection, and CWM.
In the first step of the CWM system, sliding window is applied
for signal segmentation, which defines the time resolution of
the workload monitoring system. The preprocessing consists
of removing artifacts from the signals. In this work, we
collected experimental data for both design and evaluation of
the proposed CWM method.

Next, the features extraction and selection step includes gen-
erating a feature vector that best represents the physiological
response induced by different workloads. For an exhaustive
investigation, we chose an exploratory approach in which we
extract a large number of different features in both time and
frequency domains. Then, since physiological signals exhibit
high intra- and inter-subject variability due to age, gender,
time of day and other factors [30], we investigate different
normalization methods. Subsequently, we apply different fea-
tures selection methods to define the best subset of features to
be used in the final system.

Finally, the CWM step includes the prediction of a dis-
crete CWL level. For the design of the CWM method, we
consider the most common machine-learning techniques based
on pattern recognition algorithms suitable for implementation
in embedded systems. Moreover, we consider a personalized
weighted-learning approach to assess the person-dependent
variance in the physiological response of an induced workload.
Performance of our method is then evaluated based on NASA
Task Load Index (NASA-TLX), a subjective and multidimen-
sional assessment tool that rates perceived workload [7].

V. SIGNAL ACQUISITION AND PREPROCESSING

For a thorough exploration of the physiological changes
induced by cognitive workload, we measure RSP, ECG, PPG,
SKT, EDA, and EEG, which are signals that are typically used
in the literature [34], [35]. The effect of cognitive workload
on EEG was analyzed and presented in a different work [36].
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Process overview for the design of a CWM method. Blocks with dashed lines represent the applied design/optimization methods and blocs

Here, we focus on the remaining signals, which sensors can
be integrates into a wearable system, such as FlyJacket [17].

Their main physiological manifestations related to CWL are
reported in Table II and described in Sec. IV-A.

A. The physiological process behind CWL

While performing a very demanding task, the need for more
oxygen is driven by the autonomic nervous system (ANS)
activation. The latter involves both a sympathetic nervous
system (SNS) activation and parasympathetic nervous system
(PSNS) counterbalance. This increased oxygen demand trig-
gers faster and deeper respiration [37]. Therefore, RSP should
be measured to track CWL changes [20].

The ANS activation also triggers a cardiac response, which
is also affected by the Hypotalai-Adrena (HPA) axis. This
response is associated with variabilities in heart rate, defined
as heart rate variability (HRV) obtained by monitoring the
ECG signal. Consequently, the above relationship can explain
the heart’s ability to respond to multiple physiological and
environmental stimuli [8]. The neurohypophysis activation, the
HPA axis, and the ANS lead to blood volume changes, pe-
ripheral blood vessels resistance, and cardiac response derived
from the pulse wave. Features from the PPG are used to detect
those physiological changes induced by cognitive tasks [24],
[37].

Moreover, it has been proved that cognitive tasks cause
peripheral vasoconstriction [24], [37], regulated by the va-
soregulatory system and driven by both neurohypophysis
and SNS. Thus, SKT is required to detect the variations
in peripheral temperature that are associated with peripheral
vasoconstriction.

Finally, EDA is one of the most commonly used measures in
studies involving emotional arousal. According to [38], EDA
is traditionally measured at the fingers or palms, while foot
and shoulders seems to be valid alternatives for ambulatory
measurement. However, we cannot confirm their findings, as
our EDA measurements from the shoulder did not show any
significant response. Therefore, EDA measurements were not
considered in this work.

B. Signal preprocessing

The first preprocessing step consists of removing the ar-
tifacts from the signals with causal filters [16]. We apply a
baseline wander with cutoff frequency at 0.3 Hz to both ECG
and PPG signals. Next, we also apply a 32nd-order bandpass
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TABLE Il
PHYSIOLOGICAL MANIFESTATIONS RELATED TO INDUCED CWL.

Physiological measures

Measurable physiological manifestation to workload response

Sensor body position

Peripheral skin temperature Neurohypophysis and Sympathetic Nervous System (SNS) activation Finger
Respiration SNS activation and Parasympathetic Nervous System (PSNS) counterbalance Thorax
Electrocardiogram Both Hypotalai-Adrena (HPA) axis and SNS activation, and PSNS counterbalance Thorax
Photoplethysmography Neurohypophysis, HPA axis, and SNS activation, and PSNS counterbalance Ear

FIR filter with linear phase and Hamming window with cut-
off frequencies at 0.3 and 30 Hz for ECG and at 0.1 and 5 Hz
for PPG [37]. In the case of the RSP signal, we employ a 4th-
order Butterworth IIR bandpass filter with cutoff frequencies
at 0.03 and 0.9 Hz. Nevertheless, because of the slow response
time of the SKT thermistor (1.1 sec.), which avoid the high
frequency noise, no filter is applied to the acquired SKT signal.

Finally, we apply a time-series segmentation of all the
acquired physiological signals, which are thus divided into a
sequence of samples in windows of 60 seconds.

V. FEATURES EXTRACTION AND SELECTION

Following our methodology described in Section III, we
perform an offline investigation to select the features to be
considered in the final system. That is, we first extract a broad
features set from the segmented signals for an exhaustive
assessment of the person’s physiological response to CWL.
Then, we select the best features set rich in discriminatory
information concerning the physiological states induced by
different CWL levels. normalized and given as input to the
developed CWM algorithm.

A. Feature extraction

For the design of the CWM system, our feature extraction
process includes three main steps. First, we delineate the
segmented signal to detect points of interest (e.g., signal
onset, peak, offset, etc.). Second, we extract physiological
markers, a combination of different delineated points and
provide information about the person’s physiological state
(e.g., heart rate). Finally, we compute features in both time
and frequency domains. For the time domain, we use standard
statistical features (i.e., mean, median, mode, standard devia-
tion, variance, root mean square, and power), extracted either
from the physiological markers or from the segmented signals
directly. However, in the frequency domain, the features are
computed specific to the characteristic of the physiology of
each signal, which are listed and detailed next.

Following an extensive literature review and by applying
our experience from previous projects [8], we increased the
number of analytical methods applied to a single physiological
signal segment to extract 384 features: 127 from RSP, 38
from ECG, 190 from PPG, 2 from SKT, and 27 from RSA.
However, applying our feature selection method, the final
system uses only 25 features, 10 from RSP, 2 from ECG,
10 from PPG, 2 from SKT, and 1 from RSA. These 25
features are listed in Table IV. From EDA, we aimed to
compute the mean skin conductance level and the number of
skin conductance responses per minute as in [38]. Though
we used dedicated electrodes (recommended by Biopac), our
EDA signal was rudely flat across participants suggesting a
poor SNS activation on the shoulders for our study case. Thus,
the signal was discarded. More details about the delineation
and feature extraction for each considered signal are provided
next.

Fig. 2 shows a schematic representation of the signal
processing and feature extraction process.
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Fig. 2. Schematic representation of the signal processing and feature
extraction processes.

1) Respiratory activity (RSP): To extract the features from
the RSP signal, we first delineate the signal based on the
differences between adjacent samples of the filtered signal
defined as:

Az[k] = z[k] — z[k — 1] (1)

Then, by comparing both current and previous values, we
detect from the sign of Az the falling and rising edge,
which coincide with inhalation (RSP-peaks) and exhalation
(RSP-valleys) end, respectively. Then, all peaks and valleys
pairs having a difference smaller than 20% of the mean RSP
amplitude are removed [31].

Next, from the delineated RSP, we extract the following
physiological markers: inhalation (Inh) and exhalation (Exh)
time, the Inh/Enh ratio, Inh and Exh amplitudes, respiratory
period (RSPp,q), and respiratory rate (RSPRatc). Besides, we
compute their numerical differences using Eq. 1. Finally, we
calculate the segmented RSP signal’s statistical features, its
difference (Eq. 1), and all the aforementioned RSP physio-
logical markers. In the frequency domain, we compute the
power of the segmented signal in four different bands of equal
bandwidth (i.e., 0-0.25, 0.25-0.5, 0.5-0.75, and 0.75-1 Hz), as
reported in [28]. We also consider the normalized band powers,
obtained by dividing each of the above band powers by the
total power in the 0-1 Hz band.

2) Electrocardiogram (ECG): We compute the so-called
normal-to-normal (NN) intervals from the filtered ECG signal,
the intervals between normal QRS complexes detected with
the delineation method described in [39]. Then, we compute
features in the time domain describing the Heart Rate Variabil-
ity (HRV) [40], which are statistical features of the successive
NN-intervals and of the interval differences of successive NN-
intervals. We also computed the number of interval differences
of successive NN-intervals greater than 50 ms (NN50) and the
proportion derived by dividing NN50 by the total number of
NN-intervals (pNN50) within the processing window.

Additionally, we obtain several geometrical features from
the Poincaré (or Lorenz) plot indicating vagal and sympathetic
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functions. In particular, we extract the length of the transverse
axis (1), vertical to the line NN = NNy 1; the length of the
longitudinal axis (L), parallel with the line NN = NNg,1;
the Cardiac Sympathetic Index (CSI), defined as L/T'; the
modified CSI (L?/T); and the Cardiac Vagal Index (CVI) as
lOglo(LT) [40]

Moreover, we extract HRV features from the frequency-
domain, as proposed in [40]. That is, the power in two
frequency bands, namely, low-frequency (LF: between 0.04
and 0.15 Hz) and high-frequency (HF: between 0.15 and 0.4
Hz). LF and HF powers are obtained from estimating of
the Lomb-Scargle Power Spectral Density (PSD) of the NN
intervals [41]. The power values are divided by the total power
minus the very-low-frequency (VLF) component (frequency <
0.04 Hz). Also, we compute the power sum LF + 1/HF and
the ratio LF/HF.

Furthermore, we extract novel features from the HF band.
The first one, called RRuF gauss, 15 the mean frequency of
a Gaussian distribution used to fit the Lomb-Scargle PSD
estimated in the HF band. This feature describes the shifting
in frequency of the PSD in the HF band, where the shift is
mainly caused by the RSP activity [42]. The second one is
called RRuF pond and is defined as:

> senr S PSD{RR[K[}(f)

2 renr PSD{RR[K]}(f)

Finally, we also compute the power of the HF divided in 5 sub-
bands of equal length (RRur sband xn), Where the subscript
index X = {1,---,5}.

3) Photoplethysmogram (PPG): According to [37], we de-
lineate the PPG signal and extract the following physiological
markers: the Pulse Period (PP), the time interval between
two consecutive pulse peaks; the Pulse Amplitude (PA), the
difference between the pulse peak and the pulse onset; the
Pulse Transit Time (PTTy), the time interval between the R-
Peak in the ECG signal and the instant when the PPG pulse
reaches half of its onset-to-peak amplitude; the Pulse Rise
Time (PRT), the time interval between the pulse onset and
the pulse peak; and the Pulse Rise Speed (PRS), the ratio
between amplitude difference and time interval computed from
the pulse wave points located at 75% and 25% of the onset-
to-peak amplitude, respectively.

To have accurate estimations of PTT and PRT, in the
literature [16], the use of both ECG and PPG signals has been
proposed. Using both enables trade-offs between accuracy and
complexity of the sensing wearable system.

From each of the aforementioned PPG physiological mark-
ers, we extract features in the time and frequency domains,
following the HRV methodology applied to NN-intervals.

4) Peripheral Skin Temperature (SKT): From the SKT sig-
nal, we directly extract the SKT g adient and SKTpower of the
signal. The SKT Gradient is computed as the mean of the
difference between the portion of samples recorded during the
first second of the window, acquired at a sampling frequency
fs» and the samples from the final one second of the window.
Then, the SKT Power is the signal average power of computed
over the entire window of samples.

5) Respiratory Sinus Arrhythmia (RSA): Respiratory sinus
arrhythmia (RSA) is the natural variation in the heart rate
associated with the respiratory cycle. and measured from the
ECG signal. RSA has been used as a noninvasive measure of
cardiac vagal tone, as a marker of PSNS tone [43] and thus,
it can be used as a marker of the disruption of homeostasis
induced by a highly demanding task. Since RSA and cardiac

2

1%I%HF pond —
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vagal tone can dissociate under certain circumstances [44],
we consider the hypotheses that these differences could come
from external factors, such as, a need to compensate for CWL
changes.

RSA is estimated from the non-uniform time series of
successive NN-intervals, which we interpolate using a linear
function and resample at 2 kHz. Then, we filter the resulting
uniform time series of successive NN-intervals with a 4th order
band-pass Butterworth filter with cutting frequency at 0.15 and
0.4 Hz yielding a RSA.

From the computed RSA we extract features that aim to
evaluate the agreement with the measured RSP signal, but first,
both signals (RSP and RSA) are normalized to zero mean and
unit variance. The first feature is the time delay of the RSA
with respect to the RSP (RSAp.,), estimated by computing
the cross-correlation of RSA and RSP. We also compute the
phase shift between the two signals, given by Eq. 3.

RSP - RSA ) 3)
IRSP| - [RSA]

Subsequently, we extract features based on the Tukey mean-
difference plot, also called the Bland-Altman plot [45], to
compare both RSA and RSP measurements. To this end, we
compute the statistical features of the difference between the
two signals and the mean of the two:

Ro = RSP — RSA )
Ag = (RSP + RSA)/2 )

We also consider the statistical features of different log trans-
formations of the measurements, as follows:

Ry = logy(RSP) — logy(RSA) (6)
Ap = (logy(RSP) + logy(RSA))/2,¥b = {n,2,10}  (7)

where b denote the logarithm base (i.e., n, 2, and 10).

RSAphase = cos™! (

B. Features Normalization

Since the relative range of each feature varies widely, a
normalization is applied so that each one contributes approxi-
mately equally to the classification problem. Hence, we apply a
min-max normalization scaling the features within a 0-1 range.
The general formula is given as:

, x — min(x")

x' = (8)

max(x') — min(xt)

where x is an original value, x’ is the normalized one, and xt
represents the original value of the training set.

Moreover, to address the problem related to both inter-
subject and inter-day variability [8], [30], we found from the
computational vision community, a task-specific normalization
method [46], which inspired us to consider the following
three types of normalization. First, the total normalization
(TN) is based on the full training set. Second, the subject
dependent normalization (SN) consists on normalizing based
on each training subset relative to a specific subject. Finally,
the day and subject-dependent normalization (DSN) affects
each portion of the training set relative to a specific day
and subject. Thus, the training and the test sets are scaled
accordingly, using the parameters obtained only from the
training set.

Finally, we select the best normalization strategy that better
emphasizes the discriminant power of the features and their
ability to classify the problem. In other words, we select the
method that gives the highest Fisher Discriminant Ratio (FDR)
[47] of the normalized feature sets, obtained by applying one
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of the three different normalization methods (i.e., TN, SN, or
DSN). Then, we evaluate the classification performance of an
SVM that uses for each normalized set an equal number of
normalized features. The results are reported in Sec. VIII-B.

C. Features Selection

Given the large features number considered for the exhaus-
tive characterization of CWL, we divide the feature selection
process into two main steps. First, as a pre-reduction to
suppress the features that do not give any discriminatory
information, we apply filter methods, particularly effective in
computation time and robust to overfitting. Then, to select the
most important features considering their possible interactions,
we apply embedded methods that simultaneously perform
feature selection and classification. Both feature selection steps
are performed once with data from the training set.

The pre-reduction of the feature space involves three meth-
ods. First, a two-sample Student’s t-test selects statistically
discriminant features. Second, the discriminant features are
ranked based on their FDR, which gives a score based on
their ability to discriminate the problem. Lastly, we remove
the features that give any redundant information, the less
discriminant features that are strongly correlated with others
(i.e., a Pearson’s correlation coefficient above 0.95) [48].

For the final feature selection, we apply Recursive Features
Elimination (RFE) [49], an embedded method that uses an
external estimator to assign weights to features. These weights
are then used to prune the least important features from the
current set. This procedure recursively prunes the selected
features until all feature weights are different from 0. In this
work, we apply RFE based on different classifiers (i.e., LR,
LDA, SVM, RF, and XGB), which we name RFE-LR, RFE-
LDA, RFE-SVM, RFE-RF, and RFE-XGB, respectively.

VI. COGNITIVE WORKLOAD MONITORING

For the cognitive workload monitoring, we explore the use
of different machine-learning algorithms. In particular, we
investigate the use of linear models, namely LR, LDA, SVM,
and Gaussian Naive Bayes (GNB) for a feasibility check.
Then, we investigate the use of non-linear models, such as k-
Nearest Neighbour (k-NN), Quadratic Discriminant Analysis
(QDA), SVM with a Radial Basis Function (RBF) kernel, DT,
RF, and XGB, to reduce the bias. The accuracy of each model
in detecting high levels of CWL is evaluated based on a 5-fold
cross-validation (CV) over the training set.

Moreover, we consider a personalized weighted-learning ap-
proach to deal with the person-dependent variance. To this aim,
we compare the performance of the Universal Background
Model (UBM) and the Subject-Specific Model (SSM) [50].

A. Model for Cognitive Workload Monitoring
To estimate CWL, we chose a linear SVM that has the
following prediction model [51]:
y(z) =wix+b )

where x is the input vector, w is the weight vector, and b is
the offset. The corresponding optimal hyperplane separating
the two classes is defined by the relation:

y(x) =wix+b=0 (10)
Thus, an input vector x is then assigned to class 1 if y(z) >

0 and to class —1 otherwise. Although we use the same
prediction model for UBM and SSM, the difference lies in
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the objective function. All the details are given in Sec. VI-B
and VI-C.

The parameters of both UBM and SSM are chosen based on
a 5-fold CV on the training set. We use a stratified split for this
validation that preserves the same percentage for each target
class as in the complete training set and preserves the same
percentage of data relative to the subject of interest. Then, the
generalization of both models is tested on an unseen test set.

The performance of the models is evaluated based on:
accuracy, the proportion of both true positives and true neg-
atives results among the total number of cases; precision, or
confidence, the proportion of predicted positive cases that are
correctly real positives; recall, or sensitivity, the proportion
of real positive cases that are correctly predicted positive;
Receiver Operating Characteristic (ROC); and in particular,
based on the Fl-score, the weighted average of the precision
and recall.

B. Training of the Universal Background Model

The considered UBM is based on SVM with soft margins
[51], which relax the condition for the optimal hyperplane
(Eq. 10) and allow possible overlaps of the class-conditional
distributions. As for a normal soft-margin SVM, the objective
function of the UBM is defined as follows:

1
arg min fWTW-FCZfi, (11)
w,b,&i 2 i€D
subject to  t(wix;+b) >1—-¢&, &>0; (i€D)

where the regularization term C' and the non-negative variables
&, relax the constraints of an otherwise hard-margin SVM. The
data z in the training dataset D comprises N input vectors
1, -+ ,ZTnN, with corresponding target values ¢1,--- ,tx, and
where t; € {—1,1}. The parameter C is analogous to the
inverse of a regularization coefficient because it controls the
trade-off between minimizing training errors and controlling
model complexity. A regularization term C' = 0.1 is chosen
from a log;, scale ranges from 0.001 to 1000 based on a
stratified 5-fold CV on the training set.

C. Training of the Subject-Specific Model

As well as for the UBM, the considered SSM is based on a
soft-margin SVM. However, to adapt the model to a specific
subject, we modify the objective function of the original soft
margin SVM (Eq. 11) including two different soft-margins.
The first soft-margin (C;) changes the importance degree given
to false estimations of samples coming from a particular subset
of data, which can be a particular subject (S). Thus, the term
weighed by C allows a minimization of the errors (§) for
all the x in the training set related to a specific subject (x €
S). Instead, the second soft-margin (C) affects the rest of the
dataset minimizing the errors £ for all the = in the training set
that are related to other subjects (z & S).

Therefore, the SSM final objective function is defined as:

1
arg min §WTW—|—CZ€Z‘ —|—C'SZ§i (12)
w,b,&; iZs ics
subject to  t;(wlix;+b)>1—&, & >0; (i € D)
Cs>C

With this model, we state a preference for margins that classify
the training data correctly, but we soften the constraints
to allow for non-separable data with different penalties. To
promote the minimization of the total sum of the penalties
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& Vi € S, despite the minimization of the total sun
penalties &; Vi ¢ S, we chose Cs to be greater thar
usual, the regularization terms have to be large en
avoid under-fitting, but not too much to avoid over-fi
well. Based on a stratified 5-fold CV on the training s
regularization terms C' = 0.001 and Cs = 0.1 are chos
a log, scale in ranges of 0.001-0.1 and 0.1-100, resp
Although both regularization terms seem to be bounde
considered range, we keep the lower bounds to avoid
under-fitting problems.

VII. EXPERIMENTAL SETUP

Collecting data in a real SAR mission is complex
of the random frequency of events and the many v
still undefined. Therefore, for collecting clean data, bu
CWM model, and validating our approach, we used tt
lator for search and rescue mission with drones reporte
With the help of a certified instructor of the Swiss fire
we designed the following two study protocols, where -
based on a repeated-measures design using counterba
The first study was conducted to characterize CWI
through physiological signals using a gamepad as controller,
to build a model for real-time monitoring, and to evaluate the
contribution of the subject-specific approach.

The second protocol was designed to evaluate the system’s
quality using a new advanced controller, the FlyJacket [17].
In contrast with the gamepad controller, where the move-
ments were limited to the thumbs, the FlyJacket implies
both arms and torso movements. Therefore, when comparing
tasks involving different types of movements, there is a risk
of yielding a performance overestimation. Thus, to avoid as
much as possible any possible miss-classification caused by
movement artifacts, we trained the machine-learning algorithm
with the data from Study 1 (Trial 1) with the gamepad and did
the SSM final tuning with data from Study 2 with FlyJacket.
Finally, our models were tested also on unseen data of Study 2
with FlyJacket. The details of both studies are in the following
sections.

The signal processing, features extraction, machine-learning
design, and classification were done using Matlab R2016a
[52]. The RSP, ECG, PPG, SKT, and EDA were recorded with
the Biopac MP160 system at 2 kHz of sampling frequency. We
also recorded EEG, but because of the difficult integration of
such a sensor into a jacket, it is not used in this work. Instead,
it is analysed in [36], as previously mentioned. Finally, through
an analog input of the Biopac system, a trigger signal provided
by the simulator advises the task execution.

A. Search and rescue drone simulator

As presented in [8] and [36], the simulator presents a
simplified SAR scenario, where the drone pilot has to deal
with two different activities, flying and mapping. The flying
activity consists in flying a drone following a randomly gen-
erated trajectory depicted by spherical waypoints. Instead, the
mapping activity consists of mapping a disaster area situation,
represented by cubes of 4 different colors randomly distributed
over the flying trajectory. The colors were chosen according
to the regulation of the Swiss Firefighters [53].

We modulate both flying and mapping activities to induce
different levels of CWL as in [8], [36] i.e., medium/high
workload level with Flying (F) and Mapping 3 objects (3M),
and high level of CWL with Flying and Mapping 3 objects
(F3M). Also, a flying sequence controlled by an auto-pilot is
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Fig. 3. Protocol of the experiment with the gamepad.

Q- questionnaire

B - baseline

F - flying

3M - mapping 3 objects
F3M - flying and 3M
R - recovery

used as Baseline (B) to have participants in a same framework
for the entire experiment. B task has the lowest expected
workload level of this study.

B. Study protocol 1: Use of a gamepad

During this study, participants sat in front of a screen
and controlled the simulator with a gamepad from Logitech.
To collect clean data, participants were asked not to talk
and to avoid any kind of unnecessary movements during
the tasks. For proving the feasibility of detecting cognitive
workload with constrained sensor placement, clean data were
needed. Hence, we asked the participants not to talk and avoid
unnecessary movements while performing the tasks. However,
we cannot completely avoid the presence of some artifacts.
Therefore, in this context, different methods can be applied
to make sure the input data can be used for our proposed
algorithm. In particular, different approaches in wearables have
been shown to be effective for noise removal (e.g., for speech
[54], [55] and movement [56], [57] artifacts), which are needed
in real-life scenario. The study started with a setup phase
(explanation about the experiment, request of the participant
consent, and sensor placement), followed by a warm-up phase
up to 10 minutes to get familiar with the simulator [58].

The study protocol is shown in Fig 3. Participants performed
the first trial, starting with a five-minute baseline, and followed
by a sequence including F3M, 3M, and F, executed in a
randomized order. A resting period of 3 minutes was enforced
after each task. This period also allowed participants to fill a
questionnaire (Q), based on the NASA-TLX procedure.

Finally, the participants performed two additional trials,
namely Trial 2 and Trial 3. Each trial started with a baseline
and continued with a randomized sequence of F3M, 3M, and
F, and ended with a recovery (R) phase followed by a resting
period, in which the NASA-TLX was filled again. Each task
presented in Trial 2 and 3 lasted three minutes.

As shown in Fig. 3, we used all data acquired during both
Trial 1 and Trial 2 for both training and CV, and all data
collected during Trial 3 as the final unseen test set. We are
conscious that this split does not truly respect independent
temporality of data because all data sets (i.e., training, CV,
and unseen test sets) are taken from the same day and not
from a day that is not used for testing (as it should be in
a real application). Therefore, this choice implies a daily
training phase, which can be seen as a daily calibration of
the system. However, as we expect an inter-day variability of
the physiological responses [8], [30], we assume that a daily
calibration of the system will be required. This calibration
process consists of tuning the model for the correct baseline
level by using a couple of minutes of data collected under both
low and high workloads. A further investigation over different
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days could potentially avoid the need for such a calibration,
but this analysis is left for a future study.

C. Study protocol 2: Use of FlyJacket

In this study, the drone simulator is controlled with the
FlyJacket and two Oculus Touch controllers to map the disaster
situation. The study also started with a setup and warm-up
phase. Then, participants performed two trials, as shown in
Fig. 4, which started with a five-minute baseline followed
by a F3M and F sequence executed in a randomized order.
Again, three-minute resting period was enforced after each
task, where the participants filled the questionnaire.

This second study is a reduced version of the first one since
it aims to prove the feasibility of detecting low and high CWL
levels with the proposed method. Hence, we designed this
study protocol with only two trials, with three tasks of five
minutes each, and recording F for a different study [15].

D. Research participants

Study 1 with the gamepad was done by 24 participants
(6 females and 18 males) aged between 21 and 39 years
old (27.7 £ 4.8), who performed the study protocol twice in
two sessions on different days. Study 2 with the FlyJacket
was done by 10 additional participants (3 females and 7
males) aged between 22 and 30 years old (26.8 + 2.3),
on a single day session. All participants provided informed
consent to participate in both studies. The inclusion criteria
were being healthy, free of any cardiac abnormalities, and
were receiving no medical treatment. The Cantonal Ethics
Commissions approved this study for Human Research Vaud
and Geneva (PB2017-00295).

VIIl. EXPERIMENTAL RESULTS

Given the recorded data set from Study 1, we select
the best combination of normalization, feature selection, and
classification methods suitable for CWM. The methods are
obtained based on the cross-validations workflow including
747 observations. Finally, we show the performance of the
proposed methods on two unseen test sets, including 260 and
57 observations from Study 1 and 2, respectively.

A. Self-perception of induced cognitive workload

The reported overall workload on each task perceived by
the 34 participants based on the NASA-TLX is shown in
Fig. 5. A one-way ANOVA conducted on the influence of the
tasks confirms that participants have perceived different levels
of workload. Furthermore, a multiple pairwise comparison
analysis using the Student’s t-test with up to 164 samples
revealed statistically significant mean differences, except for
3M vs F (p-value < 0.001). The comparisons with the 3M task
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Fig. 6. Normalization methods impact on FDR.

were limited to 144 samples, as Study 2 with the FlyJacket
setup does not include the 3M task.

However, as shown in Fig. 5, the perceived CWL level has
a large variance. A two-way ANOVA reveals that such a large
variance comes from a significant (p < 0.001) effect of task,
day, and subject on the level of CWL, F(3,414) = 1637.19,
F(1,414) = 28.70, F(33,414) = 48.93, respectively. Therefore,
the NASA-TLX results confirm the need for both a day- and
a subject-specific approach.

Although there is a significant difference in the perceived
workload between most tasks, Fig. 5 shows that the distri-
bution of both F and 3M presented a considerable overlap
with F3M. Instead, the difference between tasks B and F3M
is clear. Thus, as our main goal is to detect low and high levels
of CWL, we focus on the extreme cases induced by tasks B
and F3M, respectively. F and 3M conditions were analysed in
a different work [15], which targets a three-class CWM.

B. Features discriminant power emphasized by
normalization

To reduce the variance introduced by the different partic-
ipants and performing the experiment on different days, we
investigated different normalization approaches (i.e., TN, SN,
and DSN) as described in Section V-B. We firstly evaluated
the effect of each normalization approach on the features
discriminant power based on their FDR. Results are shown
in Fig. 6, where DSN better emphasises the discriminant
power of the features. Compared with TN, the FDR of the
most important feature is emphasized by a factor of 80.9% or
166.9%, over SN or DSN, respectively.

Secondly, following our methodology (see Sec. III), we
compare how each normalization approach contributes to the
classification problem using a linear SVM model. We noticed
that the normalization affects the feature selection process,
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which selects 14 features after TN or SN, or 25 features after
DSN. Therefore, to avoid biased results caused by the use of
a different number of features, we used for this comparison
the first 14 most discriminant features selected by RFE-SVM
after TN, SN, or DSN normalization. Fig. 7 shows the ROC
and the Fl-score of the SVM combined with the different
normalization methods, where it can be seen that once again
DSN outperforms both TN and SN.

Our results show that feature normalization plays an im-
portant role during both features selection and classification.
DSN normalization gives better results (a bigger Fl-score)
compared to SN and TN. Similar trends are obtained by
applying RFE with other classifiers, such as LR or LDA.
Therefore, we select DNS as normalization method.

C. Physiological featuring of cognitive workload

By applying the filter methods presented in Section V-C, we
eliminated 282 non-informative features from the normalized
(based on DSN) 384 features initially considered for an
exhaustive CWL characterization. In particular, we reduced
the feature space dimension from 384 down to 168 features
with the two-sample Student’s t-test and down to 102 features
by checking their linear correlation.

Although the above pre-selection step drastically reduced
the feature space, using that amount of features requires
models with high capacity. It may lead to overfitting if
trained with a limited dataset like ours. Therefore, to obtain
a reasonable feature set that can be used for CWM, a further
dimension reduction based on embedded methods was applied,
as presented in Section V-C.

The features space was reduced from 102 to 5, 10, 12
and 25 by applying RFE-XGB, RFE-LR, RFE-LDA, RFE-
SVM, respectively. RFE found a consistent set of features
based on LR, LDA, and SVM, see Table III. For the case of
RFE-XGB, we used a low-complex model to avoid overfitting
and inconsistent results. In particular, we limited the model
to 10 estimators and three maximum depth of each decision
tree. Such a low-complex RFE-XGB showed a drastic lower
selection compared to other methods.

Without banning the ensemble methods from building com-
plex models, RFE does not converge to the same result if
executed several times. In contrast, by limiting the model
complexity, RFE provides a reproducible result. However, this
trick does not help the RFE-RF method that does not converge
to a consistent solution. This model always selects a different
set of features, even if the model complexity is reduced (i.e.,
number of estimators and maximum tree depth). Hence, such
complex models are not suitable for small datasets.

The feature set obtained after applying both filter and
embedded methods are shown in Table IV. Although selected
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Fig. 8. Best classifiers comparison on CV. Bigger markers denote the
performance of the different models based on their corresponding cross-
validated threshold or offset b.

features vary between 5 and 25 depending on the applied
embedded methods, a common subset of features is identified.
We observed that the features obtained by RFE-LR, RFE-
LDA and RFE-XGB are almost all included in the feature
set obtained by RFE-SVM. In particular, RSPRrate Median and
SKTpower are selected by all the four methods, followed
by RSPp.d Median> SKTGradient> RSAR2 stds PRTMedian,
RSPRate Dit RMs and PPyeqian, selected by three methods
out of four. Based on this result, the above eight features seem
to be the most important ones in terms of CWL characteriza-
tion in the context of this experiment.

Additionally, we investigated the effect of using the different
feature sets obtained with the considered RFE methods on
different classification methods. Results are presented in Table
III, where we report both the training and the CV accuracy.
A significant difference between training and CV accuracy
indicates a sign of overfitting (e.g., QDA with 102 features).
Moreover, we report the best CV Fl-score for each applied
RFE method. While there seem to be no significant differences
across methods, the highest best Fl-score and the best CV
accuracy are reached when linear SVM is applied on both
RFE and classification. Therefore, RFE-SVM is the employed
feature selection method hereafter.

D. Classifiers for cognitive workload monitoring

A ROC curve is used to further evaluate the performance
of the considered classifiers in CV, reported in Fig. 8 . In
particular, for greater clarity of the illustration, we only report
the best classifiers results (AUC > 0.94), namely LR, LDA,
k-NN, linear SVM, and SVM with RBF kernel. Our results
show that, with the amount of data we have, the use of non-
linear models does not increase the detection accuracy. Instead,
non-linear models tend to introduce a larger variance between
training and CV- accuracy. Linear SVM shows a higher F1-
score and better ROC curve, in particular by comparing the
bigger markers representing the performance of the models
based on their corresponding cross-validated threshold or
offset b. Therefore, a linear SVM was selected for our further
investigation.

Although selecting the SVM reaches the highest classi-
fication accuracy, it may not be the optimal solution for
embedded implementations. Other solutions considering fewer
features may be preferred for implementations in low-power
embedded systems, where power consumption may play an
important role. However, our results indicate certain flexibility
in selecting the number of features to be used, since the best
Fl-score is quite similar for all the applied feature selection
embedded methods.
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TABLE IlI
FEATURE SELECTION PERFORMANCE COMBINING RECURSIVE FEATURE ELIMINATION (RFE) AND CLASSIFICATION METHODS.
Embedded Feature Selection Training and cross-validation accuracy of different classifiers, left and right values, respectively Fl-score
Method Features LR LDA QDA Mprin SVMgBr GNB k-NN DT RF XGB Best
Pre-selection 102 93 85 94 84 100 82 88 87 92 87 84 8 91 8 90 85 90 87 94 87 89
RFE-XGB 5 85 8 8 8 87 8 85 877 87 88 85 88" 90 87° 89 84 90 85 90 85 88
RFE-LR 10 90 8 91 85 90 87" 89 86 91 86 86 8 91 8 90 80 90 8 92 84 88
RFE-LDA 12 90 87 91 87 92 87 87 86 92 88 8 85 92 87" 88 76 90 85 91 85 89
RFE-SVM 25 91 8 92 87 95 88 89 88" 93 87 88 88 92 87 90 84 92 8 93 85 90

* highlights the classifier having the best Fl-score on cross-validation for the particular feature selection method. Logistic Regression (LR), Linear
Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), with linear and Radial Basis Function (RBF)
kernels, Gaussian Naive Bayes (GNB), Nearest Neighbour (k-NN), Decision Tree (DT), Random forest (RF), and Extreme Gradient Boosting (XGB).

TABLE IV
MOST IMPORTANT FEATURES USED TO DETECT LOW AND HIGH LEVELS
OF CWL, B AND F3M TASKS, RESPECTIVELY.

TABLE V
PERFORMANCE OF THE UNIVERSAL BACKGROUND MODEL (UBM) vs.
SUBJECT-SPECIFIC MODEL (SSM) ON AN UNSEEN DATA.

Task B Task F3M p-Val< 10™% Study Model class precision recall FI-score samples
Physiological Features nto nto X B 0.81 0.76 0.79 123
RSPRate Mean "2 0284£0.22 0.71£0.23 107 UBM  F3M 0.80 0.84 0.82 137
RSPRate Median 234 0284023 0714023 106 Study 1 avg 0.80 0.80 0.80 260
RSPprq Mean 2 0.61£0.25 022£021 90 Gamepad = i B s oo D3¢ >
Exhrime Median 0.634+0.29 0.32+£028 45 B 0.87 0.93 0.90 29
InhTime Mean® 0.504+0.31 0.224025 38 UBM  F3M 0.92 0.86 0.89 28
Inhime RMS® 0444030 0.194025 31 Study 2 avg 0.90 0.89 0.89 57
RSARy spql?? 0.40+0.28 0.57+0.28 17 FlyJacket 0.88 0.97 0.92 29
RSPpis Mode! 0614029 050+0.30 08 SSM F3M 096 086 0.91 28
RSPRate pit RusV>?  0.334£020 0424029 06 avg 092 091 091 7
RSPPSD:’mi 0.35+£0.29  043+0.30 05 Table V reports the comparison between UBM and SSM,
EEPPSDIH o g'ggig'gg gééiggé 23 tested on an unseen test set emulating an online CWM. The
RREE fg:zz o 047 £032 0304028 15 average accuracy of the UBM is 80.4%, and it is 1mpr0.ve'd
RRooreny Lo 0494030 0.35+026 11 to 87.3% by the use of the SSM. The SSM shows a statisti-
RRcvi2 0544029 042+028 10 cally significant improvement of the classification performance
PPHF sband 5n 0.23+£0.25 0.46+0.30 28 indicated by both the Wilcoxon rank-sum test [59] and the
PArms!? 0.534+0.35 0.32+£0.27 20 McNemar’s test [60] over the 260 samples (p-value < 0.01).
PALorens 2L1 0.44+£0.33  026+025 17 SSM improves the results for all the participants on CV,
Eﬁigﬁeﬁ“ 8:22 i 8:38 82;5), i 8:;15 ﬁ yvhile one participant over 24 doe§ not show the expegted
PAGSI modified? 040+030 028+027 09 improvement on the ﬁna! test set. This result may be explained
PRT pfedinn 1273 044+031 0564031 08 by the need for more training data that could be used to better
PTTM Mode2 0.50+0.35 0.58+0.28 05 fit this participant’s physiological response.
PPpedian?? 0.55+0.31 0.47+£0.28 05 Furthermore, as shown in Table V, the higher performance
PTTy ur porlxd1 0.47+0.28 0.54+£0.29 05 of the SSM compared to the UBM is also confirmed on the
PRTLFplfHF 0384031 0304027 05 test set acquired using FlyJacket (Study 2, Sec VII-C). In
PPyriode2 0.554+0.33 0.49+0.28 04 : he UBM hed lobal f 89.5% that i
ST TZ5T 0611035 0371030 o4 fact, the reached a global accuracy of 89.5% that is
SKTradiont 123 057+029 038=+026 20 improved to 91.2% using the SSM. However, the improvement

Selected feature with: TSVM-RFE, 2LDA-RFE, *LR-RFE, and XGB-RFE.

Besides, the CV-accuracy reported in Table III after RFE
is delimited between 84 and 88%, except for DT. The CV-
accuracy variability seems to be more dependent on the
selected classifier (difference > 4.5%) rather than the selected
number of features (difference < 3.5%). In fact, a linear
SVM with an input of only five features can provide a
reduced implementation complexity with a loss of only 1%
of classification accuracy.

E. Classification improved with the SSM

Once we have selected the set of features (i.e., 25 features
with RFE-SVM) and a linear SVM as classification method,
we tested the subject-specific approach contribution compared
to a general model (i.e., SSM vs. UBM). First, we trained the
models as described in Section VI. The regularization term
C = 0.1 of the UBM was selected based on a 5-fold CV on
the training set. For the SSM, we selected C' = 0.001 and
Cs = 0.1 being the most common regularization terms found
with a 5-fold CV on the training (data of Study 1).
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(1 sample over 57) is not statistically significant, shown by
both Wilcoxon rank-sum and McNemar’s tests. For statistical
results, additional data are needed. Nevertheless, a single
misclassified sample in SAR missions can have a significant
impact.

SSM obtains better performance than UBM because uses
all the observations with a different weight. Those from other
participants contribute to learn the general behaviour, with a
regularization term C' that allows a higher misclassification
of such observations. Then, specific subject observations tune
the margins between classes with a regularization term Cg
to reinforce each specific subject. In light of the above, we
can conclude that the personalized model performs in general
better than the universal model.

Our results for the SSM are comparable with the state-of-
the-art (See Table I), in particular with the work presented
in [15], where the authors achieved an accuracy of 86%.
Although with similar accuracy, our model is less complex and
uses a reduced feature number. Another important difference
is the test set selection, which was random in [15]. Instead,
as a test set, we selected data from the last trial performed by



This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3186625
DELLAGNOLA F. et al.: MACHINE-LEARNING BASED MONITORING OF COGNITIVE WORKLOAD IN RESCUE MISSIONS WITH DRONES 11

o 2
(o]
|9
%]
o 01
Q
S
el
£
—s=— UBM
_al —e— SSM
0 60 120 180 240 300 360
Time (s)
Fig. 9. Models performance comparison on a simulated online CWM

(every 60s). The first 180 s correspond to B task followed by F3M task
for other 180 s.

each subject, namely, Trial 3. For any classification problem
that breaks the interchangeability hypothesis, such as the
time-dependent CWM, a random training/test split should be
avoided, as it yields a biased model evaluation. With a random
split, the model learns from prospective data, commonly not
available when designing and training a prediction model.
Besides, the model is evaluated based on retrospective data,
which are too similar to the training data. Hence, the classifier
tends to look better than it is. Therefore, to estimate how well a
model will work with new data, a time-dependent training/test
split should be considered.

Also, the improved classification performance with Fly-
Jacket vs. gamepad is assigned to the increased amount of
training data. In the case of FlyJacket, the classifier weights
were tuned based will all collected data from Study 1 and
including Trial 1 of Study 2. Nevertheless, considering less
training data (ignoring Day 2 of Study 1) reduces the accuracy
of UBM from 86% to 82%.

Then, we assessed if our model using FlyJacket could suffer
from possible movement artifacts, as they would differ from
Task B to Task F3M. Thus, we minimized this risk because
93.5% of the samples used to train the classifier comes from
Study 1, with the gamepad, in which the movements were
minimal and limited to the thumbs. Moreover, all the features,
normalization coefficients, and regularization terms were cho-
sen using data only from Study 1. Thus, movement artifacts
cannot significantly influence our classification results.

F. Emulated online cognitive workload monitoring

A visual representation of the emulated online CWM of
both UBM and SSM is shown in Fig. 9. Since the order of
the tasks was randomized, we only report the 76 samples of the
sequences having consecutive transitions between B and F3M
tasks. This analysis is based on Study 1 performed with the
gamepad (Trial 3). During the first 180 seconds, participants
performed the B task, a low workload level. For the last
180 seconds, participants performed the F3M task, a higher
workload level. The detection was done on the test set, where
features were extracted from a 60-second sliding window with
no overlap. Negative and positive scores denote low and high
workloads, respectively. A Wilcoxon rank-sum test with 76
samples indicates that the scores before and after 180 seconds
are significantly different (p-value < 1078).

Another interesting aspect to note from Fig. 9 is the con-
tradictory difference between the averaged predicted scores of
the UBM and SSM. As the SSM is performing better than the
UBM, we would expect to see a bigger absolute value of the
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SSM averaged score than the one of the UBM. However, the
upper margin of the standard deviation of the predicted score
reported in the interval between 60 and 180 seconds (Task
B) and the lower margin in the interval between 240 and 360
seconds (Task F3M) seems similar for both UBM and SSM.
This behaviour may be explained by the attempt of the SVM
to choose the hyperplane that maximized the distance from it
to the nearest data point on each side. Thus, as the SVM tends
to maximize the margins, the SVM-based SSM performance
may be limited to a consistent but marginal improvement.

Finally, comparing Fig. 5 and Fig. 9, we can see that both
perceived and detected CWL are affected by a large variance.
However, as shown in Fig. 9, such a variance is partially
reduced using the SSM, which contributes better to fit the
physiological response of a single subject.

IX. CONCLUSION

In this work, we have proposed a reliable subject-specific
machine-learning algorithm for real-time CWM in SAR mis-
sions with drones. Our multimodal CWM model combines the
information of features extracted from physiological signals
(i.e., RSP, ECG, PPG, and SKT) noninvasively acquired. After
an exhaustive investigation involving up to 384 features, we
have selected only 25 required to get the highest classification
accuracy. In addition, we have explored different feature
normalization techniques to reduce both subject and day inter-
variability, showing that a combination of day and subject
normalization improves the detection accuracy.

Moreover, we have introduced a novel SVM based
weighted-learning method suitable for subject-specific opti-
mizations. With such a method, we distinguish between low
and high CWL with an accuracy of 87.3%, on an unseen test
set. Furthermore, we tested our model on ten new subjects
using an advanced controller, reaching an average accuracy of
91.2%. Therefore, our model is valid to monitor CWL from
rescuers piloting a drone with either traditional or advanced
controllers.

The proposed methodology paves the way for detecting high
levels of cognitive workload with sensors that can be included
into a jacket. Our model can already operate in real-time to
obtain information of the cognitive workload of the user. Such
information can be used to improve shared-control systems by
modulating the human-robot interaction and dynamically adapt
the level of assistance, which will ensure an efficient execution
of the missions. However, further investigations in real-life
scenarios are needed to model other stressful conditions, which
are not reproducible in laboratory tests. Moreover, there is a
need to address a fine-grained detection in order to define a
threshold for preventing a possible pilot’s overload that could
compromise the outcome of a search and rescue mission.
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