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Abstract— In this relatively informal discussion-paper we 
summarise issues in the domains of safety and security in 
machine learning that will affect industry sectors in the next five 
to ten years. Various products using neural network 
classification, most often in vision related applications but also 
in predictive maintenance, have been researched and applied in 
real-world applications in recent years. Nevertheless, reports of 
underlying problems in both safety and security related 
domains, for instance adversarial attacks have unsettled early 
adopters and are threatening to hinder wider scale adoption of 
this technology. The problem for real-world applicability lies in 
being able to assess the risk of applying these technologies. In 
this discussion-paper we describe the process of arriving at a 
machine-learnt neural network classifier pointing out safety and 
security vulnerabilities in that workflow, citing relevant 
research where appropriate.  
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I. INTRODUCTION  

A. Motivation 

In industry circles Artificial Intelligence (AI), Machine 
Learning (ML) and Neural Networks (NN) have become 
established buzzwords and, as with many buzzwords, industry 
representatives are obliged to determine how the technologies 
can help or hinder their businesses and risk assessments on the 
introduction of these technologies to their companies and 
products. Many experienced industry representatives will 
have seen a number of buzzwords come and go and will be 
wary of ones that seem to attract a number of negative 
headlines. A well-known example of a negative headline is 
automated driving [1] where well-publicised failure modes [2] 
raise serious doubts over the technology domain. 

Available answers to these questions are not confidence 
inspiring. Questions pertaining to fundamental understanding, 
reliability and explainability have been asked in the 1990’s 
[3]. One 2014 publication on the observation that perturbance 
of input/training data can simply and drastically affect the 
outcome of a classification action [4] seems to have woken the 
broader research community up to the fact that 
professionalisation of the theme is required. Since then, 
explainable AI (XAI) and understandable AI have become 
unfortunately chosen buzzwords – an experienced industry 
representative might well ask how a theme can be researched 
and so publicly discussed since the early 80’s and still not be 
understood. 

False positive rates commonly and stubbornly occupy the 
0.5-5% range so there can be no assumption of classifier-
reliability. Such performance conditions effectively relegate 
the use of such classifiers to consultative and not 
determinative functions. In monetary terms, this means 
accepting the occurrence of false negatives (good product 
identified as faulty) to avoid false positives (faulty produce 
identified as good), thus increasing the costs of true positives. 

These observations motivate this paper. We target the 
reader in the industrial domain seeking orientation points for 
further investigation in the context of her decision-making 
with regards to technology adoption. 

B. Methodology 

Whilst largely a discussion paper, our interest is primarily 
in the domain of high integrity systems. We title the paper 
using the words safety and security. The underlying concepts 
are well-understood and well-defined, notably by 
specifications such as the IEC 61508 and IEC 62443. In 
implementation they both require the property termed “high-
integrity” as a basis and given the similarities and respecting 
the differences between the two domains we see it as more 
constructive to frame such discussions as such, highlighting 
any disunions as necessary.  

C. Structure 

This discussion-paper is structured accordingly, we finish 
this section by mentioning useful previous work. In Section II 
we then build a simple orientation-model of the classifier 
workflow. Using this workflow, we categorise activities and 
examine their vulnerabilities. In Section III we summarise and 
suggest future work. 

II. THE AI / MACHINE LEARNING / DEEP NEURAL NETWORK 

CLASSIFIER WORKFLOW 

A neural network is an architecture which is one of a set 
of tools in machine learning which in turn is a subsection of 
artificial intelligence. To a certain extent, (deep) neural 
networks can be viewed as an attempt to overcome the 
limitations of alternative machine learning techniques, say 
statistical methods, in an attempt to achieve intelligent, 
informed might be a better word, behaviour in synthesised 
machines. By introducing a series of hidden (deep) layers, it 
is hoped that increasing abstractions of the input dataset can 
be drawn. By passing data thought to be representative of the 
problem domain through an algorithm (training), we arrive at 



 

 

a model (trained neural network) that can be executed and 
with which we hope to be able to classify previously unseen 
data. In this paper we are concerned with the class of deep 
neural network algorithms as classifiers. 

A. Neural Network Basics 

The architecture of neural networks is well known [5] and 
can be characterised as an attempt to replicate the functional 
activity of an organic brain. A neural network consists largely 
of artificial neurons which can be triggered depending on 
input triggers. The artificial neuron is generally represented as 
a multiply-accumulate (MAC) unit where a number of input 
weights are multiplied and accumulated to provide an output 
result which is later rectified. These MAC units are arranged 
in layers, the number of input MACs often corresponding to 
the number of sample points of the input – for instance pixels 
in an input image. The classifier output is separated from the 
input by a number of layers and an algorithm specific 
interconnection between the MACs of one layer to the MACs 
of the following layer. Intermediate layers can feature widths 
that are wider or narrower (dimension increase or reduction) 
than the previous layer. The output layer will generally be a 
width that corresponds to the number of discrete 
classifications and will generate for each, a number that 
represents a probability (or confidence) of the input being in 
this category. This can be further refined by an additional non-
MAC layer (e.g. soft-max) that determines an absolute output 
of the classifier. 

The weights for a particular problem, or data, set are 
established by a method known as back-propagation where the 
weights of the MAC inputs for a defined classification to a 
known input can be calculated. The use of labelled data (for 
instance images of cats, dogs, jars labelled as such) is known 
as supervised learning.  Training time can vary, depending on 
the number and sizes of layers, the training sample set and of 
course the platform, from hours to weeks: the expectation is 
that graphics processing units (GPUs) are used to train. A 
percentage, 30% or so, of the possible input samples are 
reserved for the validation run and are passed to the trained 
model allowing the classification results to be evaluated. 
Should unacceptable classification results be achieved the 
training run can be repeated or the number of layers and/or 
their connectivity (algorithmic manipulations) adjusted so that 
more acceptable results are achieved. The convergence of this 
iterative process is thus largely dependent on the intuition and 

 
1 It is to be noted that the paper itself underwent some corrections [9] and 
the doi appears to be no longer valid [10] 

the experience of the implementer rather than any definable 
mathematical model. The reduction of this latter influence is 
the primary motivation behind automatedAI. 

B. Implementation Aspects 

In terms of high integrity, the process described above 
exhibits a number of serious intrinsic vulnerabilities. To 
explore these, we construct a simple model (see Fig. 1). We 
divided the process into three environments, namely the data 
set environment, the modelling environment and the target 
environment, and discuss the vulnerabilities of these 
environments in terms of integrity. 

1) Dataset Environment: Datasets are, obviously, crucial 
to training models. There are a number of publicly available 
datasets in the domain of image recognition, available from 
various institutions and appear to be, disturbingly often, used 
uncritically by researchers. Well-known failures of facial 
recognition include minorities being misclassified due to a 
preponderance of white people in the dataset [6]. This 
misclassification is directly attributed to the actions of bias in 
choosing the images and their labels/classifications. The 
well-known ImageNet dataset [7] features, apparently, 
questionable and scientifically unacceptable categorisations 
such as “Slut”, “Closet Queen” and the like [8] 1 . An 
interesting discourse on the creation and curation of the 
ImageNet data base, elements of which are undoubtably 
representative of many of the publicly available datasets is 
offered by Denton et. al. [11] and a structured analysis of the 
differing types of bias is offered by [12]. Methods of 
harnessing ML to reduce the effects of bias have also been 
explored [13]. In typical industrial embedded applications, 
the use of publicly available data sets is expected to be limited 
and there appears to be an implicit assumption that in many 
applications it will be necessary to generate the dataset 
artificially. Nevertheless, awareness of the data-bias issue in 
particular and data curation in general is paramount to 
securing the integrity of the resulting model.  

The integrity of the model can also be compromised by 
manipulation of the input data. Obvious manipulations are 
intentionally mislabelling the datasets, labeling a picture of  a 
cat as a dog for instance, or reducing, possibly increasing, the 
number of images of a category in a dataset. The mechanics 
of the data curation process ought to facilitate the discovery 
of such manipulations. The author is unaware of any publicly 
available datasets secured with even primitive methods. 

 
Fig. 1: Environments and their Interfaces in a typical Neural Network Workflow 



 

 

Goldblum et. al provide a structured articulation of the issues 
concerning dataset integrity [14]. 

More problematic is the perturbation problem. It is 
possible to introduce perturbations into a multi-dimensional 
data-input such as an image, which are not necessarily visible 
to the human eye and hence not detectible. These perturbed 
images can be used to drastically manipulate the learning 
process; the results of a classification run [4] or, as it turns out, 
discover characteristics of the classifier [15], in other words 
steal the model. These three attack scenarios clearly illustrate 
not only robustness issues with the machine learning 
technology model [16]–[18] but also represent vulnerabilities 
in a security sense [19] and integrity issues in a safety sense 
[20]. 

2) Modelling Environment: The dataset environment 
prepares data for the modelling (training) and validation 
phase. The modelling environment can be viewed as a 
configurable tool. This comparison allows us to view the 
modelling environment to a certain extent as a variant of the 
model-based design domain and refer to well-known solutions 
and methods of dealing with vulnerabilities in this domain.     

The operation of this tool – in the naïve case – poses some 
issues. In an example from the pynq environment from Xilinx 
[21] for the MNIST number-recognition, the tooling begins 
with random extraction of validation and training data from 
the data set. It then, for every training epoch, randomises the 
order in which the training data is presented. These two 
randomisations result in a model that is practically 
irreproducible. Whilst the recognition rates are similar, what 
is worrying from a safety point of view is that the set of false 
positives is different. This can be seen in figure where we 

show the results of passing the entire MNIST data set through 
a trained network (see Fig. 2). Whilst the representation is in 
logarithmic scale to enhance the display of false positives (in 
red) it can be seen that the profiles differ – we train a network 
on two similar platforms and let the training go through 1000 
epochs – and the number and position (relative to true 
positives) are different. Determinism in training is not, in the 
naïve form, given. 

The only ML-specific attack on the training process not 
associated with manipulation of the input data that the author 
is aware of, utilises involve perturbations on the tool. These 
include gradient perturbation and objective function 
perturbation [22]. Ironically these perturbations can also be 
legitimately applied to the tooling to make the model more 
robust against probing-based discovery. 

From a safety point of view the integrity of the modelling 
environment is critical. Under the assumption that the correct 
architecture has been chosen and the data sets reflect what 
they are supposed to, the tooling will release some file that can 
be used to initialise and perform the MAC calculations on a 
specific processing architecture (CPU or GPU or the like). In 
any functional safety environment such modelling software 
will require qualification to ensure the output is deterministic 
and traceable. One such tool, TensorFlow Lite [23], generates 
a runtime that requires Linux as an operating system. In this 
case the tool is not qualified; it may be possible to qualify the 
runtime; but Linux is not qualified. Another tool, Keras [24], 
generates json files describing the architecture and a weights 
file which [25] used to generate C-code which can then be 
analysed using static code analysis. Such a tool has the 

 

 

Fig. 2: Two density distributions generated by applying all elements of the MNIST data base to binary models trained on the data set on a logarithmic 
scale. The training ceases after 1000 epochs/iterations. The distributions clearly show different numbers and different relative positions of false positives. 
Note: whether the common false positive is in truth a four or a nine s purely in the eyes of the data-labeller.   



 

 

potential to be qualified, but Keras itself would also require 
qualification to be used in a functional-safety environment. 

3) Target Environment: By target environment is meant 
the hard- and software platform upon which the MAC 
calculations are performed. Massively parallel computing 
architectures, such as GPUs or application-specific 
accelerators, are the architectures of choice. The typical unit 
of execution which runs on a GPU is a kernel, a sequence of 
operations which can be conceptually encapsulated as a 
thread. The kernel is passed to the GPU with an indication of 
the number of required threads and their organisation – 32 
threads per block and 16 blocks would correspond to 512 
iterations of a for-loop on a CPU architecture. These blocks 
are then scheduled on a compute unit of the GPU by a 
scheduler resident on the GPU and from there to processing 
elements by a scheduler resident in the compute unit. By and 
large the execution of a neural network classifier model on 
hardware is just another program/process and as such, at least 
in terms of safety, allows us to refer back to well-understood 
analytic and implementation mechanisms for ensuring the 
execution proceeds as it is ought.  

a) Safety: The well-known method for ensuring that 
program execution is correct – that is it performs as the source 
code would suggest – is a (tightly coupled) lockstep 
architecture [26] in which the code is executed on two 
processors simultaneously and the execution – code fetch, 
data fetch and data writeback – is compared on a system-bus 
level. Should the two processors execution differ this is taken 
as an unrecoverable error and a reset is asserted. Loosely 
coupled architectures also exist where the results of a 
calculation are compared rather than its execution.  

There is an expectation that the execution time, both worst 
case and best case, should be known as timing integrity is 

considered important. Memory integrity is also considered 
important.  

b) Security: There are attack modes that focus on model 
theft namely model extraction attacks and model inversion 
attacks. Model extraction attacks aim to steal the intellectual 
property of the model by querying a model (viewed as black-
box) with inputs designed to model the model as a set of 
equations and hence duplicate the parameters and with it the 
(original) model [27]. Model inversion attacks are designed to 
expose the privacy of records used in the training of the model, 
for instance medical records. A complex theme, [22] provides 
a good starting point for further perusal.   

c) Execution Schedule Integrity: One could reasonably 
expect, in a world where constant-time multipliers are the 
norm, a relatively time-constant execution behaviour. Any 
naïve experiment – for instance as shown in the kernel 
execution-time measurements of a simple vector addition 
(Fig. 3 clearly demonstrates a statistical distribution) – will 
convince one that this is not necessarially the case. GPU 
kernel execution performance – usually a single threading 
multiple data execution model (STMD) - is a function of 
thread structure, memory location of variables (register, 
local, shared or global memory) tasks and the organisation 
and mapping of threads onto the hardware. Using OpenCL 
terminology, a kernel is composed of a number of threads 
(e.g. iterations of a loop) organised into blocks of threads 
which are executed on a processing element. The blocks are 
assigned to a compute unit which organises a number of 
processing elements and forms part of a compute device. As 
the compute device (GPU) lives in an asynchronous 
relationship with an attached host (CPU), and the number of 
threads/blocks generally is greater than the number of 
processing elements, a GPU-based scheduler is required to 
schedule execution of the blocks on the compute elements 

 

  

Fig. 3: The execution time density distribution of a simple GPU, vector-addition, kernel as measured by Nvidea's nvprof tool executed 300 times. The 
kernel was written in Python and the execution time includes the host-sided activity of the JIT compiler. Regardless of the technology used, we wish to 
illustrate the nature of a statistical distribution, in particular, in this case, the extreme best-case execution time.  



 

 

and the threads on the processing elements. The scheduler 
introduces behaviour that is not, in the face of incomplete 
documentation, transparent. The measurements of Fig 3 are 
arrived at through the use of Nvidia’s nvprof host-based 
profiler so inaccuracies are to be expected. In the context of 
this discussion, this means the implementer has to go further 
to ensure his code executes with time-integrity.    

This unclarity has not gone unnoticed by others [28]. The 
major chip manufacturers usually offer, under non-disclosure 
agreements, access to GPU interfaces that can be used to 
provide runtime safety guarantees. The only other way the 
programmer has to influence the order of execution is by 
scheduling the host-sided issuance of kernels. Concurrent 
execution of different kernels is considered a challenge [29] 
and in fact this has been used to construct covert-channel 
attacks [30].    

d) Memory Integrity: Memory integrity is fundamental 
in terms of both security and safety. In particular the use of 
dynamically allocated memory is something of an issue in 
both safety and security contexts and neural network 
representations are known to require significant memory. 
This is especially a concern in IoT-class embedded devices 
where memory-scheduling has been proposed to alleviate 
strictures imposed by a constrained platform [31].  

The clearly delineated and architecture-agnostic memory 
model of OpenCL systems (see Fig. 4) makes a good 
reference point to show the potential complexity of memory 
issues in terms of safety and security. Unsurprising there are 
well documented attack modes such as buffer-overflow and 
information-leakage attacks possible on all levels of memory 
[32].    

e) Platform Integrity: In terms of platform integrity we 
must consider whether the model is being executed properly, 
that is whether the calculations have been performed 
correctly. As previously mentioned, tightly-coupled 
lockstepping architectures are common in industry and well-
understood. Tightly coupled lockstepping requires 
duplication of expensive computing resources, especially so 

in the context of GPUs. We therefore expect that loosely-
coupled lockstepping will become the norm in this 
technology-domain and some work has been done in this area 
[33] but results are as of yet inconclusive.       

III. CONCLUSION 

Embedded-AI, more specifically embedded neural 
network-based classifiers are in the process of moving from 
a buzzword to a common-place reality. These systems 
represent part a typical embedded system and part a novelty 
embedded system in that we have architectures that are in 
general common to many advanced embedded circuits but 
differ in particular in some aspects. In addition, the workflow 
required to arrive at an embedded-AI solution is substantially 
different to a typical code-based embedded system but bears 
strong similarities to model-based design. We can therefore 
intuit that in many cases we can use best practices well-
understood from known architectures and configurations. 
Our contribution consists of identifying the exceptions where 
special care and indeed some applied-research/research needs 
to be carried out.  

One area where the embedded-AI technology differs from 
model-based design is the endless manipulation possibilities 
of the dataset. This begins with data bias which can be 
manipulated to ensure the model classifies incorrectly. Then 
there is the wide-reaching perturbation issue, one whose 
effects are neither fully understood nor completely 
researched. Slight perturbation of input data has been used to 
corrupt models, it has been used to produce wildly faulty 
classifications and has been used to steal models. As of yet, 
the author is not aware of any silver-bullet solution, but has 
observed, from the digital image authentication domain, that 
many verification tools use other signal-domains, frequency, 
for instance as inputs rather than amplitude as is common 
[34], there seems to be little reason why these two domains 
could not be run in parallel with the second domain acting as 
a sort of cage for results from the first. This observation is 
also supported by additional and related observations from 

 

 

Fig. 4: The generic OpenCL model as applied to a Compute Device. The model clearly shows the precise categorisation of memory types as well as the 
asynchronous communication between host and compute element (PCIe). 



 

 

the digital image watermarking domain where the camera 
supplying images can be identified both by model and by 
product instance (serial number). Otherwise, it could appear 
that the workflow in applying security mitigations applicable 
to model-based design systems could equally be applied to 
the process of making a typical embedded-AI design flow.    

Achieving a safety certification is a more challenging task 
as this requires demonstration of functional correctness and 
demonstration of safety-relevant quality requirements and 
neither can currently be guaranteed. The very point of using 
machine learning classifiers is because implementers are 
unable to otherwise define the features that should effect a 
classification. In cases like these, the safety certification 
authorities are put in the difficult position of not wanting to 
be seen to stand in the way of legitimate innovation and so 
support implementers in finding an acceptable caging 
strategy for mitigating misclassifications. On the other hand, 
there is neither scope nor reason for turning a blind eye to 
obvious process and execution defects. Once the determinism 
issue is solved we can expect that tool qualifications will 
follow.   

As it stands, we do not fully understand neural network 
classifiers, we cannot guarantee robustness of a neural 
networks, and we can certainly not guarantee deterministic 
behaviour. There is however sufficient research work going 
on in this domain for us to expect a better understanding and 
so move in this direction. While the big chip developers have 
begun to integrate architectural features in their execution 
engines (CPUs, GPUs and other accelerating architectures), 
there is little to no openly available literature about these 
features so work on generic solutions is warranted.  
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