
Building Natural Language Interfaces
for Databases in Practice

Claude Lehmann
claude.lehmann@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

Dennis Gehrig
dennis.gehrig@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

Stefan Holdener
stefan@veezoo.com

Veezoo AG
Zurich, Switzerland

Carlo Saladin
carlo@veezoo.com

Veezoo AG
Zurich, Switzerland

João Pedro Monteiro
jp@veezoo.com
Veezoo AG

Zurich, Switzerland

Kurt Stockinger
kurt.stockinger@zhaw.ch

Zurich University of Applied Sciences
Winterthur, Switzerland

ABSTRACT
Natural language interfaces to databases have recently made sub-
stantial progress due to advances in machine learning. Users no
longer need technical knowledge to search for insights in their
database. However, research is largely focused on increasing the
one-shot accuracy, instead of building systems that interact with
and guide a user’s search. In this demo, we present Veezoo, an
AI-powered data analytics platform that enables users to directly
talk to their databases.

CCS CONCEPTS
• Information systems → Search interfaces.

KEYWORDS
Natural language interfaces, user interfaces, database querying

1 INTRODUCTION
Due to significant improvements in building natural language-to-
SQL systems (NL2SQL) over the last few years, interacting with
data has become much simpler and more effective for a wide range
of users [1]. While data exploration used to require a technical
skill set, a much broader audience of non-technical users can now
interact with previously inaccessible data [2].

Previous work on NL2SQL systems mainly focused on increasing
the accuracy of translating natural language questions to SQL [3,
4, 7, 8]. However, there has been very little focus on developing
intelligent user interfaces that help users in reformulating natural
language questions that cannot be answered by the NL2SQL system.
Traditional papers report that a certain number of queries cannot
be answered by their systems, but they do not provide a recipe for
how these hard queries can be answered. Incidentally, these hard
queries often yield more interesting results.

In this paper we introduce Veezoo, an NL2SQL system that enables
users to interact with data in a dialog in case the system does not
understand the users’ questions. In addition, we perform an exper-
iment to show Veezoo’s effectiveness in answering hard queries by
guiding the users with relevant feedback and by suggesting how to
reformulate the original user questions.

2 RELATED WORK
In recent years, the Spider dataset [12] has become the de facto
standard for measuring NL2SQL performance. The official leader-
board1 differentiates between exact set match without values and
execution with values. While the former focuses on the prediction
accuracy, the latter is more directly anchored in real-world use
cases, by also executing generated SQL statements and evaluating
the returned values. As we are interested in the application of such
systems with real users and businesses, we are only interested in
the second leaderboard. The goal is to generate a valid SQL query,
execute it on the database and find the same set of values as con-
tained in the list of gold values. Currently the top 3 entries all use
transformer-based architectures. These are T5-3B+PICARD [8] with
75.1% execution accuracy, RATSQL+GAP+NatSQL [4] with 73.3% and
SmBoP+GraPPa [7] with 71.1%. The aforementioned leaderboard
entries are composed of multiple methods combined to yield even
stronger results. We will give an overview of the most prominent
methods and ideas in the following paragraph.

Predictions of an NL2SQL system must be a valid SQL statement,
thus it is difficult to take off-the-shelf pre-trained language models
as-is. A possible solution is to use abstract syntax trees to guide
the SQL generation [9, 10], which makes sure that no syntactically
invalid SQL is generated and to also help the flow of information in
the neural network. However, this approach requires the addition
of specialized control tokens or changing the model architecture.

The PICARDmethod [8] incrementally increases the beam size of
the beam search (i.e. the number of generated results) and chooses
only valid candidates among them, though this comes at the cost
of additional computational resources. RATSQL [9] adds the repre-
sentation of relations to the encoder’s attention mechanism of the
transformer architecture. NatSQL [4] is an intermediate representa-
tion layer between the natural language query and the final SQL
statement (similar to SemQL [5]), allowing to learn a representation
that is detached from SQL dialects. NatSQL is built as a replace-
ment of SemQL. Their authors note a compatibility with a larger
variety of SQL queries, the simplification of the query structure
and a reduction in the number of predicted items in the schema.
GraPPa [11] is an approach for pre-training, where new synthetic
examples are generated from a synchronous context-free grammar
(SCFG), making it a data-efficient learning approach. SmBoP [7] com-
bines GraPPa with RATSQL. In addition, it changes the traditional

1https://yale-lily.github.io/spider

© the Authors | ACM 2022. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The 
definitive Version of Record was published in SSDBM '22: Proceedings of the 34th International Conference on Scientific and Statistical 
Database Management, https://doi.org/10.1145/3538712.3538744.

https://yale-lily.github.io/spider


top-down search through the abstract syntax tree by a bottom-up 
approach, enabling parallelization to significantly speed up training 
and inference.

3 THE VEEZOO NL2SQL SYSTEM
3.1 Veezoo System Architecture
Veezoo is a commercial data analytics software that uses NL2SQL 
technology to provide easy access to information for business users. 
Its architecture is roughly divided into the following parts:

• A Knowledge Graph that helps match keywords to database
concepts, such as tables, columns and distinct values. This
Knowledge Graph is created in an automatic way based on
the database schema and can be manually edited by the
user. Furthermore, it contains business logic and allows to
fine-tune question understanding.

• A parser that maps natural language utterances into an un-
ambiguous intermediate representation, called a logical form.

• A query processor that transforms logical forms into SQL
queries and executes them.

• A visualization engine that displays the queried data in the
most appropriate chart for easy understanding.

We will focus the description of the underlying system on the
parser component, since it is the most relevant for the discussion in
this paper. Veezoo’s parser component first uses techniques in the
areas of Entity Linking, Relation Extraction and Temporal Expres-
sion Parsing to recognize relevant passages in the user’s utterance
and to generate possible understandings — including entities, num-
bers and dates — of each passage. The identified understandings
are then extended and combined using a series of well-defined
rules into multiple candidate logical forms, each one representing
a possible interpretation of the utterance. The system makes use
of a machine learning model to score these logical forms, choos-
ing thus the most likely interpretation of the utterance for further
processing with the query processor.

3.2 Veezoo UI
The area where Veezoo excels is its user interface. When first inter-
acting with a database, users generally lack the knowledge about
the contents of the database. Veezoo solves this by presenting its
users the Knowledge Graph, a summary of the underlying database
schema. Figure 1 shows both the list of entities and attributes of
Spider’s singer database on the left side as a quick reference, as well
as a visual representation of the relationships between entities and
attributes on the right side. Both can be accessed easily and quickly
in Veezoo’s sidebar. In addition to helping users understand the
database, the interface gives the users customization options such
as manually adding synonyms.

The most important innovation of Veezoo, however, is the dialog
interface, which enables users to have a direct conversation with
the system. Users can ask Veezoo questions about the content of a
database and Veezoo will transform the natural language question
into a SQL statement, query the database and provide an answer.

Consider this question from the Spider [12] development set:
What are the names of the singers who are not French citizens? Ini-
tially, Veezoo has trouble understanding somewords in the question

Figure 1: Veezoo’s Knowledge Graph of the Spider database
singer. The figure shows a list of entities and attributes on
the left side. The visual knowledge graph is shown on the
right side. Icons identify different data types.

(see Figure 2). Using the FollowUp-feature, the users are able to
further refine their questions, staying within the context of their
first question. The words "citizen" and "French" are not recognized,
but Veezoo suggests the term "France - Citizenship" while typing.
The correct result is returned once the follow-up question is asked.

Let us now investigate the different areas of Veezoo’s interface.
Figure 2 shows the example of a question that Veezoo does not fully
understand. In such cases, a note will be displayed to give additional
information about the issue and some helpful tips to avoid them in
the future. The most important features available to the user are:
(a) the question bar where users formulate their questions, (b) a
previously asked question, (c) a feedback note, where Veezoo indi-
cates issues or gives hints to the user, (d) the answer to a question,
(e) auto-complete suggestions for what the user is typing, based
on what Veezoo finds in the knowledge graph, (f) question sugges-
tions that could be interesting for the user, (g) asking a follow-up
question, drilling down into this particular answer, and finally (h)
a manual column selection to show additional information.

Note, that for a successful question, the feedback note (c) would
be missing. All other features are always available, irrespective of
the success of the question. In addition, the data returned by the
query is displayed in various types of visualizations, if appropriate.
This rich feature set allows users to fully engage with their data,
exploring it, fixing problems in understanding and finally gaining
previously hidden insights. Veezoo automatically offers additional
information outside of what was asked, for example, if asked about
the names of singers that were born before 1980, Veezoo will show
the Birth Year among other columns. A user might not have
asked to see this column, but the additional information helps to
familiarize the user with the data in the database. A follow-up
question could then ask "What is their net worth", enriching the
answer with the content of the "Net Worth Millions" column.



k

Figure 2: The interface for asking Veezoo a question, showing the case when Veezoo is not confident about its answer. In the
middle, the result to a previous question is shown. At the bottom, users can adjust their questions, ask a different question, or
even drill down with a FollowUp request.

Recently, Veezoo has also been extended to enable natural lan-
guage questions for recommender system queries such as "Which
films should I suggest to user X" [6].

4 DEMONSTRATION AND EVALUATION
In order to evaluate Veezoo’s UI, we carried out an experiment as-
sessing Veezoo’s feedback mechanism. The goal of the experiment
was to measure how many interactions between the user and Vee-
zoo are required to arrive at the correct answer, given that Veezoo
is not able to answer a question correctly. In order to do that, we
constructed the worst case scenario, namely using an unoptimized
Knowledge Graph in Veezoo (e.g. no added synonyms or cleaned
up column names), having users that are unfamiliar with Veezoo’s
interface participate in the experiment, and only choosing ques-
tions where we know Veezoo returns an incorrect result. In many
business scenarios, however, users settle on a coherent company
vocabulary and denominate concepts by the same name, as has
been shown in practice by Veezoo’s customers.

For the experiment, we chose ten databases from the Spider devel-
opment set. Next, we picked questions that Veezoo did not answer
correctly. Every user was given ten questions from three different

databases and was then tasked to find the correct answer from
Veezoo, using any of the available features. Users were selected
from various IT backgrounds (software engineers, researchers and
students, primarily), but not necessarily well-versed in natural lan-
guage topics. Typical corrections or user interactions include (1)
rewriting the question, (2) reformulating certain words, (3) using the
suggestions proposed by Veezoo or (4) inspecting the Knowledge
Graph to find correct table and column names.

The results of our 16 test users 𝑈 1 through 𝑈 16 are shown in
Figure 3. The figure shows each user’s performance across their ten
questions. Their answers were manually checked for correctness.
The x-axis shows the different users, ordered by increasing median
number of tries, the y-axis shows the number of tries. A try consists
of any query to Veezoo that differs from the given question.

Except for users𝑈 15 and𝑈 16, all users have a median number
of tries of 2, indicating that for most questions, Veezoo’s answer
was not far off and untrained users were quickly able to figure out
how to correct the question and satisfy their information need. The
figure exhibits a similar picture for the mean number of tries, where
9 out of the 16 users could answer their question on average in
2.5 or less tries. Even so, we can clearly identify a few outliers, e.g.



Figure 3: User performance in the experiment. Users are ranked by the median number of tries to get a correct answer from an
initially incorrectly answered question.

user𝑈 15 needed up to 7 tries to get a satisfying answer, user𝑈 16
required 10 tries for multiple questions, while users 𝑈 9 and 𝑈 12
needed 19 tries for correctly answering a single question.

The question Find the role, street, city and state of the profes-
sionals living in a city that contains the substring ‘West’ from the
dog_kennels database posed a challenge for many users, because
asking for the substring "West" was not yet easily accessible in
Veezoo, depending on the configuration of the underlying knowl-
edge graph. Six users had to deal with that question. 𝑈 11 (16 tries)
and 𝑈 14 (6 tries) managed to get a correct answer from Veezoo by
explicitly selecting the cities over Autocomplete. Users 𝑈 2, 𝑈 13
and 𝑈 15 gave up after less than 5 tries. User 𝑈 9 only gave up af-
ter 19 tries thus increasing their average immensely. For all other
questions, the users found a satisfying answer.

5 CONCLUSION
We demonstrated the usefulness of a natural language interface to
databases that is designed for usability, enabling quick information
access and leading users toward their desired information. While
the choice of the underlying NL2SQL system is an important one,
we argue that the characteristics of the user interface — independent
of the NL2SQL system — also play an important role. Veezoo has
been shown to be very effective for large-scale customers in real-
world business settings. Furthermore, our evaluation demonstrated
that even in an adversarially designed scenario, Veezoo can guide
users to find their answers effectively by engaging them in a dialog
between system and user — inspired by a dialog between humans.

ACKNOWLEDGMENTS
The work was funded by Innosuisse as an innovation project under
the project number 34223.1 IP-ICT and by the European Union’s
Horizon 2020 research and innovation program under grant agree-
ment No 863410.

REFERENCES
[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A Comparative

Survey of Recent Natural Language Interfaces for Databases. The VLDB Journal
28, 5 (2019).

[2] Sihem Amer-Yahia, Georgia Koutrika, et al. 2021. INODE: Building an End-to-End
Data Exploration System in Practice. SIGMOD Record (2021).

[3] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-SQL
System that Learns from Database Information. In International Conference on
Data Engineering (ICDE).

[4] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R.Woodward, John H.
Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL Easier to Infer from
Natural Language Specifications. In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing.

[5] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics.

[6] Yasamin Klingler, Claude Lehmann, João PedroMonteiro, Carlo Saladin, Abraham
Bernstein, and Kurt Stockinger. 2022. Evaluation of Algorithms for Interaction-
Sparse Recommendations: Neural Networks don’t Always Win. In International
Conference on Extending Database Technology (EDBT).

[7] Ohad Rubin and Jonathan Berant. 2021. SmBoP: Semi-autoregressive Bottom-up
Semantic Parsing. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics.

[8] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing.

[9] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics.

[10] Pengcheng Yin and Graham Neubig. 2018. TRANX: A Transition-based Neural
Abstract Syntax Parser for Semantic Parsing and Code Generation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.

[11] Tao Yu, Chien-ShengWu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi Yang,
Dragomir Radev, Richard Socher, and Caiming Xiong. 2021. GraPPa: Grammar-
Augmented Pre-Training for Table Semantic Parsing. In Proceedings of the 2021
International Conference on Learning Representations.

[12] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing.


	Abstract
	1 Introduction
	2 Related Work
	3 The Veezoo NL2SQL System
	3.1 Veezoo System Architecture
	3.2 Veezoo UI

	4 Demonstration and Evaluation
	5 Conclusion
	Acknowledgments
	References



