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Abstract - IoT endpoints and systems are popular targets for cyberattacks which is 
why they need to be protected with strong security algorithms. The keys and tokens 
that are used for authentication, encryption, access control and many other aspects 
of modern security all rely upon strong random numbers. While modern operating 
systems and computers have long had secure random number generators (RNG) 
worked out, IoT devices still lack a strong source of randomness, also known as 
entropy, due to their constrained resources. This report evaluates a quantum random 
number generator targeted at smart devices, IoT and vehicle-to-everything (V2X) 
applications regarding execution time and energy consumption. 

 

Many security-relevant operations, such as key generation, authentication, and zero-
knowledge proof rely on random numbers. They are used to generate keys or tokens which 
are added to a message in order to make the message content unpredictable. The stronger 
the entropy in a random number, the harder it will be for an attacker to guess it and forge a 
request. A strong entropy is therefore essential. Not all random numbers are equally suited 
to be used for cryptographic operations. We distinguish between the ones generated by a 
pseudorandom number generator (PRNG) and a true random number generator (TRNG). 
Pseudo random number generators can only provide statistic randomness. They are 
determined using mathematical operations which are given an initial value, typically called 
seed or key. If the same initial value is used, the result of the PRNG will be the same. 
Pseudorandom numbers should therefore never be used for security protocols but might be 
used to simulate sensor data. Since all computers are deterministic machines, they can only 
generate pseudorandom numbers, but true random numbers are needed for secure 
communication. True random number generators can produce random, unpredictable 
numbers even if all components of the process (algorithms, initial values) are known. This 
characteristic is in line with Kerckhoff’s principle of cryptography which says that a 
cryptography system should be secure, even if everything about the system is public 
knowledge, except for the key. Usually, this is true only for physical processes such as e.g. 
electronic noise, a beam splitter, or the movement of the mouse. They are therefore often 
referred to as hardware random number generators. Especially quantum processes have a 
strong entropy.  

 

The IDQ6MC1 [1] is a true quantum random number generator chip. It targets smart devices, 
IoT and V2X applications. The chip collects true randomness from the shot noise of a light-
emitting diode (LED) captured by a CMOS image sensor. This process is intrinsically and 
provably random. The numbers resulting from this process can then be fed to a deterministic 
random bit generator (DRBG) to produce random bits in compliance with the NIST SP800-
90A/B/C [2], [3], [4] recommendations for secure DRBGs (A), secure entropy sources (B) 
and random bit generator (RBG) construction (C). In addition, the manufacturer claims that 
it passes IID, non-IID, DieHarder, and NIST SP800-22 [5] test suites for RNGs for 
cryptographic applications. Moreover, the chip is AEC-Q100 [6] certified, which states the 
chip's reliability when being embedded in any security system of a connected car securing 
in-vehicle and V2X communications. Communicating either over I2C or SPI, the chip can be 
integrated into any system. The driver, written in C for standard Linux systems, is only 
available upon request but can easily be adapted to run with any embedded RTOS or 
alternative OS.  

 

Fig. 1 shows the two different evaluation boards available to test the chip. One is the QRNG 
EVK based on the Raspberry Pi platform and the second one features both the IDQ6MC1 
and IDQ250C2 chip with the Raspberry Pi pin header as well. For the evaluation, we used 
the QRNG EVK. 
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Fig. 1: QRNG EVK (left) and IDQ6MC1 & IDQ250C2 evaluation board (right) 

  

In a previous study [7], we evaluated the performance of cryptographic operations of 
different secure elements, including the generation of random numbers. Following up on this 
work, we evaluate the performance of the IDQ6MC1. Although the IDQ6MC1 is not a secure 
element, we want to make the evaluation comparable to the secure elements as well as to 
a software implementation. In order to achieve that, we chose the same basic hardware, 
application and measurement setup. The application was thus implemented on an 
nRF52840 development kit from Nordic using the Zephyr RTOS. For the software 
implementation, we use the crypto library MbedTLS. A more detailed description of the 
implementation and test setup used can be found in [7]. The application initialises the 
IDQ6MC1 or the MbedTLS context, respectively, and then reads a given number of random 
bytes. We measure three different sizes, 32, 256 and 1024 bytes. To measure the execution 
time, we use a GPIO signal which is set high when the operation starts and set low when it 
finishes. As mentioned earlier, software random number generators such as MbedTLS use 
a seed to generate a random number, where only the seed is truly random. By default, 
MbedTLS reseeds its DRBG after every 10’000 calls. To measure the TRNG from the 
nRF52840, we are forcing MbedTLS to reseed its DRBG on each call. Hence, the reseeding 
of the DRBG is included in the time and energy measurements. 
 
Fig. 2 shows the measurement setup. The nRF52840 DK is supplied with 3.3 V by the 
Keysight N6705B power analyser on channel 1. Channel 2 measures the GPIO that 
indicates the execution time, and channel 3 supplies the IDQ6MC1 with 2.8 V. The overall 
energy consumption is calculated by adding the energy supplied by channels 1 and 3. 
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Fig. 2: Measurement setup of the node for acquiring the execution time and energy consumption during the random number 

generation 

 
Tab. 1 shows the execution time and energy consumption of the complete node for 32, 256 
and 1024 bytes. The values in the table show the median of a sample rate n=100. The 
column “MbedTLS” shows the absolute values of the reference implementation and the 
“IDQ” column shows the absolute values of the MCU and the IDQ6MC1. Both 
implementations scale linearly, but execution time and energy consumption increase much 
faster for the IDQ6MC1. This has mainly two reasons. First, the IDQ6MC1 is externally 
connected via I2C, and with a maximum packet size of 16 bytes, for a 1024 bytes-size 
random number, 64 read cycles have to be executed, which contributes in large part to the 
execution time and energy consumption. Second, although MbedTLS is forced to reseed its 
DRBG, the seed is always 32 bytes long whether the requested random number is 32, 256 
or 1024 bytes long. This seed length is the default configuration for MbedTLS. The maximum 
length of the seed is 64 bytes. Tab. 2 shows the absolute values from the IDQ6MC1 
exclusively (channel 3). 
 
 

 MbedTLS IDQ 

Time [s] Energy [J] Time [s] Energy [J] 

32 bytes 5.73  × 10−3 6.32  × 10−5 6.55  × 10−3 3.82  × 10−4 

256 bytes 6.39  × 10−3 7.08  × 10−5 5.28  × 10−2 3.11  × 10−3 

1024 bytes 8.68  × 10−3 9.73  × 10−5 2.13  × 10−1 1.26  × 10−2 

Tab. 1: Execution time and energy consumption of the node 

 
 Energy [J] 

32 bytes 3.19  × 10−4 

256 bytes 2.58  × 10−3 

1024 bytes 1.04  × 10−2 

Tab. 2: Absolute values of the energy consumption for the IDQ6MC1 without the MCU 
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Fig. 3 and Tab. 3 show the IDQ6MC1 in comparison to the previously evaluated secure 
elements. In this test case, 32 bytes of random data were generated. Instead of absolute 
values, the values in Tab. 3 show by how much the execution time and the energy 
consumption has increased or decreased compared to the software implementation with 
MbedTLS. 100% corresponds to the absolute values of MbedTLS in Tab. 1.  

 

 
Fig. 3: Time and energy measured for getting 32 bytes of random data relative to the reference implementation. (median of 

values, rounded to the nearest percent, n = 100) 

 

 Time [%] Energy [%] 

MbedTLS 100 100 

Optiga Trust M 244 449 

Optiga Trust X 244 463 

MAXQ1061 94 268 

ATECC608B 328 306 

SE050 256 442 

IDQ6MC1 111 230 

Tab. 3: Table of values for Fig. 3 

 

The IDQ6MC1 is the second fastest and has the lowest energy consumption out of all the 
tested devices, with only 111% of the time and 230% of the energy consumption compared 
to the software implementation, only the MAXQ1061 is faster. When larger numbers are 
requested, the IDQ6MC1 does not perform as well because of the maximum packet size of 
16 bytes for the I2C communication. Although in practice, an entropy of 32 or 64 bytes is 
often enough so that this shortcoming can be neglected. In the scope of this work, we only 
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evaluated the performance via I2C to make the measurements comparable to our previous 
work. However, the IDQ6MC1 also offers an SPI interface with a data rate of 24 MHz which 
would speed up the communication considerably but might change the energy consumption 
as well. On top of that, the chip is compliant with NIST SP800-90A, B, and C, and AEC-
Q100 certified and passes several other test suites. In contrast, the SE050 and ATECC608B 
are the only secure elements that are compliant with NIST800-90A/B. Therefore, the use of 
this quantum random number generator is more than justified in any application where a 
strong entropy source is needed.  
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