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ABSTRACT One unsolved sub-task of document analysis is mathematical formula detection (MFD).
Research by ourselves and others has shown that existing MFD datasets with inline and display formula
labels are small and have insufficient labeling quality. There is therefore an urgent need for datasets with
better quality labeling for future research in the MFD field, as they have a high impact on the performance of
the models trained on them. We present an advanced labeling pipeline and a new dataset called FormulaNet
in this paper. At over 45k pages, we believe that FormulaNet is the largest MFD dataset with inline formula
labels. Our experiments demonstrate substantially improved labeling quality for inline and display formulae
detection over existing datasets. Additionally, we provide a math formula detection baseline for FormulaNet
with an mAP of 0.754. Our dataset is intended to help address theMFD task and may enable the development
of new applications, such as making mathematical formulae accessible in PDFs for visually impaired screen
reader users.

INDEX TERMS Automatic annotation, dataset, document analysis, deep learning, mathematical formula
detection, page object detection.

I. INTRODUCTION
The 2008 United Nations Convention on the Rights of Per-
sons with Disabilities [1] and the 2019 European Accessi-
bility Act [2] require that everyday products and services
be usable for people with disabilities. Nevertheless, many
technologies remain inaccessible; PDFs are one such tech-
nology that frequently present a barrier for readers with visual
impairments. This is especially true for scientific PDFs. For
example, mathematical formulae in PDFs are usually not
tagged with alternative text, making it impossible for screen
reader software to read them out in a comprehensible way.
Research has shown that most authors of scientific documents
are unfamiliar with the concept of PDF accessibility, or lack
the tools to support it [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar .

Document analysis offers high potential for new appli-
cations, including applications for people with disabilities.
One such application is the automated addition of accessi-
bility tags to a PDF. Such accessibility tags allow a visually
impaired person to read a PDFwith a screen reader. Currently,
tags must be added manually, which requires a great deal of
time, expert knowledge, and awareness [3].

With effective document analysis, the tagging process
could be automated or semi-automated, thus reducing the
required time and expert knowledge necessary. This could
help to increase the overall availability of tagged PDFs and
as a result, give visually impaired people more complete
access to information. However, the challenges of automated
document analysis have not yet been solved. Searching for
simple text in documents is currently possible [4]; however,
the detection of more complex structures within a text, such
as tables, graphs, or formulae remains problematic.
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New data-driven approaches have enabled significant
advancements in the document analysis field [5]. Most data-
driven document analysis solutions work with images of
document pages. This has the advantage that the approach can
be applied regardless of the document format and version.

The first step planned for our document analysis pipeline
is page object detection (POD). It aims to locate logi-
cal objects in document pages with a high semantic level,
e.g., paragraphs, footnotes, tables, figures, or mathematical
formulae. In the next step, these objects will be processed by
formula recognition, figure classification, text analysis, and
other means.

The POD task is often divided into subtasks of locating a
single logical object at a time. Despite the progress of POD
in recent years [4], [6], [7], some objects are still challenging
to identify and need to be addressed further. One of these
open problems is mathematical formula detection (MFD) [8].
MFD is especially important for scientific documents from
STEM fileds (science, technology, engineering, and mathe-
matics), because mathematical formulae are often important
objects for the understanding of STEM articles. Automated
processing of formulae could help to simplify and improve
many tasks, such as searching for mathematical formulae in
documents, extracting mathematical formulae, and making
mathematical formulae accessible.

In recent years, many MFD models have been pro-
posed [4], [6], [7], but one problem that the authors of this
paper have identified is that the MFD datasets they have been
evaluated on have been of limited size and quality.

A selection of the most popular POD datasets is presented
in Table 1. Existing POD datasets [9], [10], [11], [12], [13],
[14], [15] are of limited value for the MFD issues we are
attempted to address because of three reasons. First, most
POD dataset were not intended for the MFD task and hence,
consider no mathematical formulae or only display formu-
lae but not inline formulae. Second, existing datasets with
inline formulae tend to be small for deep learning approaches
with less than 10k pages. Third, the mathematical formulae
labels have insufficient quality or are incorrect. In this, paper,
we propose a new large-scale and high-quality dataset for the
MFD task of scientific PDF documents. It is created from the
LATEXsource [16] of papers from arXiv.org [17].
The main contributions of this paper are as follows: (a) a

novel large-scale, high-quality dataset forMFDwith practical
relevance for document accessibility and, in conjunction with
the provided baselines, scientific use as a benchmark suite;
(b) an advanced fully automated labeling pipeline for con-
structing similar high-quality datasets of POD of nearly any
size.

Due to copyright issues, we can only provide the links
to the papers used and the postprocessing scripts to recon-
struct FormulaNet, but not the images of FormulaNet. The
scripts are publicly available at https://github.com/felix-
schmitt/FormulaNet. Due to the compiling of the LATEXfiles,
the resulting pixel values may differ. We observed that on

TABLE 1. Overview of a selection of the most popular POD datasets.

average 0.1% of the binary pixel values and 10.4% of the
color pixel values variate.

The remainder of this paper is organized as follows:
Chapter II presents related work and existing datasets.
Chapter III presents our definition of inline and display
formulae and introduces our dataset and labeling pipeline.
Chapter IV presents the baseline model and experiments to
demonstrate the improvement in labeling quality. Chapter V
provides concluding remarks.

II. RELATED WORK AND EXISTING DATASETS
POD has been an active research area for several years [4],
[6], [7]. The MFD subtask has been researched since at
least 1968 [18] and efforts in this area have increased in
recent years. Traditional MFD solutions are rule-based. How-
ever, object recognition using deep learning models has
achieved good results and is replacing traditional rule-based
approaches. Modern MFD models use convolutional neural
networks (CNN) and build upon state-of-the-art object detec-
tions models, e.g., Faster-RCNN [19], Mask-RCNN [20], and
FCOS [21]. The major challenge with MFD is the variation
in complexity between small single mathematical elements
and large mathematical formulae. Research [23] has shown
that deformable CNNs [22], with their adaptive geometric
transformation, have the ability to handle large variations
in size. Furthermore, Generalized Focal Loss [24] reduces
the imbalance issue of positive/negative sampling of large
and small objects. As baseline model, we use the 1st place
solution of the in ICDAR 2021 Competition onMathematical
Formula Detection [23] with small modifications. It is built
upon FCOS and uses both modifications.

The competition [4] showed that MFDmodels can achieve
excellent results in terms of F1 scores, but inline formulae
are still challenging for these models and additional work
is needed to address. One reason is that large existing POD
datasets do not include labels for inline formulae (ref. Table 1)
and the ones containing inline formulae are limited in size and
labeling quality. We explain this lack of dataset with inline
formulae by the fact that inline formulae are uncommon and
often not crucial for the understanding of non-STEM docu-
ments. Furthermore, the separation between inline formulae
and text is not clearly defined, as presented in Chapter III-A.
However, STEM documents contain many inline formulae,
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and their correct processing is important for many applica-
tions, such as accessible PDFs.

We are aware of only two publicly available MFD datasets
with inline formulae based on not rearranged articles such
as omitting content and changing layout. One is the Marmot
dataset [9] with 400 pages. Due to its small size, it is not
ideal for deep learning approaches. The largest dataset with
inline formulae is the IBEM dataset [11] with 8,272 pages,
which is 20 times larger than Marmot, but it is still small for
deep learning approaches. In comparison, DeepScores [25],
an object detection dataset for music scores, which is a com-
parable object detection task, contains 300,000 pages. The
IBEM dataset was created for the ICDAR 2021 Competition
on Mathematical Formula Detection [4] to run the latest
performance competition of MFD models. It was created in a
fashion similar to FormulaNet, by detecting specific formula
patterns in the LATEXcode. The patterns detected were then
used to create the ground truth labels.

The large-scale POD datasets are not designed for the
MFD task and hence, contain no inline formulae labels. With
FormulaNet, we narrow the gap between MFD datasets and
large-scale POD datasets.

III. FormulaNet
This section describes the construction details and charac-
teristics of the FormulaNet dataset. FormulaNet uses papers
about High Energy Physics on arXiv.org from the years 2000,
2002, and 2003. We used the High Energy Physics papers for
the FormulaNet dataset not only because such PDFs comprise
many formulae, but also to make it more comparable to the
IBEM dataset, which also uses High Energy Physics papers
from arXiv.org.

A. LABEL DEFINITIONS
There are no widely accepted standard definition for inline
forumlae or display formulae. For the purposes of this
reasearch, we provide working definitions of these terms
based on the rules detected from the Marmot, ICDAR, and
IBEM datasets:

1) INLINE FORMULAE
We define inline formulae as all math-typed elements embed-
ded in a text, except plain numbers.

An inline formula can consist of a single math element
such as γ or a more complex formula consisting of multiple
such elements. A single number is not considered as an inline
formula for two reasons: First, in the existing datasets most
numbers are not labeled as formulae. Second, numbers can
already be processed through standard text optical character
recognition (OCR). However, if a number comprises math
structure elements like super-scripts or fractions, we consider
it an inline formula because it is a mathematical construct,
and text OCR will likely have problems interpreting it cor-
rectly. Mathematical elements within tables are not consid-
ered inline formulae because detecting a table structure is
a challenging task, and detecting formulae within the table

FIGURE 1. Examples of how multicolumn display labels are separated.
Green shows the display formulae and blue the inline formulae.

is a subtask of this task. For the same reason, mathematical
elements in figures are not labeled as inline formulae, because
formulae within figures need to be considered separately,
similar to formulae within tables.

2) DISPLAY FORMULAE
We define display formulae to be all-mathematical elements
isolated from the running text. Multiline display formulae are
separated depending on the formula references.

Formula references are not counted as part of a formula,
because they are document structure elements and not part of
the formula itself. This has the advantage that the bounding
box size does not depend on the existence of a formula ref-
erence. Furthermore, we decided to only split up a multiline
display formula into separate formulae if there is a formula
reference on each line, as shown in Fig. 1. Splitting up a
display formula line-by-line would have the effect of dividing
a single formula into multiple parts, thus making it more
complicated to process.

B. LABELING PROCESS
The labeling pipeline starts from the LATEXsource files.
It involves two labeling steps and one correction step as
shown in Fig. 2. The first step is to modify the LATEXcode to
color each LATEXobject. Depending on the object type, we use
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FIGURE 2. Overview of the labeling pipeline.

one or multiple colors to simplify the later separation. Two
methods were combined to colorize the LATEXcode. The first
method uses regular expression search [26] to find predefined
sequences in the LATEXcode which are typical for a logical
object class. Then, the sequences identified are colored with
the xcolor package [27] and the following command:

\textcolor{l_color}{label}

The second method colors complete LATEXenvironments with
the following LATEXcommand:

\AtBeginEnvironment{l_env}{l_color}

The modified LATEXfile is used to render a PDF of the paper
with the colored logical objects. In the second part, the col-
ored objects of the modified PDF are detected and combined
into one bounding box by heuristic rules. A combination of
two methods is used to enhance the labeling quality. One
method converts the PDF into the ALTO format [28] with
pdfalto [29]. The resulting XML files contain information
about the elements detected and it allows the identification
of all colored elements. Since pdfalto is an OCR engine
mainly for text it does not detect all symbols correctly.
We therefore apply the second method to find the missing
symbols.

For the second step, a PNG image of each page is rendered
using a modified version of pdf2image [30] without anti-
aliasing. This modification allows us to create images with
clear contours which simplifies the contour search (OpenCV
implementation [31]). This enables the detection of all miss-
ing colored pixels such as bars, heads, and other special math
symbols. All BBOXs of the pdfalto and contour search are
then combinedwith heuristic rules. Using only contour search
would make it complicated or even impossible to get the
correct combination of contours to a BBOX.

The last step is the correction step. It detects labeling
errors, and depending on the errors detected, deletes entire
pages or even the whole document. The rules applied are
based on our observations during developing the pipeline,
e.g.:
• These rules indicate an error in the coloring step:

– If the paper has 3 or fewer pages, the document is
discarded.

– If the paper has no inline or display formulae, the
document is discarded.

– If there exist black pixels in a 30-pixel border of the
document, the document is discarded.

• These rules indicate and error in the extracting BBOX
step:
– If there are more than 3 small display formulae, the

page is discarded.
– If there are not enough black pixels in an image, the

page is discarded.
– If the sum of all label areas is less than 10% of the

page, the page is discarded.
After the correction step, a txt-file of each page is created

with the detected BBOXs and a corresponding JPG image of
the page with a resolution of 1447 × 2048 is saved. If the
ratio of the document does not match the image ratio, a white
border is added.

C. FormulaNet CHARACTERISTIC
FormulaNet consists of 46,672 pages with 175,685 display
labels and 825,838 inline labels. Besides formula labels, For-
mulaNet contains 11 other labels (display reference, display
both, header, table, figure, paragraph, caption, footnote, foot-
note reference, list, bibliography). We have randomly split
the dataset into training (95% of the pages) and test (5% of
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TABLE 2. Distribution of the labels of the FormulaNet dataset.

the pages) sets. The distribution of the labels can be found in
Table 2.

IV. COMPARISON WITH OTHER MFD DATASETS
To present the advantages of the proposed dataset, we used the
currently best available FCOS model, I.e. [21] with selected
modifications from Zhong [23]. We identified two main
benefits of this model: First, the FCOS model is an object
detection model without anchor boxes. The main advantage
of an anchor-free object detection model is that it avoids the
complicated calculations related to anchor boxes and has no
anchor box hyper-parameters. Second, it uses the General-
ized Focal Loss [24]. This allows the model to handle the
large size differences between inline formulae and display
formulae. Furthermore, these modifications have shown to
be successful in competition [4]. The model is built upon
Zhong’s implementation [32], which uses the MMDetection
toolbox [33]. Since we trained the models with one NVIDIA
Tesla-V100, we used the ResNetSt-50 model and not the sug-
gested ResNetSt-101. We trained the model with the training
datapoints of the FormulaNet dataset and, for comparison,
with the Tr00, Tr01, Tr10, Va00, Va01, Ts00, and Ts01
datapoints of the IBEM dataset. As we used one GPU for
training, we increased the batch size from 3 to 5, decreased
the learning rate from 10−3 to 10−4, and trained it for
24 epochs. The model config files are publicly available on
https://github.com/felix-schmitt/FormulaNet and the results
can be reproduced by using the framework from Zhong [32].

A. EXPERIMENTS
We demonstrate the high quality of our labels and the result-
ing advantage for the model training with three experiments.
The first experiment, which we call ‘‘Labeling Quality’’,
investigates the quality of the labels. The second experiment
is named ‘‘Dataset Comparison’’; it analyses the prediction
errors on existing datasets of the model trained with Formu-
laNet. The third experiment, ‘‘Out-of-Sample’’, investigates
the generalization capability of models trained with Formu-
laNet. All results of the experiments should be interpreted

FIGURE 3. Example image from Marmot dataset. Red shows the GT of
Marmot and blue the predicted bounding box. Due to our definition of
display formulae, this was counted as correct.

with some caution, as only a randomized sample of the test
PDFs was examined, and the evaluation was carried out
manually.

Contrary to our definition of display formulae, the Marmot
dataset includes the reference number to the display formula
bounding box as shown in Fig. 3. Through the different
display formula definition, we did not count this as an error
in the experiment ‘‘Labeling Quality’’ and we did not count it
as an error if the model predicted the display formula without
the reference number in the experiment ‘‘Dataset Compari-
son’’. Detailed experiment results are publicly available on
https://github.com/felix-schmitt/FormulaNet/.

1) LABELING QUALITY
To investigate the labeling quality of the different datasets,
we checked 100 randomly sampled pages of each dataset
by hand. We counted the correct labels (CL), wrong labels
(WL), wrong dimensions (WD), and missed labels (ML).
CL BBOXs cover all pixels from the desired formula and
no pixels from non-formula elements, while WD BBOXs
contain pixels from non-formula elements or cover only parts
of the desired formula. WL BBOXs cover no pixels from the
corresponding formula or overlap with another BBOX. MLs
are formulae that failed to be labeled as such. To make the
results comparable, we put them in relation to the correct
number of ground truth (CGT) labels, which is the sum of CL,
WD, and ML. The pages without any labeling error (PWE)
are the percentage of pages without anyWL, WD, and ML of
inline or display labels. This corresponds to the approximate
amount of work required to clean up all errors manually. The
results are shown in Table 3. The results for inline labels show
that IBEM and FormulaNet have 7 times fewer labeling errors
than Marmot, and furthermore, FormulaNet has 41% fewer
labeling errors than IBEM. Marmot has the lowest ratio of
WL, but the highest ratio of ML. The analysis of the errors
revealed that the inline labels of Marmot are very accurate,
but are missing many inline formulae compared to the other
two datasets. Compared to IBEM, FormulaNet decreases the
ratios of all three error types (WL, WD, ML) by 30-80%.
One reason is FormularNet’s consistent definition of inline
formulae, in comparison with IBEM’s inconsistent labeling
of formulae in figures as inline formulae, as shown in Fig. 4.

The results for display formulae shows that the labeling
errors of FormulaNet are 5–8 times less frequent than those
of IBEM and Marmot. The lower labeling quality of IBEM
and Marmot is primarily caused by not properly splitting and
merging the display formulae as shown in Fig. 5.

Additionally, the PWE of FormulaNet shows that fewer
than 16% of the pages have any labeling error, which is 3 and
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TABLE 3. Results of ‘‘Labeling Quality’’ with the three datasets IBEM, Marmot, and FormulaNet. The table shows the ratios of correct labeled labels (CL)
over the correct number of GT labels (CGT), wrong labels (WL) over CGT, wrong dimension of the BBOX (WD) over CGT, and missed labels (ML) over CGT
for the two label types Inline and Display. Further, it shows the percentage of pages without a labeling error (PWE).

TABLE 4. Results of ‘‘Dataset Comparison’’ experiment with the datasets IBEM Ts10, IBEM Ts11, Marmot, and FormulaNet (test). The table shows the
recall, precision for an IoU threshold of 0.5 and an NMS value of 0.4. The non-predicted GT BBOXs (NPs) and the wrongly predicted BBOXs (WPs) are
manually checked if an NP should be not a GT (NGT) and if a WP should be a GT (SGT).

FIGURE 4. Example page from IBEM Ts11. Red shows the GT inline labels,
that are not inline labels with our inline definition.

6 times less than IEBM and Marmot, respectively. This also
clearly indicates the better labeling quality of FormulaNet
compared to IBEM and Marmot.

2) DATASET COMPARISON
The ‘‘Dataset Comparison’’ experiment investigates whether
a model benefits from the high labeling quality of the Formu-
laNet dataset, and whether a model trained with FormulaNet
can detect errors in existing datasets.

For the experiment, the model was trained with the For-
mulaNet dataset. We used the trained model to test the pre-
dictions on the IBEM Ts10 and IBEM Ts11 and Marmot

FIGURE 5. Examples from IBEM Ts11 of split and merge errors. Red shows
the GT of IBEM and blue shows possible BBOX with our display definition.

datasets, and randomly selected 50 pages from each dataset.
We used an Intersection of Union (IoU) threshold of 0.5 and
an Non-maximum Suppression (NMS) value of 0.4 for the
evaluation. Any non-predicted GT BBOXs (NPs) (with IoU
smaller than 0.5 or no overlap) were manually checked to
determine whether they are a correct GT or should not be
a GT (NGT). Moreover, any incorrectly predicted BBOXs
(WP) are manually checked for whether they should be a GT
(SGT). For comparison, we have added the FormulaNet test
set results. The results are shown in Table 4.

The high recall and precision values of the two IBEM test
datasets indicate a similar labeling strategy of IBEM and
FormulaNet. The model trained on the FormulaNet training
set reached a combined F1 score (inline formulae and display
formulae) of 94.49% for the 50 pages of IBEM Ts10, 93.97%
for IBEM Ts11, and 94.26% for IBEM Ts10 + IBEM Ts11.
Since the challenge [4] used an IoU threshold of 0.7, the
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TABLE 5. Results of the ‘‘Out-of-Sample’’ experiment with 50 random pages of 1000 arXiv 2021 papers. The table shows the resulting recall, precision,
WL over CGT, and WD over CGT for the two label types Inline Formulae and Display Formulae.

TABLE 6. Results of the two baseline models (FCOS-50 and FCOS-101). The COCO metric is used for the evaluation.

values are not fully comparable. With an IoU threshold of
0.7 and all pages of Ts10 and Ts11, the model reaches an F1
score of 84.58%, which is only 2% lower than the results in
the challenge [4] without using the training data.

The lower precision and recall values on IBEM Ts11 for
display formulae are a result of the small number of pages,
along with an excessive number of split and merge errors of
display formulae (shown in Fig. 5). Additionally, the high
SGT and NGT ratios indicate that many of these errors are
errors in the ground truth of IBEM Ts11. These results verify
that the model trained with FormulaNet can detect labeling
errors in the IBEM dataset.

The recall and precision values for our model tested with
the Marmot test dataset are lower compared to the results
on the two IBEM datasets. The corresponding accuracy of
88.02% for inline formulae and 76.51% for display formulae
(86.81% combined) is slightly lower than the best models
trained onMarmot [34]. However, the lowNGT ratio and high
SGT ratio for inline formulae of the Marmot dataset show
that the Marmot inline labels are accurate, but not all inline
formulae are in the GT, as the ‘‘Labeling Quality’’ experiment
showed as well. The high NGT ratio of display formulas is
primarily due to split and merge errors.

The precision and recall values with the FormulaNet test
set show that the model accurately predicts inline and display
formulae. The four display formulae indicators (SGT/WP,
SGT/CGT, NGT/NP, and NGT/GT) are rather low with 0.
We explain these zero values due to the small page set of
50 pages and hence few display formulae. However, the zero
values indicate that the are only few labeling errors in the
dataset and the model has learned very accurately to predict
display formulae.

3) OUT-OF-SAMPLE
For the ‘‘Out-of-Sample’’ experiment, we randomly selected
50 pages from over 1000 arXiv papers from all fields from
2021. We trained our model once with the IBEM dataset
and once with the FormulaNet dataset. The trained models
predicted the labels of the 50 pages. Since there are no anno-
tations for these pages, we manually checked each BBOX to

see if it was correct, incorrect, and if BBOXs were missing
from the page. The definitions of CL, WD, and WL are the
same as for the experiment ‘‘Labeling Quality’’. The recall is
calculated as the ratio of CL over CGT and the precision as
the ratio of CL over the sum of CL, WL, andWD. The results
are shown in Table 5.
Even on papers from other fields, the model makes bet-

ter prediction if it is trained with the FormulaNet dataset
compared to when it is trained on the IBEM dataset. The
model trained with FormulaNet reaches an 11.72% higher
recall and a 24.02% better precision for inline labels, and a
12.16% higher recall and a 9.87% better precision for display
formulae.

As expected, the performance of both models is substan-
tially lower compared to the performance in the ‘‘Dataset
Comparison’’ experiment with the IBEM dataset. There are
two reasons for the lower performance. First, we used our
CL definition and not an IoU of 0.5 because of the man-
ual evaluation of the results. Second, the papers in this test
are not from the same research field as the papers during
training (IBEM uses papers from the same research field as
FormulaNet).

B. BASELINE RESULTS ON FormulaNet DATASET
For a baseline performance on FormulaNet, we present here
the results of two of the models trained with the FormulaNet
dataset. The smaller model (FCOS-50) uses the ResNetSt-
50 as backbone, as used for the experiments, and the larger
model (FCOS-101) is based on the ResNetSt-101 backbone.
The evaluation was conducted on the FormulaNet test set
with the COCO metric [35]. The models are trained on the
training set of the FormulaNet dataset and evaluated on the
test set of the FormulaNet dataset after 24 epochs. Table 6
presents the results of 5 runs of the two baseline models.
The results show that the larger backbone ResNetSt-101 does
not significantly improve the model performance and the
dataset is challenging for MFD models. The baseline model
configs are publicly available on https://github.com/felix-
schmitt/FormulaNet and can be reproduced using the frame-
work of [32].
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V. CONCLUSION
In this paper, we presented the FormulaNet dataset, a new
dataset to train and benchmark MFD. FormulaNet is the
largest dataset comprising labeled display and inline formu-
lae and achieves an unprecedented labeling quality for this
problem. FormulaNet was created by an automated labeling
pipeline which will make it possible to create large high-
quality datasets for future MFD research and benchmarking.
Due to our automated labeling process and our proposed
definition of inline and display formulae, the labels are very
consistent compared with existing datasets. In addition to the
FormulaNet dataset, we provide a strong baseline with one of
the current best MFD models.

Through the design of the labeling pipeline, the dataset is
limited to LATEXpapers. Furthermore, FormulaNet is based
only on High Energy Physics papers from arXiv.org. How-
ever, the ‘‘Out-of-Sample’’ experiment showed that the
dataset still generalizes well to out-of-sample datapoints.

Given the promising results of our experiments, we are
optimistic that FormulaNet can serve as a new Benchmark
dataset for MFD to help to advance research in this area,
which may finally result in new applications with high impact
regarding accessible scientific PDFs.
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