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Abstract

We develop an estimation procedure that generates con-

sistent estimates of the technology parameters, long-run 

(persistent) and short-run (transient) technical inefficien-

cies and the marginal effects of their determinants for the 

stochastic frontier model developed by Colombi et al. (2014, 

Journal of Productivity Analysis 42, 123) and Kumbhakar et 

al. (2014, Journal of Productivity Analysis 41, 321). Our ap-

proach accounts for three sources of potential endogeneity: 

(i) unobserved heterogeneity; (ii) simultaneity of input use 

with both types of technical efficiency; (iii) potential cor-

relation of the noise term with the regressors. Using this ap-

proach we examine the effect of direct payments and farm 

size on the persistent and transient technical efficiency of 

French crop farms before and after the European Union's 

Common Agricultural Policy decoupling reform of 2003. 

Our results show that subsidy payments per hectare of uti-

lised agricultural land had a significant positive effect on 

persistent technical efficiency and a significant negative 

effect on transient technical efficiency during the period 

before decoupling. For the period after the reform, the ef-

fect of subsidies is found to be significantly negative for 

persistent technical efficiency and insignificant for tran-

sient technical efficiency. The overall effect of subsidies on 

technical efficiency is found to be negative in both periods, 
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1  |   INTRODUCTION

Recent developments in the stochastic frontier (SF) literature have focused on coping with the 
problem of biased estimates of technology parameters and technical efficiency arising from 
various sources of endogeneity, including unobserved firm heterogeneity. Colombi et al. (2014) 
and Kumbhakar et al.  (2014) have developed a framework for estimating a four-component 
panel SF model. This model disentangles firm-specific time-invariant heterogeneity from per-
sistent (time-invariant) and transient (time-varying) technical inefficiency and the stochastic 
noise term (Kumbhakar et al., 2014). These first-generation models assume that the error com-
ponents are uncorrelated among themselves as well as with the regressors.

There have been several studies that applied and extended this framework, including Filippini 
and Greene (2016), Lai and Kumbhakar (2018a) and Badunenko and Kumbhakar (2016). Most 
of these studies have focused on estimating the magnitude of persistent and transient techni-
cal efficiency. Lien et al. (2018) have applied the four-component SF model to estimate both 
persistent and technical efficiency of crop-producing farms in Norway. These authors also 
explained the variation in farm transient technical efficiency. Lai and Kumbhakar (2018b) es-
timate a four-component SF model with heteroscedasticity in both the persistent and transient 
inefficiency components for US power generating plants. However, even though understand-
ing and identifying the factors that make farms persistently deviate from frontier technologies 
is of considerable policy relevance, empirical investigations into the determinants of persistent 
technical efficiency of farms are still lacking.

More importantly, studies estimating SF models with persistent and transient technical 
efficiency have usually failed to account for potential endogeneity that may be present due 
to correlation between the netputs and technical inefficiency.1 The exception is the study by 
Lai and Kumbhakar (2018b), who allow firm effects and persistent inefficiency to be cor-
related with inputs; however, they do not address the endogeneity that may exist due to 
correlation between the covariates and transient technical efficiency. Filippini and 
Greene (2016), Badunenko and Kumbhakar (2017) and Lien et al. (2018) have addressed the 
endogeneity problem due to the correlation between inefficiency components and regres-
sors (input variables) by introducing behavioural assumptions.2 Moreover, although the 

 1Given that input use decisions affect firms' technical efficiency, at least some explanatory variables in the SF model may correlate 
with the technical efficiency components.

 2Filippini and Greene (2016) and Badunenko and Kumbhakar (2017) used a cost function approach, thereby assuming cost-
minimising behaviour. Accordingly, it is not necessary to control for correlation between input use and technical efficiency in this 
framework, because the input variables do not appear in the cost function. The approach used by Lien et al. (2018) addressed 
endogeneity by making the behavioural assumption that farmers maximise returns to the outlay.

albeit substantially lower in the period after decoupling. 

The effect of farm size on technical efficiency is found to 

be significant only for the period prior to the reform: it re-

duced persistent technical inefficiency but increased tran-

sient technical inefficiency during that period.
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endogeneity problem in existing four-component SF models has been addressed in various 
ways, none of the current models consider that the stochastic noise term may be correlated 
with model regressors.

In this paper, we present an extension of the four-component SF model (in terms of its 
estimation) that controls for unobserved firm heterogeneity, potential endogeneity of output 
and input variables and correlation between the stochastic noise term and the covariates. It 
also allows for heteroscedasticity in both the one-sided noise components (i.e., persistent and 
transient technical inefficiencies) and in the stochastic noise term.

To address the endogeneity problem, we propose the use of the instrumental variables 
(IV) method. Consequently, as long as the IVs employed are uncorrelated with the error 
components—which is a basic requirement of the IV method—our approach provides con-
sistent estimates of the technology parameters, both types of technical inefficiency and the 
marginal effects of their determinants.

Our procedure consists of three steps and can be easily implemented using standard 
econometric software. In the first step, we apply a non-linear generalised method of mo-
ments (GMM) estimator to estimate production technology parameters in the presence of 
the three sources of potential endogeneity. In the second step, a random effects model is 
used to distinguish between time-invariant and time-varying components of the composite 
error term. In the third step, a maximum likelihood (ML) SF estimator is applied to identify 
the effects of selected factors on persistent technical efficiency and transient technical effi-
ciency, using the predicted values of the time-invariant and time-varying components from 
the second step, respectively. Having estimated both SF models, we use their estimates to 
derive the marginal effects of the technical efficiency determinants on each of the two com-
ponents of technical efficiency.3

It is worth noting here that a single-step ML method cannot be used when all the error com-
ponents are correlated with the covariates. In addition, the use of a multi-step procedure makes 
the estimation much simpler than a single-step ML method.4

The paper also contributes to the empirical literature examining the impact of public 
policies on farm productivity and efficiency. In particular, using Farm Accountancy Data 
Network (FADN) data for a sample of French crop producers for two periods (1995–2004 and 
2004–2013), we examine the impact of public support on farm technical efficiency under two 
different policy settings: before and after the European Union's Common Agricultural Policy 
decoupling reform of 2003. In addition, we use an SF approach that disentangles the effects 
of public support on two different types of farm efficiency: short-run (transient) and long-run 
(persistent) technical efficiency. Both the signs and the magnitudes of subsidies' effects may 
differ for these two types of farm inefficiency. Considering that a persistent part of technical 
inefficiency captures the systematic failures of farm management from optimal resource use, a 
more thorough examination of the potential effect of policies on this component of technical 
inefficiency is required in our opinion. We also analyse the effect of farm size on both types 
of technical inefficiency that contribute to another important policy aspect: structural adjust-
ment policies.

Finally, previous studies have examined the effect of policies on technical efficiency by 
treating persistent technical efficiency either as part of the stochastic noise term or as firm 
heterogeneity effects (see, e.g., Latruffe et al., 2017; Zhu & Oude Lansink, 2010). This practice 

 3This final step does not involve any model estimation. Rather, it entails computing the marginal effects of the technical 
inefficiency determinants using the data and estimated parameters from the preceding steps.

 4Recent approaches to estimating the four-component SF model with the determinants of technical inefficiency have employed 
computationally intensive estimation procedures (Badunenko & Kumbhakar, 2017; Lai & Kumbhakar, 2018b) that require 
user-written codes. None of the standard econometric software can be used currently to estimate this model in a single step. This 
decelerates the application of the four-component SF model in empirical research.
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may have led to a systematic underestimation of farm technical inefficiency and resulted in 
incomplete or even inconsistent estimates of the policy effect on farm technical efficiency. 
Therefore, the application of our approach should result in more accurate estimates of farm 
technical inefficiency and the effect of direct payments on it.

In summary, the main contributions of our paper are: (i) in our four-component SF 
model, we allow each random component to be correlated with some or all of the covari-
ates; (ii) all random components, except the time-invariant noise component, are allowed 
to be functions of some exogenous or endogenous variables; (iii) the noise term is allowed 
to be correlated with the regressors and its variance is allowed to be a function of netputs 
or other variables; (iv) given that the noise term is heteroscedastic, our model formulation 
identifies the effect of public producer support as well as other factors on farm output vari-
ance or production risk as it is referred to in the Just and Pope model (Just & Pope, 1978); 
(v) since a single-step ML method does not allow to control for endogeneity that may come 
from many sources, we use nonlinear-GMM to estimate the model in several steps; (vi) we 
address empirically an important policy question: whether and how public producer sup-
port and farm size affected persistent and transient inefficiency before and after the EU 
decoupling reform in 2003.

The rest of the paper is structured as follows. Section 2 provides a description of the meth-
odological framework, the empirical model and the estimation strategy. Section 3 presents a 
brief discussion of the potential effects of subsidies on farm productivity and efficiency as well 
as some background information on the CAP reforms. Section 4 presents our data and the 
section 5 provides a discussion of the main estimation results. Conclusions are drawn in the 
section 6.

2  |   M ETHODOLOGY

2.1  |  Modelling unobserved heterogeneity

Recent advances in the SF literature have addressed the problem of obtaining consistent 
estimates of technology and technical inefficiency in the presence of unobserved firm het-
erogeneity. Greene (2005a, 2005b) has extended Aigner et al.’s (1977) SF model to a panel SF 
model with firm-specific time-invariant effects using fixed and random effects model for-
mulations, calling them a true fixed effects (TFE) model and a true random effects (TRE) 
model, respectively. These models include a firm-specific (time-invariant) term capturing 
latent heterogeneity, a stochastic error term and a firm-specific time-varying technical inef-
ficiency term.

The TFE model is an SF production function model with firm-specific effects captured by 
corresponding dummy variables �i:

where yit is the output of firm i in period t, xit is the vector of production inputs and � is the cor-
responding coefficient vector. Further, vit is a stochastic noise term following N

(
0, �2

vit

)
 and uit 

is time-varying technical inefficiency distributed as N+

(
0, �2

uit

)
; vit and uit are distributed inde-

pendently of each other and of xit.
The TRE model is defined as follows:

(1)yit = �i + ��
xit + vit − uit,

(2)yit = �0 + ��
xit + �i + vit − uit,
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where �i are random time-invariant firm effects, independent and identically distributed N
(
0, �2

�

)
 , 

and �0 is a constant. The same assumptions as for the model in Equation (1) are in place for vit and 
uit.

In the presence of significant persistent inefficiencies, both the TFE and TRE models un-
derestimate firm technical inefficiency, because they ignore the time-invariant component of 
technical efficiency. As can be seen from Equations (1) and (2), a persistent component of inef-
ficiency (if any) remains a part of the unobserved firm heterogeneity term in these models. 
Therefore, in addition, the true random effects model can be prone to endogeneity bias if omit-
ted variables capturing firm heterogeneity are correlated with the model's explanatory 
variables.5

To control for correlation between firm-specific effects and explanatory variables, Farsi 
et al. (2005) have proposed augmenting this model by using the auxiliary equation developed 
by Mundlak (1978):

where xi is the vector of the firm means of all time-varying explanatory variables in the 
model and � is the corresponding vector of coefficients. All the other parameters are de-
fined in the same way as in the model in Equation (2). Although this SF model formulation 
controls for firm-specific time-invariant effects, it does not distinguish between firm un-
observed heterogeneity and time-invariant (persistent) technical efficiency. In addition, it 
controls for endogeneity due to the correlation between �i and xit, but it does not control for 
the endogeneity that can arise due to the potential correlation between uit and xit as well as 
vit and xit.

2.1.1  |  Four-component SF model

More recently, Colombi et al. (2014) and Kumbhakar et al. (2014) have provided an extension 
of the TRE SF model, which overcomes the limitations of the earlier approaches by adding a 
persistent technical inefficiency component and separating it from time-invariant firm effects. 
The resulting SF model distinguishes between the following four components: firm-specific 
time-invariant latent heterogeneity (� i), the time-invariant or persistent component of techni-
cal efficiency (�i), the time-varying (transient) component of technical efficiency (uit) and the 
stochastic error term (vit). It is formulated as follows:

As in the previous models, (1) and (2), vit and uit are i.i.d. variables following N
(
0, �2

v

)
 

and N+
(
0, �2

u

)
, respectively; � i is assumed to be i.i.d. N

(
0, �2

�

)
 and �i is i.i.d. N+

(
0, �2

�

)
. Further, 

�i + uit is defined as overall technical inefficiency. In this model formulation, all components 
of the composite error term are assumed to be independently distributed of each other and of 
the regressors. Consequently, the TRE model by Greene in Equation (2) can be considered a 
special case of the four-component model in Equation (4).

Most approaches developed so far to estimate the model in Equation (4) use very com-
plex log-likelihood function formulations (Colombi et al., 2014; Lai and Kumbhakar 2018a), 

 5Endogeneity may arise due to potential simultaneity in input use and technical efficiency. In addition, according to 
Greene (2005a, p. 277), the TRE model may generate inconsistent estimates of the firm effects (�i) for short panels and are subject 
to a small sample bias.

(3)yit = �0 + ��
xit + ��

xi + �i + vit − uit,

(4)yit = �0 + ��
xit + � i + vit − �i − uit.
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limiting their application in empirical investigations. An easy approach for estimating the 
four-component SF model has been proposed by Kumbhakar et al. (2014) and involves three 
steps. To this end, Kumbhakar et al. (2014) suggest rewriting the model in Equation (4) as 
follows:

where.

and

with E
(
�i
)
=

√
2

�
�� and E

(
uit
)
=

√
2

�
�u. This formulation allows to specify g∗

i
 and �it as random 

variables with zero means and constant variances.
In the first step, Kumbhakar et al. (2014) propose applying the random effects estimator. 

This provides estimates of the model parameters and the predicted values of g∗
i
 and �it. In 

the next step, the authors use a standard SF ML estimator to decompose the predicted val-
ues of �it into three components as specified in Equation (8), including the transient techni-
cal inefficiency component (ûit). In the last step, the authors again apply the ML estimator 
to estimate the SF model using predicted values of firm-specific random effects g∗

i
 and 

thereby obtain estimates of the persistent technical inefficiency component (�̂i). Although 
this multi-step estimation procedure provides less efficient estimates due to its limited in-
formation basis than a one-step ML estimator, its easy implementation affords it practical 
appeal.

However, similarly to the other approaches developed to estimate the model in Equation (4) 
(Colombi et al., 2014; Filippini & Greene, 2016; Lai & Kumbhakar, 2018a), the approach by 
Kumbhakar et al. (2014) has another (and more important) disadvantage. Specifically, it can 
provide inconsistent estimates due to potential simultaneity in firms' input decisions and tech-
nical inefficiency. Furthermore, the model in Equation (4) does not account for potential het-
eroscedasticity in any stochastic component.

2.1.2  |  Modelling heteroscedasticity

Badunenko and Kumbhakar (2017) have since proposed an extension of the four-component 
SF model in which all four components of the random error term are heteroscedastic, namely:

(5)yit = �∗

0
+ ��

xit + g∗
i
+ �it,

(6)�∗

0
= �

0
− E

(
�i
)
− E

(
uit
)
,

(7)g∗
i
= � i − �i + E

(
�i
)
,

(8)�it = vit − uit + E
(
uit
)
;

(9a)�i ∼ N+
(
0, �2

�i

)
, where �2

�i
= exp

(
��
z�i

)
;

(9b)� i ∼ N
(
0, �2

� i

)
, where �2

� i
= exp

(
� �z� i

)
;

(9c)uit ∼ N+
(
0, �2

uit

)
, where �2

uit
= exp

(
��
wuit

)
;
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where z and w variables present firm-specific factors explaining variations in time-invariant and 
time-varying components of the composite error term, respectively.

Lai and Kumbhakar (2018b) have proposed estimating the four-component SF model with 
determinants of both persistent and transient technical efficiency using a two-step estimation 
procedure. Their procedure controls for unobserved heterogeneity and potential correlation 
between input variables and persistent technical efficiency, but it does not allow for the cor-
relations either between transient technical inefficiency and inputs, or between the noise term 
and inputs.

2.1.3  |  Controlling for endogeneity

Considering the extension of the four-component SF model by Badunenko and 
Kumbhakar  (2017), both the mean persistent technical inefficiency and the mean transient 
technical inefficiency in Equation (5) become non-linear functions of the z and w variables, 
respectively, namely:

Accordingly, the four-component SF model with heteroscedasticity in both persistent and 
transient technical efficiency can be rewritten as follows:

where g∗
i
= � i − �i + E

(
�i
)
 and �it = vit − uit + E

(
uit
)
.

Note that: (i) both g∗
i
 and �it are zero-mean random variables; and (ii) g∗

i
 is a function of zi 

and �it is a function of wit.

2.2  |  Estimation procedure addressing three sources of endogeneity

2.2.1  |  Step 1: Estimation of IDF parameters using a non-linear GMM

We apply a non-linear GMM estimator to estimate production technology parameters for the 
model in Equation (11). We assume that zi and wit are exogenous and are uncorrelated with vit. 
For this step we write the composite error term of the model as eit = g∗

i
+ �it. In the following, 

we show that although eit depends on zi and wit, it does not correlate with them. We also show 
that neither g∗

i
 nor uit − E

(
uit
)
 correlate with xit.

Our formal argument is based on the standard regression y = ��
x + v. The consistency of 

the ordinary least squares (OLS) requires E(v| x) = 0 or alternatively E(v) = 0 and E
(
x�v

)
= 0.

(9d)vit ∼ N
(
0, �2

vit

)
, where �2

vit
= exp

(
��wvit

)
,

(10a)E
(
�i
)
=

√
2

�
exp

(
1

2
��
zi

)
,

(10b)E
(
uit
)
=

√
2

�
exp

(
1

2
��
wit

)
.

(11)yit = �0 −

√
2

�
exp

(
1

2
��
zi

)
−

√
2

�
exp

(
1

2
��
wit

)
+ ��xit + g∗

i
+ �it,
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To avoid notational clutter, we drop the subscripts and rewrite Equation  (11) as 
y = g1(z) + g2(w) + f (x) + e, where g1(z) = −

√
2

�
exp

(
1

2
��
z

)
, g2(w) = −

√
2

�
exp

(
1

2
��
w

)
 and 

f (x) = ��
x. Note that e = � −

(
� − g1(z)

)
+ v −

(
u − g2(w)

)
 and has a zero mean.

First, we consider whether � −
(
� − g1(z)

)
 (which has a zero mean) is correlated with x or not. 

For this we need to show that E
(
x�
(
� − � + g1(z)

))
= 0. Using the law of iterative expectation, 

we show that E
(
x�
(
� − � + g1(z)

))
= Ex

[
Ezx

�
(
� − � + g1(z)

)]|||x = Ex

[
x�Ez

(
� − � + g1(z)

)]
|x = 0 

because Ez

(
� − � + g1(z)

)
= 0. Using a similar argument, it can be shown that � − � + g1(z) is 

also uncorrelated with w.
Following the same procedure, we can also show that u − g2(w) is uncorrelated with x and z. Finally, 

we need to check whether v is uncorrelated with x, w and z. For this E
(
x�v

)
= Exx

�Ev(v|x ) ≠ 0, unless 
E(v|x ) = 0, which is not true if x is endogenous. Similarly, E

(
z�v

)
= Ezz

�Ev(v|z ) = 0 because z 
is exogenous. Furthermore, E

(
w�v

)
= 0 because w is exogenous. Thus, both � − � + g1(z) and 

u − g2(w) are uncorrelated with the regressors in Equation (11).
The only remaining issue is that E(v|x ) ≠ 0 and, therefore, we need IVs for x when estimating 

the model in Equation (11). Note that the IVs should also be uncorrelated with � and u. Using a 
non-linear GMM estimator, we can estimate this model by employing IVs for x (Chausse, 2018).6

Comment 1: Note that Step 1 works without distributional assumptions for any of the 
random components. In such a case we can assume that E

(
�i
)
= h1

(
z�i

)
 and E(uit) = h2(wuit

) , 
and then assume h1( ⋅ ) and h2( ⋅ ) to have a parametric functional form (e.g., exponential) so 
that E

(
�i
)
 and E(uit) are non-negative. The resulting model will be almost identical to that 

in Equation  (11). Based on this logic we can argue that a GMM estimator of the model in 
Equation (11) is not dependent on distributional assumptions.

Comment 2: Note that our approach allows xit to correlate with all four components of the 
error term in the model presented in Equations (4) and (5) and not just with random effects 
� i and persistent technical inefficiency �i, as assumed in some previous studies (e.g., Lai and 
Kumbhakar, 2018b). Further, the error term in Equation (11) is heteroscedastic.

Returning to the original notations, the non-linear GMM will give consistent estimates of 
�, � and �.

2.2.2  |  Step 2: Estimation of a random effects model

In the second step, we use the residuals from Equation (11) derived using the GMM estimates 
of �, � and �. Barring the difference between the true and estimated parameters (as is standard 
in multi-step procedures), these residuals can be written as r̂it = g∗

i
+ �it. This equation can be 

estimated as a random effects model, which will give the predicted values of g∗
i
 and �it. Note 

that these are zero-mean random variables and there are no regressors here.

2.2.3  |  Step 3a: SF model of persistent technical efficiency and its 
determinants

The predicted values of g∗
i
 from step 2 can be used to estimate an SF model assuming 

�i ∼ N+

(
0, �2

�i

)
, �2

�
i

= exp
(
��
z�

i

)
 and � i ∼ N

(
0, �2

�

)
, with �2

�
 being a constant. In particular, we can 

 6If x, w and z are all endogenous, then the vector of the IVs M  should be such that E
(
M �e

)
= 0.
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rewrite g∗
i
= � i − �i + E

(
�i
)
 as r1i =g∗

i
− E

(
�i
)
= � i − �i, which is a cross-sectional SF model with 

heteroscedasticity. To estimate this SF model, we use estimates of E
(
�i
)
 obtained in step 1 and predic-

tions of g∗
i
 from step 2. This will give estimates of �i and the marginal effects of its determinants 

(
z�i

)
.

2.2.4  |  Step 3b: SF model of transient technical efficiency and its 
determinants

Given that �it = vit − uit + E
(
uit
)
 and E

(
uit
)
 is estimated in the first step, we can rewrite the re-

siduals from the random effects model (from step 2) as r2it = �it − E
(
uit
)
= vit − uit. We can in-

troduce the following distributional assumptions—uit ∼ N+

(
0, �2

uit

)
, where �2

uit
= exp

(
��
wuit

)
 and 

vit ∼ N
(
0, �2

vit

)
, where �2

vit
= exp

(
��wvit

)
—to estimate this model (r2it = vit − uit) as an SF model 

with heteroscedasticity, which will give estimates of uit and the marginal effects of its determi-
nants (wuit

). Alternatively, it is possible to use an SF model on �it = vit − uit + E
(
uit
)
, where E

(
uit
)
 

is given in Equation (10b).

2.3  |  Input distance function model with four random components and 
heteroscedasticity

For our empirical application, we specify production technology using a translog input dis-
tance function (IDF), namely:

where i, with i = 1, 2, …, N, refers to the ith producer and t, with t = 1, 2, …, T, denotes the time 
period. Further, y is a [M × 1] vector of outputs, x is a [K × 1] vector of inputs, and �, �, � and � 
are vectors of the technology parameters to be estimated.

The input distance function is homogeneous of degree 1 in inputs. This requires:

Symmetry restrictions imply:

Homogeneity is imposed by normalising all the inputs by one input, here input x1:

(12)
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(14)�mn = �nm and �kl = � lk.

(15)
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where x∗

kit
=

xkit

x1it
.

After introducing a statistical error term, vit, farm latent heterogeneity, � i, replacing lnDIit 
with the inefficiency terms �i and uit (lnDIit = − �i − uit ) and accounting for a non-linear effect 
of factor variables on two technical efficiency components, analogous to the SF model in the 
production function formulation in Equation (11), an SF multiple-output input distance func-
tion takes the following form:

where g∗
i
= � i + �i − E

(
�i
)
 and �it = vit + uit − E

(
uit
)
, that is, analogous to the production func-

tion formulation in Equation (11), the model is rewritten so that the composite error term has a 
zero mean.

Note that in the absence of separate variables explaining persistent inefficiency, we can use 
the means of time-varying factor variables wit by firm to explain the variation in the persistent 
component of technical efficiency, that is, we set zi = wi.

7 In our empirical application, wit con-
sists of two variables: farm total subsidies measured per hectare of agricultural land and farm 
size. Accordingly, wi is a vector of the farm's average level of subsidisation (per hectare of ag-
ricultural land) and the farm's average size in the corresponding period.

We use a non-linear system GMM estimator (Chausse, 2018) to estimate the IDF speci-
fied in Equation (16).8 The system GMM estimates the model in both levels and differences 
which helps to address the problem of weak instruments in the standard GMM approach 
(Blundell & Bond, 1998; Mairesse & Hall, 1996). Accordingly, two types of instruments are 
employed: the lagged levels for equations in differences and the lagged differences for the 
equations in levels (Arellano & Bover, 1995). Estimating the model in differences similarly 
to the difference GMM estimator controls for firm-specific time-invariant effects. 
Furthermore, other instrumental variables (IV) can be employed analogous to other IV 
estimators.

As described in Section 2.2, we use the residuals from the IDF model in Equation (16) to 
estimate a random effects model (step 2) that generates predicted values of g∗

i
 and �it. 

Subsequently, we use the predicted values of g∗
i
 and �it to estimate two SF models as de-

scribed in steps 3a and 3b of our estimation procedure, respectively. Using the correspond-
ing SF model's estimates, we then derive the marginal effects of subsidies and farm size on 
the conditional means of both components of technical efficiency for each study period 
based on Jondrow et al.’s  (1982) inefficiency estimator, as proposed by Kumbhakar and 
Sun (2013).9

Having derived the marginal effects of the wi and wit variables, the marginal effect of each 
factor variable on the overall technical inefficiency can be measured as the sum of the marginal 
effects of the respective variable on persistent and transient technical efficiency. Accordingly, 

(16)
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 7This procedure resembles the approach used by Mundlak (1978) for controlling for time-invariant firm specifics by utilising firm 
means of model explanatory variables.

 8Considering that both terms—the mean persistent technical inefficiency and the mean transient technical inefficiency—are 
non-linear functions of their determinants in Equation (16), we have to employ a non-linear estimator.

 9Most empirical studies in recent years have used the estimator developed by Wang (2002) to derive the marginal effects of factors 
explaining heteroscedasticity in the one-sided error term component on technical inefficiency. Wang et al.’s approach, however, 
does not account for heteroscedasticity in the symmetric error component, that is, it provides marginal effects based on the 
unconditional mean of inefficiency. Kumbhakar and Sun (2013) present an approach that allows computing expected marginal 
effects conditional on the composed error term as defined by Jondrow et al. (1982).
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the selected factor variables affect farm overall technical inefficiency through three channels: 
the variance of persistent inefficiency 

(
�2
�i

)
, the variance of transient inefficiency 

(
�2
uit

)
 and the 

variance of the stochastic noise component 
(
�2
vit

)
.

3  |   EM PIRICA L BACKGROU N D

The 1992 CAP reform scaled down price support, initially for cereals, and replaced it with 
direct payments coupled to current-period crop areas and animal numbers. The 2003 CAP 
reform decoupled direct payments from production and made them conditional on compliance 
with environmental and other requirements (European Commission, 2013). It was anticipated 
that both reforms reduced the distorting effects of subsidies and positively influenced the tech-
nical efficiency of farms in the EU.

Conceptually, subsidies can influence farm productivity through several channels. Subsidies 
may negatively influence performance by distorting output and input prices, causing substan-
tial allocative and technical inefficiencies. Subsidies may also provide soft budget constraints 
(Kornai, 1986), where chronically loss-making farms may stay in business due to weaker fi-
nancial pressure in the presence of regular financial subsidy income. On the other hand, by 
relaxing market imperfections such as farm credit constraints, subsidies may positively influ-
ence farms' access to innovative technologies and therefore their economic performance (e.g., 
Bezlepkina et al., 2005).

Subsidies may also affect farms' decisions and productivity through their effect on risk 
and farmers' risk aversion (Chavas, 2004; Sandmo, 1971). Both the 1992 and 2003 CAP re-
forms increased the exposure of crop farms in the EU to market risk. A greater exposure 
to market risk may have induced farms to move the output supply from the optimum to a 
point where the expected price of the output exceeds marginal costs under price uncertainty 
and risk aversion. At the same time, by increasing farmers' income by a constant amount, 
direct payments may have dampened the effect of market risk on farmers' production deci-
sions, considering that the relative risk premium declines with increased initial wealth for a 
(downside) risk-averse farmer.

In addition, subsidies can influence farm productivity when they are conditioned on envi-
ronmental cross-compliance or are subject to other regulations, forcing farms to deviate from 
optimal resource allocation when evaluated using market prices and without considering ex-
ternalities from agricultural production.

The overall effect of subsidies on farm economic performance depends on the presence and 
the magnitude of these effects. In addition, subsidies may have different effects on short- and 
long-run farm performance.

In a recent study, Latruffe et al. (2017) provide a review of theoretical and empirical analy-
ses examining the effect of subsidies on technical efficiency. Latruffe et al. conclude that the 
sign and the statistical significance of subsidies' effect on technical efficiency appears to be 
an empirical issue. Indeed, in their study of 10 EU member states, they find that the effect of 
subsidies on technical efficiency can be either significantly positive, significantly negative or 
statistically insignificant. Nevertheless, considering that public support may have different 
effects on long- and short-term producer decisions, one can also expect that disentangling the 
effects of subsidies on persistent and transient technical efficiencies may generate important 
policy-relevant findings regarding the effects of public support on farm technical efficiency.

An important objective of the 1992 and 2003 CAP reforms was to induce structural change 
in the sector. Large-scale operations are usually expected to benefit from economies of scale, 
to show higher managerial capacities and to have higher bargaining power and therefore 
be more efficient than small farms in general. However, empirical evidence suggests that 
large farms tend to increase productivity by pursuing technical change, that is, by changing 
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production technology, rather than exploiting returns to scale (Sheng et al., 2014). If shifts in 
the production–possibility frontier due to the adoption of more productive machinery are not 
accompanied by the release of surplus labour or lead to capital overinvestment, investment 
in new technologies may be associated with lower productive efficiencies. On the other hand, 
small farms, which are mostly family farms, may be better at using their labour input more 
efficiently because of greater incentives, lower farm internal transaction costs and lower unit-
labour costs than their larger counterparts (Foster & Rosenzweig, 2017). Therefore, the rela-
tionship between farm size and technical efficiency is ambiguous and, similarly to the policy 
effect, subject to the particular empirical setting.

4  |   DATA

Our empirical analysis is based on FADN data10 for a sample of specialised cereals, field crops, 
mixed crops and livestock farms.11 These data cover two periods: before and after the decou-
pling reform, in particular 1995–2004 and 2004–2013, respectively. Given that the FADN farm 
samples were formed using farm typologies based on the standard gross margin (SGM) indica-
tor before 2004 and the standard output (SO) measure thereafter, we estimate the IDF model 
separately for these two periods.

We exclude farms with negative values of input and output variables in both periods. In 
addition, we use only those farms with at least five consecutive annual observations. This pro-
cedure is necessary for estimating our model using a GMM estimator. Given the specific sugar 
market regulations in the EU, farms with more than 10% of their total crop area allocated to 
sugar beet are also excluded from the analysis.12

We specify three types of farm output: cereal output, defined as cereal production in 
tonnes;13 other crop output, measured as the difference between the value of total crop out-
put minus the value of cereal output; and other farm output, calculated as the difference 
between the value of farm total output and the value of total crop output. The vector of in-
puts includes: capital, as represented by capital depreciation; land, expressed in hectares of 
farm utilised agricultural area (UAA); labour, measured as annual work units (AWU); and 
materials, defined as the sum of specific costs in crop and livestock production and total 
farming overheads including contract work. Capital is used to normalise the model's input 
variables.

We employ two variables to explain the variation in farm technical efficiency: total sub-
sidies per hectare of farm UAA and farm economic size. Total subsidies are defined as 
subsidies on current operations linked to production, excluding subsidies on investments. 
The European size unit (ESU) typology is used to proxy farm size. We use annual obser-
vations of these variables to capture heteroscedasticity in the transient technical efficiency 
component and the stochastic noise term. Furthermore, we use the farm means of these 
variables to explain heteroscedasticity in the persistent technical efficiency component in 
each period. All four variables—wsubsidies, wfarm size, wsubsidies and wfarm size—enter the IDF in 

 10Access to the FADN's data was provided by the European Commission's Directorate-General for Agriculture and Rural 
Development (DG AGRI) in the framework of the Organisation for Economic Co-operation and Development (OECD) study 
Evaluating Agricultural Productivity and Sustainability at the Farm Level.

 11The differentiation between these four farm types follows the FADN's farm typology. Mixed crop and livestock farms are less 
specialised in crop production than the three other types covered in the analysis. However, these farms have to generate more than 
one third of the SO (SGM prior to 2004) from crop production to be classified as mixed crop and livestock farms.

 12After applying the selection criteria described above, the sample sizes reduced to 8239 observations for the period 1995–2004 and 
5860 observations for the period 2004–2013.

 13In this case, we exploit the advantage of working with usable natural units for the main output instead of deflated monetary 
units.
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a non-linear form, as specified in Equation (16). In addition, we control for farm location 
in less favoured areas (LFAs) by introducing a corresponding dummy variable in the input 
distance function (IDF).

Monetary variables are deflated using Eurostat agricultural producer price indices for 
France (Eurostat 2016).14 Data for 1995–2004 are deflated to year 2000 price levels, and data 
for 2004–2013 are deflated to year 2010 price levels.

The IVs for the output and input variables are: lagged two and three periods for the 
equations in differences; and up to two periods for the equations in levels when estimating 
the GMM model. This procedure reduces the periods covered in the study by 3 years in each 
period, that is, to the 1998–2004 and 2007–2013 periods. A number of additional variables 
(such as the investment to capital ratio, the investment to land ratio, a credit access dummy 
variable, farmer's age, output price indexes, irrigated land, fallow land share, protein crop 
area share, energy crop area share, rent land share, cereal yield, material use intensity and 
share of rural development subsidies in total subsidies as well as year, region and special-
isation dummies) are used as instruments. Hansen's J-test statistics was used for testing 
over-identifying restrictions. For both periods, it indicates the validity of the employed 
instruments (Table 1).

Summary statistics for the IDF variables and instruments are presented in Tables A1 and 
A2 of the Online Appendix.

5  |   RESU LTS

5.1  |  IDF parameter estimates

Table 1 presents estimates of the IDF parameters for the two study periods: 1998–2004 and 
2007–2013. In both cases, most model parameters are statistically significant. All first-order 
parameter estimates are statistically significant at the 1% significance level and have the ex-
pected signs. A number of second-order parameters are also statistically significant. Moreover, 
the model parameter estimates are consistent with the theoretical assumptions. Specifically, 
the results indicate that the estimated IDFs are non-increasing in outputs and non-decreasing 
in inputs for both periods (when evaluated at the corresponding sample means). The condition 
of quasi-concavity of the input distance functions with respect to inputs is also satisfied at the 
sample averages for each input variable and both periods.

The estimation results suggest that French crop farms are highly specialised in cereals. For 
both periods the shadow share of this output in the total farm output is found to be the high-
est: 0.57 in the first period and 0.54 in the second period, as evaluated at the sample averages. 
The share of the other crop outputs is estimated to be 13.2% and 19.2%, on average, before 
and after decoupling, respectively, while the other output share accounts for about 22% of the 
total farm output in both periods. The shift towards more diversified crop production possibly 
helped French crop farms move closer to optimal scales of production: our model estimates 
show that economies of scale reduced from 1.38 in the first period to 1.24 in the second period, 
as measured at the sample averages.

Materials are estimated to have the largest shadow shares in total input in both periods, but 
slightly higher in the first period (0.47) than in the second (0.45). Labour and capital are found 
to have quite similar shadow shares in the total input in both periods. The shadow share of 

 14The price indices for crop output and agricultural goods output are used to deflate the other crop output and other farm output 
variables, respectively. The price index for machinery and other equipment is used to adjust the capital input to the reference year 
price levels, whereas the price index for goods and services currently consumed in agriculture is employed to deflate materials. 
The purchasing power price index is used to deflate the subsidy variable.
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TA B L E  1   IDF parameter estimatesa

Variable 1998–2004 2007–2013

Cereals −0.412*** −0.439***

Other crops −0.095*** −0.155***

Other farm output −0.220*** −0.213***

Land 0.138*** 0.167***

Labour 0.191*** 0.203***

Materials 0.472*** 0.449***

Cereals2 −0.517*** 0.322

Other crop2 −0.055* 0.039

Other farm output2 −0.064*** 0.027

Land2 −3.709*** −3.524***

Labour2 −0.019 0.010

Materials2 −1.230** −0.894

Time 0.012** −0.012**

Time2 0.003 −0.022***

Cereals × Other crops 0.190*** −0.157*

Cereals × Other farm output −0.099*** −0.122*

Other crops × Other farm output 0.022 −0.035

Land × Labour 0.772** 0.909

Land × Materials 2.306*** 2.424***

Labour × Materials −0.419 −0.837

Cereals × Time 0.055*** −0.038**

Other crops × Time −0.010 0.031***

Other farm output × Time 0.009** −0.012*

Land × Time −0.033* 0.035

Labour × Time 0.041** 0.006

Materials × Time −0.020 −0.064*

Cereals × Land 1.206*** 0.806***

Cereals × Labour −0.900*** 0.015

Cereals × Materials −0.193 −0.744*

Other crops × Land −0.196 0.083

Other crops × Labour 0.123 −0.158

Other crops × Materials 0.127 0.141

Other farm output × Land −0.564*** −0.098

Other farm output × Labour 0.098 −0.339***

Other farm output × Materials 0.442*** 0.551***

Constant −0.009 −0.232

Year 2001b −0.088*** ––

LFA −0.011 −0.002

exp(wsubsidies) 0.429*** −0.094**

exp(wfarm size) 0.365*** 0.003
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land increased from 0.14 in the period before decoupling to 0.17 in the period after the reform. 
Considering the recent empirical evidence on the impact of the 2003 CAP reform on land 
rents—specifically, a significant increase in the decoupled payment capitalisation into land 
values in the EU (Ciaian et al., 2018)—this result suggests that increased land rents may have 
encouraged French crop farms to search for land uses and/or production practices that would 
permit them to increase the marginal productivity of land.

Technical change is found to be highly significant in both periods. However, whereas it 
stayed negative during the entire first period, in the second period it remained negative until 
2009 and changed its sign thereafter. However, no clear indications for biased technical change 
are found for either of the two study periods.

The estimates of the determinants of technical efficiency suggest that both subsidies and 
farm size significantly reduced the mean persistent technical inefficiency in the first study 
period. However, both factors show significant positive associations with the mean persistent 
technical inefficiency in the second study period. The mean transient technical inefficiency is 
found to be significantly and positively associated with both subsidisation intensity and farm 
size in the period prior to the reform, while it declined with higher levels of direct payments 
after decoupling.

5.2  |  Technical inefficiency estimates.

Given that we estimated two separate IDFs for the periods before and after decoupling, we 
cannot draw direct comparisons of technical efficiency estimates between the two periods. 
Nevertheless, we can derive important implications with respect to the effects of public sup-
port and farm size on farm technical efficiency under different policy settings.

Tables 2 and 3 present the estimation results for the SF model of persistent and transient 
technical efficiency, respectively. As can be seen, these estimates are consistent with those ob-
tained for the determinants of technical efficiency in the first step of our estimation procedure 
presented in Table 1. Furthermore, the likelihood ratio test rejected restricted form SF models 
assuming the variance of persistent technical efficiency and the variance of transient technical 
efficiency to be scalars, respectively.

Both direct payments per hectare of UAA and farm size are estimated to significantly re-
duce the variance of persistent technical efficiency in the period 1998 to 2004. However, the 
effect of subsidies on the persistent efficiency variance for the period 2007 to 2013 is found to 
be significantly positive (Table 2). These results suggest that while subsidies reduced the per-
sistent technical inefficiency of the sample farms in the period before decoupling, they were 
positively associated with persistent technical inefficiencies in the period after the reform. The 

Variable 1998–2004 2007–2013

exp(w
subsidies

) −0.408** 0.190***

exp(w
farm size

) −0.328*** −0.010

exp(wsubsidies)/exp(wfarm size) −0.145*** −0.001

exp(w
subsidies

)/exp(w
farm size

) 0.127** 0.004

J-test (degrees of freedom) 86.032 (74) 30.673 (45)

a***, **, * — statistically significant at the level 0.01, 0.05 and 0.1 respectively.
bDummy variable for 2001 was used to account for peculiarities of the 2001 season that could not be explained by the instruments 
used in the model.

Source: Authors' estimates.

TA B L E  1   (Continued)
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estimate of the farm size effect on the variance of persistent technical efficiency is significantly 
negative for the first study period, indicating that larger farms showed lower magnitudes of 
persistent technical inefficiency in this period. The effect of farm size on this component of 
technical efficiency, however, is insignificant for the second study period.

The estimates of the SF model of transient technical efficiency suggest that both subsidies 
and farm size significantly increased the variance of this component of technical efficiency in 
the 1998–2004 period. The corresponding parameter estimates are not significant for the 2007–
2013 period. However, farm size is estimated to reduce the variance of the stochastic noise term 
in the latter period. Given that we have specified the SF model transient technical efficiency 
as being heteroscedastic in both error components, determinants of technical efficiency in-
fluence the mean transient technical inefficiency through both �uit

 and �vit
. Accordingly, to 

evaluate their effects on the mean technical inefficiency, we compute their marginal effects 
using the approach proposed by Kumbhakar and Sun (2013) that applies Jondrow et al.’s (1982) 
estimator and therefore allows deriving marginal effects of determinants on the mean techni-
cal inefficiency conditional on the two-part composed error term.

Table 4 summarises the estimates of the persistent, transient and overall technical efficien-
cies as well as the corresponding marginal effects of the determinants of technical efficiency.

The overall technical efficiency estimates indicate that sample farms, on average, could have 
reduced their costs by 21.5% and 9.9% in the first and second periods, respectively, to produce 
the same volumes of outputs. Both the persistent and the transient components of technical 
efficiency are estimated to be lower for the first period than for the second period. However, 
the lower estimates of overall technical inefficiency for the second period are primarily due 

TA B L E  2   Estimates of SF model of persistent technical inefficiencya

Variable 1998–2004 2007–2013

�0 0.657** −4.281***

�
w
subsidies

−0.624** 1.869***

�
w
farm size

−2.754*** 0.024

�0 −1.789*** −1.511***

Obs. 1097 777

LR-test statistics 394.5 18.3

Source: Authors' estimates.
a***, **, * — statistically significant at the level 0.01, 0.05 and 0.1 respectively.

TA B L E  3   Estimates of SF model of transient technical inefficiencya

Variable 1998–2004 2007–2013

�0 −4.987*** −0.708

�
w
subsidies

2.160*** −2.878

�
w
farm size

0.968*** 0.118

�0 −1.162*** −1.076***

�
w
subsidies

−0.046 −0.022

�
w
farm size

−0.013 −0.057***

Obs. 4936 3525

LR-test statistics 3931.0 31.8

Source: Authors' estimates.
a***, **, * — statistically significant at the level 0.01, 0.05 and 0.1 respectively.
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to quite low estimates of transient technical inefficiency obtained for this period. In addition, 
both components of technical efficiency and, therefore, overall technical efficiency as well, 
demonstrate more stretched distributions for the 1998–2004 sample compared to the sample 
for the more recent period (Figures 1 and 2). These findings suggest that French crop farm 
efficiency has generally improved in the post-reform period.

The marginal effects of both factors on persistent technical inefficiency as well as transient 
technical inefficiency are statistically significant for the period before decoupling and show 
that both subsidies and farm size reduced the former but increased the latter in this period 
(Figure 3). The positive effect of subsidies on persistent technical efficiency may be associated 
with their effect on farm budget constraints: by realising farm budget constraints, subsidies 
may have eased farm access to frontier technologies and thereby have improved their long-
run performance. A significantly negative estimate for the effect of subsidisation intensity on 
transient technical efficiency suggests that prior to the reform, agricultural producer support 
may have provoked farms to overuse inputs. Our estimation results indicate that this producer 
behaviour was also more characteristic for large and medium-sized farms than for small farms. 
Larger operations tend to show higher degrees of specialisation and therefore might have been 
less flexible in adjusting their input use to the production conditions of single periods com-
pared to relatively small operations. This may explain why large operations may be less effi-
cient than smaller entities in the short term.

Our estimates of the marginal effects for the period after the decoupling reform indicate 
that subsidies increased persistent technical inefficiency and reduced transient technical 
inefficiency in this period (Figure 4). An explanation for the negative effect of subsidies on 
farm persistent efficiency in the post-reform period may be related to farms' adoption of 
environmental cross-compliance measures, that is, less intensive production technologies, 
which made them in the narrow sense less productive under the new policy regime.15 
 15An additional explanation for a negative effect of subsidies on farm persistent technical efficiency in the more recent period 
could be associated with an aggregate effect of the decoupled direct payments on agricultural producers' downside risk aversion. 
In particular, this finding suggests that an increased market risk after the decoupling reform had a stronger effect on French crop 
producers' decisions and output supply than a risk-minimising effect of decoupled direct payments as constant income source. 
Given that the farms' output supply contraction may have been more extensive than reductions in their input use, farms' 
adjustments to the new policy setting may have resulted in lower persistent technical efficiencies.

TA B L E  4   Estimates of technical efficiency and marginal effects (ME) of selected factor variables

1998–2004 2007–2013

Mean SD Mean SD

Persistent technical efficiency

Estimate 0.906 0.096 0.925 0.030

ME of subsidy variable 0.030 0.004 −0.110 0.015

ME of farm size variable 0.109 0.056 −0.001 0.0004

Transient technical efficiency

Estimate 0.869 0.089 0.969 0.013

ME of subsidy variable −0.189 0.033 0.075 0.028

ME of farm size variable −0.080 0.015 −0.003 0.0002

Overall technical efficiency

Estimate 0.785 0.092 0.901 0.025

ME of subsidy variable −0.158 0.035 −0.035 0.043

ME of farm size variable 0.027 0.057 −0.004 0.0002

Source: Authors' estimates.
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However, the technologies adopted by farms after the reform appear to be better adjusted 
to natural conditions, which may explain the relatively low technical inefficiency estimates 
for this study period as well as the negative effect of the subsidies variable on transient tech-
nical inefficiency. The estimates of the marginal effects of farm size on both of the 

F I G U R E  1   Persistent (a), transient (b) and overall (c) technical efficiency distributions: 1998–2004 period. 
Source: Authors' estimations.
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F I G U R E  2   Persistent (a), transient (b) and overall (c) technical efficiency distributions: 2007–2013 period. 
Source: Authors' estimations.
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components of technical inefficiency are not statistically significant for the period after 
decoupling.16

Given that the absolute value of the average marginal effect of subsidies on transient tech-
nical efficiency is found to be substantially larger than the corresponding absolute value for 
persistent technical efficiency in the period before the decoupling, the average marginal effect 
of subsidies on overall technical efficiency is negative for this period. For the second period, 
the overall effect of subsidies on technical efficiency is also found to be negative on average, 
but substantially lower in magnitude than for the earlier period: −0.035 (2007–2013) against 
−0.158 (1998–2004).

6  |   CONCLUSIONS

We have elaborated on the stochastic frontier model developed by Colombi et al. (2014) and 
Kumbhakar et al. (2014) and have presented an empirical estimation procedure to obtain con-
sistent estimates of production technology parameters, two types of technical inefficiency 
and the marginal effects of their determinants. Our procedure enables us to control for three 
sources of potential endogeneity: (i) unobserved heterogeneity; (ii) simultaneity of input use 
with both types of technical efficiency; and (iii) potential correlation of the noise term with 
the regressors.

We have employed this approach to examine the effect of direct payments and farm size on 
the persistent and transient technical efficiency of French crop farms in the periods before and 
after the CAP decoupling reform of 2003. Our estimation results indicate that direct payments 
significantly influenced the persistent and transient technical efficiency of French crop farms 
in both periods, before and after the reform. However, whereas the effect of subsidies on farm 

 16Bootstrapping was used to derive the corresponding 95% confidence intervals for the marginal effect estimates (Kumbhakar & 
Sun, 2013).

F I G U R E  3   Marginal effects of the analysed factor variables on persistent technical inefficiency (a and b) and 
transient technical inefficiency (c and d), and corresponding 95% confidence intervals: 1998–2004 period. Scales 
of the plots were adjusted to improve reading of single figures and therefore differ across plots. Source: Authors' 
estimations.
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persistent technical efficiency was positive in the first study period, it was negative in the sec-
ond. The effect of direct payments on transient technical efficiency was significantly negative 
in the period prior to the reform and significantly positive thereafter. The average marginal 
effects of direct payments on the overall technical efficiency of French crop farms were found 
to be negative for both periods, although substantially lower in the period after the decoupling 
reform. Furthermore, we have not found any significant effect of public producer support on 
farm output variance (production risk) for either period. According to our results, farm size 
had a significant effect on farm technical efficiency in the period before decoupling, but did 
not explain the variation in farm performance more recently.

Our results suggest that both subsidies and farm size may have differing effects on short- 
and long-run farm performance. Accordingly, distinguishing between persistent and transient 
technical efficiency when evaluating the impacts of public producer support and other policy 
measures may allow more consistent assessments of their effects on farm economic perfor-
mance as well as facilitate a better understanding of the channels through which policies can 
influence farm productivity.
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