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A B S T R A C T   

Accurate load forecasting is essential for power-sector planning and management. This applies during normal 
situations as well as phase changes such as the Coronavirus (COVID-19) pandemic due to variations in electricity 
consumption that made it difficult for system operators to forecast load accurately. So far, few studies have used 
traffic data to improve load prediction accuracy. This paper aims to investigate the influence of traffic data in 
combination with other commonly used features (historical load, weather, and time) – to better predict short- 
term residential electricity consumption. Based on data from two selected distribution grid areas in 
Switzerland and random forest as a forecasting technique, the findings suggest that the impact of traffic data on 
load forecasts is much smaller than the impact of time variables. However, traffic data could improve load 
forecasting where information on historical load is not available. Another benefit of using traffic data is that it 
might explain the phenomenon of interest better than historical electricity demand. Some of our findings vary 
greatly between the two datasets, indicating the importance of studies based on larger numbers of datasets, 
features, and forecasting approaches.   

1. Introduction 

1.1. Background and progress of the load forecasting study 

Electricity load forecasting plays an essential role in the power sec
tor’s operational planning and load management. With high accuracy of 
load forecasting, electric utilities/system operators can utilize power 
resources more efficiently with optimal cost [1,2]. Load forecasting can 
be classified, based on time horizon, into four different groups: very 
short-term (minute to hour ahead), short-term (hour to week ahead), 
medium-term (week to year ahead), and long-term (more than one year 
ahead). The short-term forecast is more relevant to daily power system 
operation, while the medium- and long-term horizons are necessary for 
system maintenance, fuel purchase planning, and power plant con
struction [2]. 

Aggregated load forecasting has been intensively studied at different 
scales, such as residential [3,4] and commercial [3,5]. Moreover, load 
forecasting can be performed at disaggregated (appliance or individual) 
level to support grid operator’s planning when distributed generation 
increases [6,7]. 

We reviewed 36 papers, which were selected based on (i) specific 

keywords, such as load forecasting, electricity demand forecasting, 
electricity, modeling, feature selection, transportation, and traffic, and 
(ii) the publication year (around the past decade and during COVID-19 
pandemic). The main aim of this review was to identify the most 
frequently used features and prediction methods for load forecasting. 
We realized that features used for electricity demand prediction could be 
categorized into four groups – historical load, weather, time, and others 
– as shown in Fig. 1 (both with and without lag variables). Historical 
load and temperature are the top two most frequently used features. In 
addition, the previous works usually combine several features together 
in different combinations. For instance, Buitrago and Asfour (2017) [1] 
used weather, time and historical load data to forecast short-term 
electricity demand, while Rahman et al. (2018) [3] adopted only 
weather and time to predict electricity consumption for commercial and 
residential buildings. Other feature combinations for load forecasting 
were summarized in an Appendix A. 

Moreover, some of the papers included indirect indicators of energy 
use. For instance, Aman et al. [8] adopted building-specific parameters, 
such as gross area, year of construction, and the academic calendar, to 
predict electricity demand in a campus micro-grid. It was found that 
these parameters could help increase prediction accuracy. Some of the 

* Corresponding author. 
E-mail address: aksornchan.chaianong@zhaw.ch (A. Chaianong).  

Contents lists available at ScienceDirect 

Energy Strategy Reviews 

journal homepage: www.elsevier.com/locate/esr 

https://doi.org/10.1016/j.esr.2022.100895 
Received 11 March 2022; Received in revised form 14 June 2022; Accepted 4 July 2022   

mailto:aksornchan.chaianong@zhaw.ch
www.sciencedirect.com/science/journal/2211467X
https://www.elsevier.com/locate/esr
https://doi.org/10.1016/j.esr.2022.100895
https://doi.org/10.1016/j.esr.2022.100895
https://doi.org/10.1016/j.esr.2022.100895
http://crossmark.crossref.org/dialog/?doi=10.1016/j.esr.2022.100895&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Strategy Reviews 43 (2022) 100895

2

social variables, such as Gross Domestic Product (GDP), industrial pro
duction index, and population, were also included in the forecasting 
model [4]. Cordova et al. (2019) [9] introduced the concept of 
“co-mobility,” which relates people’s mobility/movement and the 
commodities demanded (electricity in this context) to the load fore
casting study. They tested different feature combinations of historical 
load, weather, and traffic count. It was found that using traffic count, as 
a feature, results in better forecasting accuracy of electricity demand. 

Regarding the forecasting method, Hammad et al. (2020) [2] cate
gorized the most frequently used time-series forecasting for electricity 
consumption into three groups – statistical, machine learning (ML), and 
hybrid models. 

Statistical methods include those related to autoregressive and para
metric models (i.e. [10]). ML methods primarily focus on supervised ML 
methods, such as neural network-based (i.e. [3,11]), tree-based (i.e. [8, 
12]), support vector machine (SVM) (i.e. [4,13]). Finally, hybrid models 
are generally developed by combining the advantages of different 
forecasting approaches [2]. Fig. 2 summarized forecasting models used 
in 36 studies. It was found that neural-based, tree-based and 
SVM/SVR-based methods are the top three prediction model categories 
in load forecasting studies. 

1.2. Studies on load forecasting during COVID-19 pandemic 

The COVID-19 pandemic has significantly affected not only the 
health sector but also other fields, such as the economic, social, political, 
and environmental sectors [14]. Electricity supply is also one of the 
sectors impacted by this pandemic. This is because the strict social 
distancing restrictions were enforced, and people had to stay indoors 
during lockdowns. Recently published articles [14–16] focused on 
analysis to understand how COVID-19 affects electricity demand and 
generation. They found that overall electricity demand declined during 
the pandemic. The demand pattern shifted on some individual days (for 
example, the traditional morning peak moved toward noon). By 
contrast, residential electricity demand increased [17–19] especially for 
cooking, heating, cooling, and home entertainment due to the 
work-from-home regulations [18]. Moreover, the change of power de
mand profile during the lockdown could also lead to the changes in the 
power generation mix by increasing the amount of renewable energy 
generation and reducing greenhouse gas (GHG) emissions as discussed 
in the Spanish case study [16]. The reduction of GHG emissions was also 
confirmed by Abu-Rayash and Dincer [14] that due to COVID-19, the 
emissions from the power sector could decrease around 40,000 tons of 
carbon dioxide equivalent (CO2-eq), mainly from restricted 

international travel and transportation limitation. 
The change of magnitude and pattern of electricity consumption 

during COVID-19 has posed challenges to system operators to accurately 
forecast load [20,21]. Chen et al. (2020) [20] mentioned that based on 
the published day-ahead load forecasting errors for Germany and Cali
fornia Independent System Operator (CAISO), there was crucial 
over-forecasting in April 2020 (during COVID-19), compared to the 
forecasts in April 2019 (before COVID-19). Since there were no similar 
events like this pandemic before, the current utilization of features in the 
load forecasting model, such as historical load, weather, and time, might 
be unable to capture phase changes due to lockdown restrictions. As 
mentioned by Chen et al. (2020) [20], it is still necessary to have new 
quantitative features, such as those related to social and economic ac
tivities, in the load forecasting model to improve the accuracy. 

Therefore, Chen et al. (2020) [20] and Wang and Wang (2021) [21] 
conducted a load forecasting study using mobility data, as a measure of 
economic activities, to improve load forecasting accuracy. The example 
of mobility data includes transit and shopping trends [20], as well as 
percentage change in visitors to workplaces and time spent in residential 
areas [21]. These parameters would help the grid operators/researchers 
understand people’s behaviors when lockdown regulations were 
implemented, which would affect the magnitude and pattern of elec
tricity consumption. As expected, it was found that mobility data could 
help improve the prediction accuracy of electricity demand when 
compared to conventional load forecasting models. For instance, the 
forecasting method with mobility data, which was proposed by Chen 
et al. (2020) [20] could outperform the standard load forecasting model 
by around four percent. 

Additionally, Wang and Wang (2021) [21] included the number of 
COVID-19 cases as a feature, although it transpired that this was not 
helpful in predicting demand. Additionally, although they confirmed 
that mobility data could help improve load forecasting accuracy during 
the pandemic, they also tested the load forecasting model using 
pre-stay-at-home weekend data as additional training dataset to simu
late lockdown situations during COVID-19 (but without the use of 
mobility data). It was shown that only pre-stay-at-home weekend load 
data could also lead to the improvement of load forecasting accuracy. 
However, it was argued by Chen et al. (2020) [20] that using only 
pre-stay-at-home weekend load data would not be good enough to 
mitigate the impacts of this pandemic on load forecasting accuracy. 
Thus, they proposed the use of mobility data as additional feature. It is 
also important to highlight that these mobility data studies during 
COVID-19 did not include time variables in their analysis, unlike the 
literatures of load forecasting before COVID-19 pandemic, as discussed 

Fig. 1. Features used in load forecasting study (from 36 studies*). *See Appendix A for the full list and details of selected studies.  
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in Section 1.1. 

1.3. Research gaps and contributions 

As mentioned earlier, very few papers have studied ways to improve 
load forecasting during phase changes such as the COVID-19 pandemic. 
Furthermore, although integrating traffic or mobility data can improve 
accuracy, different combinations of traffic data and other features are rarely 
tested for load prediction [21]. Significantly, these previous studies did not 
assess to what extent this prediction accuracy held if time variables were 
included in the forecasting models (as summarized in Fig. 3). 

Our analysis aims to (i) investigate whether traffic data can improve 
short-term residential load forecasting accuracy during phase changes 
such as COVID-19 and (ii) test different combinations of feature sets, 
including time variables (historical load, weather, time, and traffic). In 
turn, we hope to understand better how the information contained in traffic 
data is included in – or complementary to – other prediction features. 

While this paper focuses on short-term aggregated residential load 
forecasting in Switzerland, the methodology framework could also 
contribute to broader impacts in other grid areas or countries. For 
example, this would help system operators accurately forecast electricity 
demand when phase changes occur or when historical load is not 
available, such as when predicting the electricity demand of competitors 
in a liberalized market. 

2. Material and methodology 

2.1. Data 

To forecast the target variable (aggregate, residential electricity 
load), we used the following four groups of features (independent var
iables) – (1) historical residential electricity load, (2) weather-related, 
(3) time-related, and (4) traffic (road traffic and train traffic) time- 
series. All the time series were aggregated into an hourly resolution 
from 2016 to 2020. To validate the robustness of model results, we 
repeated our analyses for two grid areas in Switzerland (Area 1: Aarau 
and Area 2: Ticino).1 A summary of the data sources and time series used 
is provided in Table 1. 

2.2. Data pre-processing and modeling 

The main steps of our research are shown in Fig. 4. During the first 
step, the target variable and independent variables during 2016–2020 
were collected as discussed in Table 1. 

In the second step, we pre-processed the data. Some of the indi
vidual features – mainly weather and individual road traffic data that 
contained many missing values – were dropped from the feature list. 
Then, weather and time data were pre-screened to remove variables 
strongly correlated with each other. This is similar to the approach used 
by Refs. [5,23–26]. As Pallonetto et al. (2022) [26] discussed, we 
calculated the Spearman correlation coefficient for each pair of variables 
within each of the four groups of variables from Table 1 (weather, time, 
traffic, train). For each pair of variables with a correlation coefficient of 
0.7 (i.e., the average value of the range between 0.61 and 0.8 suggested 
by Refs. [27,28]), we then dropped one variable. The remaining feature 
set after the pre-screening consists of the 10 features for DSO1 (historical 
load, solar radiation in Buchs, precipitation in Buchs, number of days 
since 2016, hour of day, week of day, week of day (cosine), month of 
year, total road traffic, and total train station visitors), and 11 features 
for DSO2 (historical load, solar radiation in Monte Generoso, precipi
tation in Monte Generoso, temperature 2 m above ground in Monte 
Generoso, number of days since 2016, hour of day, week of day, week of 
day (cosine), month of year, total road traffic, and total train station 
visitors). The selected features in both areas were almost identical, 
except for one variable (temperature 2 m above ground) selected in the 
DSO2 area but not in the DSO1 area. 

These pre-screened features were then standardized and used as in
puts to forecast short-term residential electricity demand during four 
different phases, as illustrated in Fig. 4. In this study, five different time 
horizons –one-, two-, four-, 6-h, and one-day-ahead – were tested, as 
shown in Table 2. Initially, we tested to what extent traffic data may 
have a delayed effect on load. For this purpose, we used all features at 
time t to forecast the target variable (residential load) at time t + n (n =
1,2,4,6). In addition to that, we estimated to what extent a perfect 
forecast of weather and traffic data could help improve day-ahead load 
forecasts. For this purpose, we estimated a model including historical 
load at time t, while the remaining features (weather, time, and traffic) 
were included for the times t, t+6, t+12, t+18, and t+24. 

Each of the five forecast horizons from Table 2 was tested with each 
of the eight feature sets described in the rows in Table 3. For example, 
the “Base” feature set (with historical load) contained both the historical 
load and the weather data, which were primarily used in the literature to 
forecast electricity demand (such as [25,29–31]). Moreover, the reason 
for including a version of the same feature sets without historical load 

Fig. 2. Forecasting model used in load prediction study (from 36 studies*). *See Appendix A (supplementary material) for the full list and details of selected studies.  

1 From this point, distribution system operator (DSO) 1 refers to Aarau (Area: 
1404 km2, Population density: 396/km2), while DSO2 refers to Ticino (Area: 
2813 km2, Population density: 112/km2). 
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(in the last four rows in Table 3) was to validate to what extent the in
formation from the other time series was included captured by the his
torical load. 

During the third step of Fig. 4, the model was trained using pre- 
COVID-19 data for each feature set. To determine the impact of each 
individual feature, the features were added iteratively during the cali
bration process (stepwise addition) in order of increasing importance. 
During the first iteration, the model was calibrated with one feature. The 
importance of each feature was measured by root mean square error 
(RMSE) as shown in Eq. (1): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Yi − Ŷi)
2

n

√

(1)  

where Yi is the load observation at time t+1 or 2,4,6,24, Ŷi is the pre
dicted value of load, n is the number of observations. At the end of the 
first iteration, the feature, which achieved the lowest RMSE during the 
four phases (pre-COVID-19, lockdown, post-lockdown, and strict regu
lation), was retained for inclusion in the subsequent iterations. In the 
second iteration, we calibrated the model with two features. In addition 
to the feature retained at the end of the first iteration, we calibrated the 
model using each of the remaining features in the feature set and 
retained the second feature, which achieved the lowest RMSE for the 
subsequent iterations. This process was repeated until all features from 
the feature set were added to the model. 

Finally, during the fourth step of Fig. 4, the model performance 
(RMSE) of each iteration of the stepwise addition was reported by cal
ibrating the data using pre-COVID-19 and calculating RMSE based on 
training dataset (pre-COVID-19) as well as test datasets from three 
different phases (lockdown, post-lockdown, and strict regulation). 

Focusing on the forecasting technique, random forest was used to 
calibrate the load prediction model in this analysis. Breiman (2001) [32] 
proposed a random forest to overcome the limitations of simple decision 
trees. Then, non-leaf nodes are selected to split until the stop condition is 
met. The bottom node of the tree is called a leaf node [33]. Random 
forest was adopted to increase the computational complexity, as dis
cussed in Ref. [33], to solve the poor generalization problem of decision 
tree methods. It is a combination of multiple decision trees and is a 
bagging algorithm, as discussed in Refs. [32,34]. This ensemble method 
combines the results from multiple and parallel training of machine 
learning algorithms to give more accurate outcomes and reduce vari
ance in a noisy dataset. 

As illustrated in Fig. 2, the tree-based method is one of the most 
widely adopted methods in load forecasting literature as in Refs. [6,8,12, 
23,33,35–38]. This is because, according to Refs. [12,34], when 
compared to other popular methods, a tree-based model is easy to 
explain and interpret, robust to outliers, has fast computation times, and 
can be used in both classification and regression problems. 

In this study, random forest was trained using scikit-learn, a free 

Fig. 3. Motivation and objectives of this analysis.  

Table 1 
Data used in the load forecasting modelinga.  

Variable Description Source 

Residential 
electricity 
load 

Residential electricity load DSO1 and DSO2 

Weather  - DSO1 area: Two weather 
stations (Buchs and Gösgen)  

- DSO2 area: Two weather 
stations (Lugano and Monte 
Generoso)  

- Five different variable types 
per station  

• Solar radiation (W/m2)  
• Precipitation (mm)  
• Sunshine duration (minute)  
• Temperature 5 cm above grass 

(◦C)  
• Temperature 2 m above 

ground (◦C) 

Federal Office of 
Meteorology and 
Climatology 
(MeteoSchweiz) 

Time  - Six different variable types  
• Number of days since the 

beginning of study period 
(2016)  

• Hour of day*  
• Day of week*  
• Month of year*  
• Year  
• Weekend indicator (weekend/ 

weekday) 
*Both linear and cyclical time 
(as suggested by Ref. [22]) 

-(Self-generated data) 

Road traffic  - DSO1 area: total number of 
vehicles from 240 individual 
traffic counters for each 
timestamp (12 stations x 2 
directions x 10 types of 
vehicles)  

- DSO2 area: total number of 
vehicles from 440 individual 
traffic counters for each 
timestamp (22 stations x 2 
directions x 10 types of 
vehicles) 

Federal Roads Office 
(FEDRO) 

Train traffic  - Total number of visitors at 
train stations  

- DSO1 area: Three train 
stations (Aarau, Baden, and 
Olten)  

- DSO2 area: Two train stations 
(Lugano and Bellinzona) 

Swiss Federal Railways 
(SBB)  

a Some of the individual variables were dropped at the outset when there were 
a lot of missing data. 
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machine learning software library for Python language. In the software, 
a set of hyperparameters was needed for a random forest modeling, 
which we adopted the default values from the programming as sum
marized below.  

• Number of trees in the forest (100).  
• Maximum depth of the tree (None: the nodes continue to expand 

until all leaves contain less than the minimum number of samples 
required to split an internal node).  

• Minimum number of samples required to split an internal node (2). 

Fig. 4. Overview of research steps. 
*Note: 4 different phases were based on the pandemic situation in Switzerland: (1) Pre-COVID-19 (2016–March 2020), (2) Lockdown (March–April 2020), (3) Post- 
lockdown (May–October 2020), and (4) Strict regulation (November–December 2020). 

Table 2 
Tested forecast horizon.  

Forecast Horizon Definition 

One/two/four/6-h-ahead 

Day-ahead with data from time t till t+24 
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• Minimum number of samples required at a leaf node (1).  
• Number of features to consider for the best split (auto, all features). 

For each regression tree, the best splitting point for each predictor 
should represent the point where the lowest sum of square error occurs. 
To avoid overfitting, bagging (bootstrap aggregation), as discussed in 
Refs. [33,34], was also adopted in the modeling. 

3. Results and discussion 

3.1. Descriptive comparison of residential load and traffic patterns 

Fig. 5 shows the average values of the residential electricity con
sumption and traffic variables (road and train) for each hour of the day 
during each of the four phases. For both electricity demand and traffic 

Table 3 
Different feature sets tested in this analysis. 

Fig. 5. Comparison of average residential load and traffic data during the four phases. (a) DSO1 area (i) Residential load (ii) Total number of vehicles (iii) Total 
number of passengers (b) DSO2 area (i) Residential load (ii) Total number of vehicles (iii) Total number of passengers. 
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data, we can see that each phase has different magnitudes. However, 
daily patterns of each variable during each phase show almost no change 
except the patterns of the total number of train passengers during the 
post-lockdown and strict regulation phases. Focusing on the residential 
load for both DSOs, the different magnitudes of the four phases seem to 
be partly linked to the respective season. For example, the strict regu
lation phase (in winter) had the highest electricity demand, while post- 
lockdown (in summer) had the lowest values. During lockdown (the 
transition period of winter and summer), DSO1 had a lower demand 
than average pre-COVID-19, while DSO2 had a higher demand than pre- 
COVID-19. Regarding traffic data, the total number of vehicles and 
passengers during COVID-19 decreased due to the introduction of stay- 
at-home policies. 

3.2. One-, two-, four-, and 6-h load forecasts 

In this section, we describe the results of the one, two, four, and 6-h- 
ahead forecasts from Table 2 for each of the feature sets in Table 3. The 
model was trained using pre-COVID-19 data and tested using the 
training dataset (pre-COVID-19) as well as test datasets from three 
different phases (lockdown, post-lockdown, and strict regulation). In 
general, we expected the model to perform best (i.e., have the lowest 
RMSE) during the pre-COVID-19 phase, as this was the training data, 
while the performance would decrease during the test datasets (lock
down, post-lockdown, and strict regulation). Comparing the different 
feature sets, we expected that model performance during the test periods 
would be best (i.e., have the lowest RMSE) if we included the traffic data 
as an additional feature. This is because we assumed that traffic data 
could reflect the actual level of electricity consumption because people 
were less likely to use public transportation. 

Based on Table 42 our first assumption regarding the RMSE of pre- 
COVID-19 was correct, as the RMSE during the training period (pre- 
COVID-19) was significantly lower than during the testing periods. For 
the hour-ahead forecasts, our assumption regarding the benefits of 
transport data during the test periods (lockdown, post-lockdown, and 
strict regulation) was not confirmed for DSO1 or DSO2. When we 
compared the “Base” and “Traffic” feature sets, the RMSE of the “Traffic” 
feature set was lower than for the “Base” feature set (averaging around 
12% across DSOs, feature sets, and during COVID-19 phases), meaning 
that the inclusion of traffic data in addition to weather data improved 
prediction accuracy. However, when we compared the feature sets that 
contain time variables (such as the hour of the day, etc.) – which were 
extracted directly from the timestamp without further data collection – 
the RMSEs of “Time” and “All” feature sets were almost the same level 
and significantly lower than for the “Base” and “Traffic” feature sets. For 
datasets including historical load, weather, and time data, the inclusion 
of traffic data did not improve prediction accuracy in such a setting. 
These findings suggest that adding time variables give a far better result 
than adding traffic variables. However, the main benefit of traffic data 
seems to be that it can explain the phenomenon of interest (behavior of 
individuals in relation to electricity demand) better than historical load. 

However, for the two-, four- and 6-h-ahead forecasts in the post- 
lockdown and strict regulation phases, the value of adding traffic data, 
together with time, historical load, and weather variables, was evident 
as the RMSE was slightly lower when comparing “Time” and “All” 
feature sets (highlighted in bold in Table 4). The reason that these small 
changes occurred in the post-lockdown and strict regulation phases 
might arise from the visible changes in traffic patterns (mainly the 
number of train passengers) during those two phases, as discussed in 
Section 3.1 and shown in Fig. 5. As a result, traffic data could bring 
additional positive, albeit minor benefits, to load forecasting accuracy. 

This was, however, not the case for the 1-h forecast, suggesting the 
possibility of a delayed impact for traffic data. 

In summary, for the one-, two-, four- and 6-h-ahead forecasts of both 
DSOs, traffic data (rather than weather data) might improve load pre
diction accuracy. However, when adding time and traffic variables 
together, the RMSE of all phases is barely different from when using only 
time variables alone. 

3.3. Day-ahead load forecast 

This section describes the results of the day-ahead load forecasting 
horizon in Table 2 for each of the feature sets in Table 3. The motivation 
for including the actual t+6, t+12, t+18, and t+24 h values as features 
for the day-ahead load forecast was to test how a perfect weather and 
traffic data forecast could help improve forecast accuracy. The model 
performance of the four phases (the RMSE) of DSO1 and DSO2 are 
summarized in Table 5. Moreover, our assumption from the previous 
modeling results of the one-, two-, four-, and 6-h-ahead forecasts was 
that historical electricity demand might already contain most of the 
information included in the traffic data. To test our hypothesis that 
historical load includes information from traffic data, the cases with and 
without historical load as an independent variable were examined. 

Focusing on the with historical load case for the DSO1 area 
(Table 5a), the RMSE of pre-COVID-19 phases was lower (around 0.1) 
than during COVID-19 phases (at about 0.3–0.4). When comparing 
different feature sets, the RMSE of the “Traffic” feature set was lower 
than the “Base” feature set, which averaged six percent during the 
COVID-19 phases. This confirms our finding from Section 3.2 that 
including traffic data on top of historical load and weather data could 
improve prediction accuracy. 

Additionally, the inclusion of “Time” variables or “All” variables led 
to an average 20% lower RMSE during COVID-19 phases compared with 
the “Base” feature set. In addition, the RMSE of the feature set with “All” 
variables was not different from that of the “Time” feature set. In most 
cases, adding new features to the model leads to a lower RMSE. How
ever, when the model is overwhelmed by too many unnecessary fea
tures, such as time variables (i.e., number of days since 2016 in the 
lockdown phase), the RMSE starts to become constant or even increase. 

Focusing on the without historical load case for the DSO1 area, the 
pre-COVID-19 phase still had a lower RMSE than the other three COVID- 
19 phases. However, without the historical load, the RMSE for all four 
phases was higher than in the with historical load case, highlighting the 
importance of historical load as a feature for load forecasting. The RMSE 
of the pre-COVID-19 phase ranged from around 0.05–0.2, while during 
COVID-19 phases, it was between around 0.3 and 0.6. 

Comparing the RMSE of the “Base” and “Traffic” feature set for the 
without historical load case, we noted that the inclusion of traffic data in 
addition to weather data decreased the RMSE during COVID-19 periods 
by 11%, on average. Moreover, the impact of traffic data when including 
time variables for the day-ahead forecast was more evident than the with 
historical load case (Table 5a in bold). This may also confirm our hy
pothesis that historical load could already contain some of the infor
mation from the traffic data. As a result, in the with historical load case, 
traffic did not display a positive effect on prediction accuracy (unlike 
when historical load data were removed from a list of features). 
Although the RMSE is higher if historical load is excluded, this might be 
beneficial, for example, for predicting a neighboring grid area load when 
historical load data is essential for load prediction [39]. However, this 
may not be available in real-time. Another advantage of using traffic 
data instead of – or to complement – historical load data is that it may 
explain the phenomenon of interest better than historical electricity 
demand, thereby providing further insights from our findings. 

Regarding Table 5b (the with historical load case for the DSO2 area), 
like DSO1, the pre-COVID-19 phase had a lower RMSE (around 0.1) 
compared to the during COVID-19 phases (at about 0.2–0.3). The main 
difference is that for DSO2, the prediction accuracy (the RMSE) of each 

2 It is important to note that the RMSE discussed in this paper is based on 
standardized data and refers to the lowest RMSE of each phase/feature set from 
the fourth step of Fig. 4. 
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phase across different datasets was at almost the same level. In other 
words, it can be inferred that none of the additional features (time and 
traffic data) significantly increases prediction accuracy. 

According to the without historical load case for the DSO2 area (as 
with DSO1), the pre-COVID-19 phase still had a lower RMSE than the 
during-COVID-19 phases. In addition, when excluding the historical 
load data, traffic showed more positive effects on load prediction ac
curacy. Moreover, in general, traffic data alone cannot lower the RMSE 
as much as the combination of all features (Table 5b in bold), meaning 
that traffic data are still useful in terms of increasing prediction accuracy 
but need to be used as a feature together with other relevant variables. 

Regarding the strict regulation phase for the DSO2 area, it was 
interesting to note that traffic data improved prediction accuracy the 
most, leading to a lower RMSE than with any other feature set (Table 5b 
in red; for both with and without historical load). The difference be
tween the results for the two DSO areas highlights the uncertainty of our 
findings and the danger of determining the impact of new features based 
on a single dataset. To obtain a more robust picture regarding the effects 
of traffic data and other independent variables on forecast accuracy, 
studies using larger numbers of different datasets, features, and fore
casting techniques are needed. 

In addition, to test whether the effects of transportation data on load 
forecasting accuracy may only be detected during the short transition 
period (lockdown), the data from March 14th- 18th, 2020 (the transition 
period - before and after the government declared a State of Extraordi
nary Situation in Switzerland) was selected to model this assumption 
based on hour-ahead prediction. Unfortunately, even using this shorter 
data period, the result implications were not different. Traffic data alone 

could not improve load forecasting accuracy more than the inclusion of 
traffic data and other variables. 

Our findings are well aligned with the previous literature before and 
during COVID-19 [9,20,21], which concluded that mobility data (or 
traffic data in this context) can improve electricity load forecasting. 
However, these previous studies used traffic data with other variables, 
such as weather and the number of COVID-19 cases data but did not 
include time variables in their studies. Accordingly, this study contributes the 
new finding that only time variables can improve the accuracy of short-term 
load prediction compared to traffic-data-only cases. However, the results 
show the greatest accuracy when including both time and traffic data. 

Although this case study focused on Switzerland context, the meth
odology framework of this analysis could also contribute to broader 
impacts, such as other areas/countries or specific situations. For 
instance, when predicting the electricity demand of competitors in a 
liberalized market and historical load is not available, this framework 
could help system operators to accurately forecast electricity demand 
using traffic, weather, and time features. Moreover, this framework 
could be extended to analyze load forecasting in some specific areas/ 
contexts, such as islanded microgrids under limited communication, 
where it might have a burden of data accessibility as mentioned in 
Ref. [40], or those related to delay-tolerant predictive power compen
sation control for photovoltaic voltage regulation [41]. However, it is 
important to note that our proposed method would require near 
real-time traffic information, which may not be available in some of 
these settings. 

Table 4 
The lowest RMSE (for one-, two-, four-, and 6-h-ahead) of each feature set during each phase.  

Lowest RMSE One-hour-ahead Two-hours-ahead Four-hours-ahead Six-hours-ahead 

Base Time Traffic All Base Time Traffic All Base Time Traffic All Base Time Traffic All 

(a) DSO1 area 
Pre-COVID-19 0.10 0.04 0.06 0.04 0.15 0.05 0.10 0.05 0.23 0.06 0.14 0.06 0.25 0.06 0.16 0.06 
Lockdown 0.31 0.15 0.27 0.15 0.44 0.24 0.44 0.24 0.65 0.35 0.65 0.35 0.68 0.38 0.68 0.38 
Post-lockdown 0.26 0.13 0.22 0.13 0.41 0.19 0.32 0.18 0.60 0.24 0.51 0.24 0.60 0.28 0.49 0.28 
Strict regulation 0.33 0.15 0.26 0.15 0.47 0.24 0.42 0.24 0.66 0.37 0.61 0.37 0.64 0.42 0.59 0.40 

(b) DSO2 area 

Pre-COVID-19 0.10 0.05 0.08 0.05 0.14 0.06 0.10 0.06 0.18 0.06 0.13 0.06 0.19 0.06 0.12 0.06 
Lockdown 0.34 0.21 0.32 0.21 0.49 0.28 0.44 0.28 0.61 0.34 0.59 0.34 0.62 0.38 0.62 0.38 
Post-lockdown 0.33 0.22 0.29 0.22 0.47 0.29 0.38 0.29 0.61 0.36 0.48 0.36 0.62 0.38 0.52 0.37 
Strict regulation 0.35 0.22 0.32 0.22 0.50 0.30 0.44 0.29 0.67 0.43 0.54 0.40 0.75 0.50 0.61 0.46  

Table 5 
The lowest RMSE (for day-ahead) of each feature set during each phase. 
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4. Conclusions 

This work investigates the effects of traffic data on short-term elec
tricity load prediction before and during the COVID-19 pandemic 
through different combinations of feature sets (historical load, weather, 
time, and traffic data). To detect the impacts of traffic data during the 
COVID-19 pandemic, random forest models were trained using pre- 
COVID-19 data and tested using a training dataset (pre-COVID-19) 
and test datasets from three different phases during COVID-19. 

The results from this study show that traffic data – as well as weather 
and historical load data – improved prediction accuracy both before and 
during COVID-19. However, time variables have a much more signifi
cant impact on prediction accuracy than traffic data. Adding traffic data 
to time, weather, and historical load data can only improve forecasting 
accuracy to a small degree. However, traffic data still improves load 
prediction when historical load information is not available. 

The inclusion of traffic data as a feature could be justified for two 
main reasons: First, improving prediction accuracy in situations where 
historical load data is unavailable in real-time (such as for neighboring 
grid area predictions), and second, deriving further insights regarding 
the phenomenon of interest (the behavior of individuals in relation to 
electricity demand). 

Finally, our analysis using two datasets shows that the impact of new 
features on forecast accuracy can vary enormously between different 
datasets. To obtain a more robust picture of the effect of different fea
tures and modeling approaches on forecast accuracy, studies using 
larger numbers of datasets, features, and forecasting approaches would 
be required. 
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