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ABSTRACT
Binary decision making classifiers are not fair by default. Fairness

requirements are an additional element to the decision making

rationale, which is typically driven by maximizing some utility

function. In that sense, algorithmic fairness can be formulated as a

constrained optimization problem. This paper contributes to the

discussion on how to implement fairness, focusing on the fairness

concepts of positive predictive value (PPV) parity, false omission

rate (FOR) parity, and sufficiency (which combines the former two).

We show that group-specific threshold rules are optimal for PPV

parity and FOR parity, similar to well-known results for other group

fairness criteria. However, depending on the underlying popula-

tion distributions and the utility function, we find that sometimes

an upper-bound threshold rule for one group is optimal: utility

maximization under PPV parity (or FOR parity) might thus lead

to selecting the individuals with the smallest utility for one group,

instead of selecting the most promising individuals. This result is

counter-intuitive and in contrast to the analogous solutions for

statistical parity and equality of opportunity.

We also provide a solution for the optimal decision rules satisfy-

ing the fairness constraint sufficiency. We show that more complex

decision rules are required and that this leads to within-group un-

fairness for all but one of the groups. We illustrate our findings

based on simulated and real data.
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1 INTRODUCTION
Advances in machine learning (ML) have led to a rise in algorithmic

decision making systems that assist or replace humans to make

consequential decisions. Today, such algorithms are used in vari-

ous domains, such as credit lending [18, 26], pretrial detention [1],

hiring [36], and many more. It has been shown that this often

violates fairness across protected groups [2]. This is especially

worrying if the prediction-based decision systems systematically

harm marginalized groups, and, in particular, if they are applied

in domains where a decision is potentially life-changing for the af-

fected individuals [3]. A potential way to reduce ML-based discrim-

ination is to mitigate outcome disparities across some predefined

groups [2, 9, 10, 13, 20, 30, 35]. In order to measure and eventu-

ally correct for these disparities, different mathematical notions of

so-called group fairness metrics have been proposed [39, 45]. The

group fairness metrics that have attracted the most interest are in-

dependence, separation, and sufficiency [2]. These three definitions

of fairness are all “entirely reasonable and desirable” [23], how-

ever, they are mutually exclusive except for in highly constrained

cases, which are unlikely to occur in practice [8, 16, 25, 42]. Hence,

decision makers must choose one metric over the others.

In this paper, we focus on the fairness of prediction-based deci-

sion systems that take decisions based on the prediction of a vari-

able 𝑌 , which is unknown at the time of decision making. Different

methods have been developed to ensure the fairness of such sys-

tems, most of which fall into one of three categories: pre-processing,

in-processing, or post-processing [7, 41]. One line of papers within

the field of algorithmic fairness is concerned with optimal decision

rules satisfying some group fairness constraint [10, 10, 20, 30, 35].

Thereby, the prediction model is treated as given, but the decision

maker has the freedom to modify the decision rule for fulfilling

fairness constraints, i.e., the predictions are post-processed so that

the resulting decisions are fair w.r.t. a specified protected attribute.

Following this approach, we formulate the goal of fairness as a

constrained optimization problem where a standard approach is to

assume that the decision maker’s goal is to maximize some utility
1

function while also satisfying some fairness constraint [37]. Such

optimal decision rules have been derived for the group fairness

metrics statistical parity, conditional statistical parity, TPR parity,

and FPR parity [10, 20, 30]. It has been shown that optimal decision

rules that satisfy these fairness constraints are characterized by

1
We will define the term utility and formulate the constrained (as well as the uncon-

strained) optimization problem in Section 3.3.
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lower-bound threshold rules.
2
Surprisingly, to our knowledge, no

such solution has been derived for the group fairness metrics PPV

parity, FOR parity, and sufficiency. This paper closes this gap by

deriving optimal decision rules for these group fairness metrics.

Our main contributions and findings are:

• We show that optimal decision rules satisfying PPV parity

or FOR parity take the form of group-specific (lower-bound

or upper-bound) thresholds.

• We find that, surprisingly, under PPV parity or FOR parity, it

can be optimal for decision makers to apply an upper-bound

threshold for one group (depending on the populations and

the applied utility function). In such situations, the most

promising individuals are left out, leading to an extreme

form of within-group unfairness.

• We provide a solution for the optimal decision rules that

satisfy sufficiency as the combination of both PPV parity and

FOR parity. We find that this definition of fairness requires

more complex decision rules (i.e., decision rules that do not

take the form of a simple lower- or upper-bound threshold)

and leads to within-group unfairness for all but one of the

groups.

• We highlight the trade-off between fairness across groups

and within groups.

The remainder of the paper is structured as follows: Section 2

introduces the most important group fairness metrics and pro-

vides the necessary background. In Section 3, we formalize the

(un)constrained optimization problem and solve it for several group

fairness metrics. Section 4 demonstrates the solutions for optimal

decision rules under these fairness constraints based on simulated

and real data. Section 5 concludes the paper.

2 RELATEDWORK
2.1 Group Fairness Metrics
Much of the technical literature on algorithmic fairness strives to

create some generalized notion of fairness in terms of the impact an

algorithm has on different groups [3, 5, 8, 9, 12, 14, 47]. As ML algo-

rithms are used more and more for consequential decision making,

their impact on individuals and groups may be tremendous. Nu-

merous metrics have been suggested to quantify the group fairness

of decision making algorithms [39]. Most of these group fairness

criteria fall into one of three categories: independence, separation,

or sufficiency [2]. Table 1 provides the mathematical definitions for

those three criteria
3
.

Independence – also called statistical parity [12] – compares

decision rates across groups (i.e., the fraction of individuals who

are granted a loan in each group), whereas the other two criteria

compare error rates across groups [45]. Conditional statistical parity

extends this definition of fairness by allowing a set of legitimate

features to affect the decision [10, 21]. True positive rate (TPR)

parity – also called equal opportunity [20] – and false positive

rate (FPR) parity are relaxations of the separation criterion. Positive

2
In the fair ML literature, so-called thresholding is arguably the most typical decision

rule for probabilistic classifiers, also because of its conceptual similarity to the way

humans take decisions [7, 24]. In this paper, we refer to this type of decision rule as a

lower-bound threshold rule.
3
See Section 3.1 for a description of the notations used for the equations.

predictive value (PPV) parity – also called predictive parity [8] – and
false omission rate (FOR) parity are relaxations of the sufficiency

criterion – which has also been called conditional use accuracy
equality by [5] or overall predictive parity by [33]. There is an

essential difference between separation and sufficiency: TPR and

FPR focus on a subpopulation that is defined by 𝑌 . In contrast, PPV

(also called precision) and FOR focus on a subpopulation that is

defined by 𝐷 .4 In the loan granting scenario, the TPR denotes the

fraction of those individuals who are granted a loan from all those

who would not default. For the PPV, on the other hand, only those

individuals who are granted a loan are considered to measure the

fraction of individuals who repay it.

PPV parity, FOR parity, and sufficiency are relevant notions of

fairness, not only theoretically but also in practice. Most promi-

nent is probably the case of the 2016 debate surrounding the tool

COMPAS (which gives judges recidivism risk predictions that are

supposed to inform them on whether or not a defendant should be

released in different stages of the criminal justice system), where [1]

published an article saying that the tool systematically disadvan-

tages black defendants because of a FPR disparity. However, North-

pointe (the developers of COMPAS) responded that the two metrics

TPR parity and FPR parity are not appropriate for assessing recidi-

vism risk scales and that instead PPV parity and FOR parity are

appropriate criteria [11]. They conclude that their tool is not unfair

because it satisfies those two metrics. In addition to recidivism

prediction, PPV parity is also prevalent in predictive policing [43]

(where the metric is usually called hit rate) and in personalized

online ads (where the notion of click through rates [46], which is

an equivalent metric, is omnipresent).

Another often discussed statistical concept in algorithmic fair-

ness studies is calibration, which is defined as 𝑃 [𝑌 = 1|𝑆 = 𝑠] = 𝑠 ,

where 𝑠 denotes a real-valued score [8, 25, 42]. An extended notion

of calibration that also accounts for group membership is provided

by [2]. They call it calibration by group and formally define it as

𝑃 [𝑌 = 1|𝑆 = 𝑠, 𝐴 = 0] = 𝑃 [𝑌 = 1|𝑆 = 𝑠, 𝐴 = 1] = 𝑠 . This no-

tion of fairness is closely related to sufficiency, which is why some

confusion regarding the differences between calibration and suffi-

ciency (or one of its relaxations) emerged. [31] and [2] state that

unconstrained learning satisfies group calibration and the fairness

metric sufficiency. In contrast, [8] claims that it is possible that

calibration is satisfied while PPV parity is not. [19] clarify this con-

fusion by pointing out the difference between these two metrics:

As calibration is defined for every score 𝑠 (which is assumed to be a

continuous value and not a binary one), whereas PPV parity is just

measured for a binary outcome, the two notions of fairness cannot

be used interchangeably. In particular, they show that for groups

with different probability distributions, calibration does not neces-

sarily imply sufficiency. In this work, we investigate group fairness

metrics regarding a protected attribute that divides individuals into

groups with different probability distributions.

4
All four metrics can be expressed by their respective complements: PPV parity is

equivalent to false discovery rate parity, FOR parity is equivalent to negative predictive

value parity, TPR parity is equivalent to false negative rate parity, and FPR parity

corresponds to true negative rate parity.
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Table 1: Group fairness metrics. The acronyms stand for true positive rate (TPR), false positive rate (FPR), positive predictive
value (PPV), and false omission rate (FOR).

Fairness criterion Parity metric Equation

Independence Statistical parity 𝑃 [𝐷 = 1|𝐴 = 0] = 𝑃 [𝐷 = 1|𝐴 = 1]

Separation

TPR parity 𝑃 [𝐷 = 1|𝑌 = 1, 𝐴 = 0] = 𝑃 [𝐷 = 1|𝑌 = 1, 𝐴 = 1]
FPR parity 𝑃 [𝐷 = 1|𝑌 = 0, 𝐴 = 0] = 𝑃 [𝐷 = 1|𝑌 = 0, 𝐴 = 1]

Sufficiency

PPV parity 𝑃 [𝑌 = 1|𝐷 = 1, 𝐴 = 0] = 𝑃 [𝑌 = 1|𝐷 = 1, 𝐴 = 1]
FOR parity 𝑃 [𝑌 = 1|𝐷 = 0, 𝐴 = 0] = 𝑃 [𝑌 = 1|𝐷 = 0, 𝐴 = 1]

2.2 Optimal Decisions and Fairness
Much of the extensive literature on algorithmic fairness is con-

cerned with mitigating ML-based discrimination across protected

groups. According to [37], a standard way of ensuring algorithmic

fairness is to formulate it as a constrained optimization problem.

Thereby, a specific kind of utility function is maximized while also

satisfying a fairness constraint [10, 20, 30, 35]. This approach allows

a utility-maximizing decision maker to derive optimal fair decision

rules. Absent any fairness constraint, applying a uniform threshold

to all groups is optimal [9]. However, this does not automatically

lead to fair decisions w.r.t. specific groups [2]. Due to the mathemat-

ical incompatibility of most group fairness metrics [8, 16, 25, 42],

the constrained optimization problem must be solved separately

for any chosen definition of fairness. This has been done for some

group fairness metrics but not for others: [20] and [10] have shown

that optimal decision rules that satisfy (conditional) statistical par-

ity, TPR parity, and FPR parity take the form of group-specific

lower-bound thresholds. Several other scholars have investigated

thresholding solutions, such as [15, 30, 35, 44]. However, to our

knowledge, a solution for the optimization problem satisfying PPV

parity, FOR parity, or sufficiency does not yet exist. This paper

closes this research gap by providing a solution for deriving op-

timal decision rules that satisfy one of these three group fairness

metrics.

In the computer science and in philosophical literature, suffi-

ciency (or one of its relaxations, PPV parity and FOR parity) is often

mentioned as one of the main fairness metrics [2, 4, 5, 7, 8, 23, 27–

29, 32, 39, 41, 45]. Several algorithmic fairness papers have studied

sufficiency or one of its relaxations. [22] use an economic approach

to argue that PPV parity is insufficient for fairness as it does not

question existing differences between or within groups. [6] explore

the possibilities of satisfying several fairness constraints at once,

namely, parity of PPV, FOR, TPR, and FPR, but they do not provide

a solution for PPV parity or FOR parity alone. However, none of

these authors derive optimal decision rules that satisfy (one of)

these fairness constraints. Such a solution is crucial to know what

decision rational decision makers take if any of these group fairness

metrics are enforced.

3 OPTIMAL DECISIONS UNDER FAIRNESS
CONSTRAINTS

This section provides a theoretical solution to maximizing the deci-

sionmaker’s utility while satisfying a group fairness definition (PPV

parity, FOR parity, or sufficiency). In the following, we first state

the problem and introduce general notations before introducing

an additional notion of fairness called within-group fairness, which
will prove to be helpful for the interpretation of the theoretical

results. Then, we formulate the optimization problem to be solved

(with and without fairness constraints) in Subsection 3.3, before

actually solving it for three specific group fairness definitions (see

Subsections 3.4 and 3.5 and Appendix C).

3.1 Problem Statement and Notations
Let us first introduce the specific context of our work, along with

the main assumptions and some notations. We assume a decision

maker has to make a binary decision 𝐷 for each individual 𝑖 , based

on a feature vector 𝑥𝑖 ∈ R𝑚 , which includes a protected attribute

𝑎𝑖 ∈ 𝐴, denoting the group membership (sometimes also called

sensitive attribute). Let 𝑛𝐴=𝑎 be the number of individuals that are

part of a group 𝑎. Following related work, we restrict our analysis

to a binary protected attribute𝐴. However, our analysis generalizes

to all cases with a discrete protected attribute with more than

two values. An example may be the decision of a bank to grant

a loan, based on 𝑥𝑖 .
5
We assume that the decisive feature for the

decision is a binary target variable 𝑌 . For a perfect predictor, every

individual that belongs to the positive class (𝑌 = 1) must receive

decision 𝐷 = 1, and vice versa [37, 38]. However, 𝑌 is unknown

at the time of decision making and is replaced by the probability

𝑝𝑖 = 𝑃 [𝑌 = 1], which is given as a function of 𝑥𝑖 , provided by a

probabilistic prediction algorithm. Generalizing the idea of a perfect

predictor to probabilities means that individuals with a higher 𝑝𝑖
should be assigned 𝐷 = 1 and individuals with a lower probability

of belonging to the positive class should receive the decision 𝐷 = 0.

The decision rule is thus a function 𝑑 that maps 𝑝𝑖 (and, possibly,

𝑎𝑖 ) to a binary decision.
6
Similar to [6, 10], for our analysis, we

assume furthermore that each group’s probability distribution has

strictly positive density.

In this paper, we formulate algorithmic fairness as a constrained

optimization problem. The goal of a rational decision maker is to

maximize the expected utility while also satisfying some defini-

tion of group fairness. In this section, we solve this constrained

optimization problem for the group fairness definitions PPV parity,

FOR parity, and sufficiency.

5
In the loan granting scenario, 𝑥𝑖 might include an applicant’s bill-paying history,

unpaid debt, or past foreclosures.

6
Notice that changing this decision rule represents a form of post-processing [34].

There is no need to know the specific features used to train an algorithm because the

learned model is treated as a black box.
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3.2 Within-Group Fairness
Before we derive the solution for a utility-maximizing decision

maker that must satisfy some group fairness metric, let us formally

define another notion of fairness – which will be helpful for the

interpretation of the theoretical results.

Definition 1. (Within-group fairness). We say that a decision

rule 𝑑 (𝑝, 𝑎) satisfies within-group fairness with respect to protected

attribute 𝐴 if ∀𝑖 ∈ 𝑆𝑎 |𝐷=1∀𝑗 ∈ 𝑆𝑎 |𝐷=0 (𝑝𝑖 > 𝑝 𝑗 ), where 𝑆𝑎 is the set

of all individuals of group 𝑎 ∈ 𝐴.

Decision rules satisfying within-group fairness ensure that, within

each group, a larger probability 𝑝 always leads to a higher chance

of 𝐷 = 1. More specifically, no individual that is assigned 𝐷 = 1 has

a lower probability than any of the individuals that are given 𝐷 = 0.

In contrast, within-group unfairness results if there is at least one

pair of individuals (𝑖, 𝑗) where 𝑝𝑖 is larger then 𝑝 𝑗 , and still 𝐷𝑖 = 0

and 𝐷 𝑗 = 1. As more or less such cases can exist, there are different

degrees to which within-group fairness can be violated. We say that

a decision rule 𝑑 (𝑝, 𝑎) leads to an extreme form of within-group

unfairness if ∀𝑖 ∈ 𝑆𝑎 |𝐷=1∀𝑗 ∈ 𝑆𝑎 |𝐷=0 (𝑝𝑖 < 𝑝 𝑗 ). This is equivalent
to applying an upper-bound threshold.

Within-group fairness requires that, within a group, individuals

with a higher probability of belonging to the positive class (𝑝 [𝑌 =

1]) should have a higher chance of being assigned 𝐷 = 1 than

individuals with a lower probability of belonging to the positive

class. For the loan example, it would be viewed as unfair if a loan is

granted to one person but denied to another person with a higher

probability of paying back the loan. In many applications, such a

perspective can be morally justified. Similarly, in the context of

COMPAS, it is morally just to detain a defendant (𝐷 = 1) with a

very high risk of committing a violent crime if released (𝑌 = 1). As

we will see in more detail below, optimal decision rules satisfying

PPV parity, FOR parity, or sufficiency do not always satisfy this

notion of fairness.

3.3 Optimal Decision Rules With or Without
Fairness Constraints

For our theoretical analysis, we assume that a rational decision

maker relies on a prediction model to cope with the uncertainty of

the decision-relevant variable 𝑌 . We assume that if 𝑌 was known,

the decision would be given. More specifically, we assume that the

decision maker’s choice would be 𝐷 = 1 in the case of 𝑌 = 1 and

vice versa [38]. However, in most real-world scenarios, a perfect

predictor does not exist, which introduces uncertainty regarding

the outcome of a decision. There are four possible outcomes, all of

which can be weighted according to the decision maker’s desirabil-

ity, representing a standard approach in the fair ML literature [37].

This leads to the following expected individual utility
7
:

𝑢𝑖 =

{
𝑢11𝑝𝑖 + 𝑢12 (1 − 𝑝𝑖 ), for 𝐷 = 1

𝑢21𝑝𝑖 + 𝑢22 (1 − 𝑝𝑖 ), for 𝐷 = 0.
(1)

7
For example, 𝑢21 denotes the utility of making a decision 𝐷 = 0 and having outcome

𝑌 = 1 occur, a so-called false negative (see Appendix A). The definition of these

utilities is context-specific. In many cases, it would be straightforward for the decision

maker to estimate them. For example, a bank can easily calculate its utility in terms

of monetary gains or losses for a successful loan (as opposed to a default) based on

interest rates.

Defining �̃�𝑖 as the expected relative utility gain when switching

the decision from 𝐷 = 0 to 𝐷 = 1 gives �̃�𝑖 = 0 for 𝐷 = 0, and

�̃�𝑖 = 𝛼𝑝𝑖 +𝛽 (1−𝑝𝑖 ) for𝐷 = 1, with the two parameters 𝛼 = 𝑢11−𝑢21
and 𝛽 = 𝑢12 − 𝑢22. It can be shown easily that maximizing 𝑢𝑖 is

equivalent to maximizing �̃�𝑖 . Moreover, the above made assumption

that 𝑌 = 1 implies 𝐷 = 1 requires that 𝛼 > 𝛽 .

We assume that the decision maker takes not only one decision 𝑑 ,

but many decisions 𝑑𝑖 , over a population of individuals (e.g., when

making loan decisions for many applicants). In this case, the goal of

a rational decision maker is to maximize the total expected utility

�̃� , which leads to the following optimization problem:

argmax

𝑑

�̃� =
∑︁
𝑖∈𝑆

�̃�𝑖𝑑𝑖 =
∑︁
𝑖∈𝑆

(𝑝𝑖 (𝛼 − 𝛽) + 𝛽) 𝑑𝑖 , (2)

where 𝑆 is the set of all individuals and 𝑑𝑖 is a binary multiplier

representing the decision that is made for an individual 𝑖 . The

optimum unconstrained decision rule 𝑑∗ is thus:

𝑑∗𝑖 =

{
1, for 𝑝𝑖 >

−𝛽
𝛼−𝛽

0, otherwise

(3)

and takes the form of a single lower-bound threshold. In the fol-

lowing, we interpret the decision problem as a selection problem,

denoting individuals with 𝐷 = 1 as “being selected.”

The unconstrained solution does not ensure fairness w.r.t. the

protected attribute at all and, in fact, is likely to produce unfairness

(as measured with different group fairness metrics, see Section 2.1).

Decision makers who want to maximize their utility while taking

fair decisions must solve the following constrained optimization

problem:

argmax

𝑑

�̃� subject to some fairness constraint. (4)

As we outlined in Section 2.2, this constrained optimization problem

has been solved for some group fairness metrics
8
(statistical parity,

conditional statistical parity, TPR parity, and FPR parity) but not

for others, such as PPV parity, FOR parity, or sufficiency. In the

remainder of this chapter, we solve the constrained optimization

problem stated in Equation 4 (using the three mentioned group

fairness metrics as fairness constraints) for two different cases:

case I) the number of individuals to be selected (𝑛𝐷=1) is

predefined,

case II) the number of individuals to be selected (𝑛𝐷=1) is

not predefined.

3.4 Optimal Decision Rules under PPV Parity
We now present the optimal solution for the optimization problem

stated in Equation 4 constrained by the group fairness metric posi-

tive predictive value (PPV) parity for both cases I and II. The PPV is

defined as the average probability of individuals with 𝐷 = 1 to have

𝑌 = 1, which can be written as
1

𝑛𝐷=1

∑
𝑖∈𝑆

𝑝𝑖𝑑𝑖 . The fairness definition

8
The authors of [20] use a function they call immediate utility and [10] rely on loss
minimization. Both approaches can easily be formulated in terms of what we call

decision maker utility, which is why the solutions of [20] and [10] also hold in this

setting.
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PPV parity requires this value to be the same across groups. Thus,

the constrained optimization problem has the form:

argmax

𝑑

�̃� =
∑︁
𝑖∈𝑆

(𝑝𝑖 (𝛼 − 𝛽) + 𝛽) 𝑑𝑖

subject to

1

𝑛𝐴=0 |𝐷=1

∑︁
𝑗 ∈𝑆0

𝑝 𝑗𝑑 𝑗 =
1

𝑛𝐴=1 |𝐷=1

∑︁
𝑗 ∈𝑆1

𝑝 𝑗𝑑 𝑗 = 𝑃𝑃𝑉 ,

for 𝑃𝑃𝑉 ∈ [0, 1],
(5)

where 𝑆𝑎 is the set of all individuals of group 𝑎 and 𝑛𝐴=𝑎 |𝐷=1 de-

notes the number of individuals in group 𝑎 with 𝐷 = 1. Each

decision rule results in a specific selection of individuals, which

also yields a specific selection for each group 𝑆𝑎 . Since the PPV

can only be defined if at least one individual is selected, we assume

𝑛𝐴=𝑎 |𝐷=1 ≥ 1 for each group.

We derive the solution to this optimization problem in two con-

secutive steps.

• First, we derive the optimal decision rules 𝑑∗ for a simplified

constraint: We assume that the PPV of both groups must be

equal to a predefined value 𝑃𝑃𝑉𝑡 ∈ [0, 1].
• Second, we solve the full optimization problem by maximiz-

ing the decision maker’s utility over all possible values of

𝑃𝑃𝑉𝑡 .

We now derive the solution for the first step, thus specifying

a value 𝑃𝑃𝑉𝑡 ∈ [0, 1] for the constraint. We do this under the

assumption of a positive probability density of individuals over

the full range [0, 1] for both groups, and in the limit case of very

large populations (𝑛𝐴=𝑎 → ∞). Thus, for each 𝑃𝑃𝑉𝑡 , there exist

individuals in each groupwith 𝑝 = 𝑃𝑃𝑉𝑡 .
9
Themost straightforward

selection fulfilling the fairness constraint thus consists of selecting

one of these individuals in each group. Obviously, other selections

exist, for example selectingmore than one individual with 𝑝 = 𝑃𝑃𝑉𝑡 ,

or selecting individuals in an interval [𝑃𝑃𝑉𝑡 −𝜖, 𝑃𝑃𝑉𝑡 +𝜖] such that

the average 𝑝 of the selection equals 𝑃𝑃𝑉𝑡 . However, many other

selection rules are conceivable, with different numbers of selected

individuals.

For a predefined number of selected individuals 𝑛𝐷=1 (i.e., case

I), the following Lemma holds:

Lemma 2. For a given value of 𝑃𝑃𝑉𝑡 and a predefined number of se-
lected individuals 𝑛𝐷=1, any selection fulfilling the fairness constraint
of Equation 5 leads to a total utility �̃� of:

�̃� = (𝛼𝑃𝑃𝑉𝑡 + 𝛽 (1 − 𝑃𝑃𝑉𝑡 ))𝑛𝐷=1 . (6)

Lemma 2 (proof in Appendix B) shows that the fairness constraint

already defines the total utility, if 𝑛𝐷=1 is given. In other words: any

decision rule 𝑑 (𝑝, 𝑎) with 𝑛𝐷=1 that satisfies the constraint stated

in Equation 5 for a given 𝑃𝑃𝑉𝑡 is optimal. We thus end up with

two independent selection problems, one for each group, which

consists of finding a selection of individuals characterized by the

fact that their average probability equals 𝑃𝑃𝑉𝑡 . For each group 𝑎,

selections with different numbers 𝑛𝐴=𝑎 |𝐷=1 are possible. As long as

9
This technical assumption simplifies the notation. For finite group sizes, the equality

constraint in Equation 5 may not be met precisely for many values of 𝑃𝑃𝑉𝑡 , and the

fairness constraint might only be fulfilled approximately. Thus, the equality require-

ment of the FC has to be softened into approximate equality. However, the proofs are

also valid for an approximate version of equality.

the predefined 𝑛𝐷=1 is met, the group membership of the selected

individuals does not matter for the resulting total utility. Hence,

there may be several solutions to the optimization problem that

differ regarding the number of individuals selected per group (i.e.,

representing different combinations of (𝑛𝐴=0 |𝐷=1, 𝑛𝐴=1 |𝐷=1)), with

𝑛𝐴=0 |𝐷=1 + 𝑛𝐴=1 |𝐷=1 = 𝑛𝐷=1. Note that most of these solutions

violate the group fairness metric statistical parity while still meeting

the fairness criterion of PPV parity.

We now analyze case II, where 𝑛𝐷=1 is not predefined. Lemma 2

also leads to another important result: For values 𝑃𝑃𝑉𝑡 for which

𝛼𝑃𝑃𝑉𝑡 + 𝛽 (1 − 𝑃𝑃𝑉𝑡 ) < 0, a decision maker who wants to max-

imize the total utility should minimize 𝑛𝐷=1, thus selecting only

one individual from each group, yielding a total utility of �̃� =

2(𝛼𝑃𝑃𝑉𝑡 + 𝛽 (1 − 𝑃𝑃𝑉𝑡 )) for a binary protected attribute. In the

following, we thus assume that 𝛼𝑃𝑃𝑉𝑡 + 𝛽 (1 − 𝑃𝑃𝑉𝑡 ) > 0. Again

we assume that the size of both groups is large but finite. Lemma 2

shows that, under these assumptions, the decision maker’s goal

is to find the selection that satisfies the constraint 𝑃𝑃𝑉 = 𝑃𝑃𝑉𝑡
with the maximum 𝑛𝐷=1. Theorem 3 specifies the solution of this

optimization problem (which can be solved independently for each

group):

Theorem 3. For any given 𝑃𝑃𝑉𝑡 , the optimal fair decision rules
𝑑∗ (i.e., decision rules that maximize �̃� while satisfying 𝑃𝑃𝑉 = 𝑃𝑃𝑉𝑡 )
take the following form:

𝑑∗𝑖 =


1, for 𝑝𝑖 ≥ 𝜏𝑎

0, otherwise

}
for 𝑃𝑃𝑉𝑡 > 𝐵𝑅𝐴=𝑎

1, for 𝑝𝑖 ≤ 𝜏𝑎

0, otherwise

}
for 𝑃𝑃𝑉𝑡 < 𝐵𝑅𝐴=𝑎,

(7)

where 𝜏𝑎 denote different group-specific constants and 𝐵𝑅𝐴=𝑎 denotes
group 𝑎’s base rate (BR) which is defined as the ratio of individuals
belonging to the positive class (𝑌 = 1) in a group: 𝐵𝑅𝐴=𝑎 = 𝑃 [𝑌 =

1|𝐴 = 𝑎] = 1

𝑛𝐴=𝑎

∑
𝑖∈𝑆𝑎

𝑝𝑖 .

Proof. We begin with the case 𝑃𝑃𝑉𝑡 < 𝐵𝑅𝐴=𝑎 . We define a

group-specific function 𝑔1 (𝑛𝐴=𝑎 |𝐷=1), defined as the minimum

value of PPV among all decision rules
®𝑑 with a specified 𝑛𝐴=𝑎 |𝐷=1,

i.e., 𝑔1 (𝑛𝐴=𝑎 |𝐷=1) = min

®𝑑
1

𝑛𝐴=𝑎 |𝐷=1

∑
𝑝𝑖𝑑𝑖 . Obviously, 𝑔1 (𝑛𝐴=𝑎 |𝐷=1)

is given by selecting the 𝑛𝐴=𝑎 |𝐷=1 individuals with the smallest

values of 𝑝 . The function 𝑔1 (𝑛) for 𝑛 = 1, ..., 𝑛𝐴=𝑎 is monotonously

increasing, with 𝑔1 (1) = 0
10

and 𝑔1 (𝑛𝐴=𝑎) = 𝐵𝑅𝐴=𝑎 . It is now easy

to see that solving the equation 𝑔1 (𝑛) = 𝑃𝑃𝑉𝑡 w.r.t. 𝑛 yields the

maximum possible value 𝑛 that meets the PPV condition: Assume

that there was a value𝑚 > 𝑛 for which a decision rule exists such

that 𝑃𝑃𝑉 = 𝑃𝑃𝑉𝑡 . As 𝑔1 is monotonically increasing, this implies

𝑚 ≤ 𝑛, which is a contradiction. Thus, for the case 𝑃𝑃𝑉𝑡 < 𝐵𝑅𝐴=𝑎 ,

the maximum achievable 𝑛𝐴=𝑎 |𝐷=1 with
1

𝑛𝐴=𝑎 |𝐷=1

∑
𝑝𝑖𝑑𝑖 = 𝑃𝑃𝑉𝑡 in

the space of all possible decision rules is achieved by selecting all in-

dividuals with 𝑝𝑖 ≤ 𝜏𝑎 . The corresponding upper-bound threshold

𝜏𝑎 is given by the unique solution of 𝑔1 (𝑛) = 𝑃𝑃𝑉𝑡 .

For 𝑃𝑃𝑉𝑡 > 𝐵𝑅𝐴=𝑎 , an analogous argumentation holds by intro-

ducing a function 𝑔2 (𝑛𝐴=𝑎 |𝐷=1) = max

®𝑑
1

𝑛𝐴=𝑎 |𝐷=1

∑
𝑝𝑖𝑑𝑖 . This is a

10
Recall that we consider a limit of very large populations, so the individual with the

lowest 𝑝𝑖 is characterized by 𝑝𝑖 = 0. For 𝑛 = 1, the minimum PPV value is achieved

by selecting just this individual.
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monotonically decreasing function with 𝑔2 (1) = 1 and 𝑔2 (𝑛𝐴=𝑎) =
𝐵𝑅𝐴=𝑎 . The unique solution of𝑔2 (𝑛) = 𝑃𝑃𝑉𝑡 yields the lower-bound

threshold 𝜏𝑎 that meets the PPV condition. □

Finally, we perform the second step of the solution: from a dis-

cretization of all 𝑃𝑃𝑉 , for which a solution exists, we choose the

one that (in combination with the corresponding 𝑛𝐷=1) maximizes

the total utility. Thereby, every 𝑛𝐷=1 is composed of the optimal

selections 𝑛𝐴=𝑎 |𝐷=1 for all groups 𝑎 ∈ 𝐴, as elaborated in the first

step of the solution.

We provide an analogous solution for the optimal decision rules

satisfying FOR parity in Appendix C.

3.5 Optimal Decision Rules under Sufficiency
Based on the solutions presented above, we now describe the deci-

sion rules that maximize the decision maker’s utility while satisfy-

ing sufficiency (requiring PPV parity and FOR parity). This gives

the constrained optimization problem:

argmax

𝑑

�̃� =
∑︁
𝑖∈𝑆

�̃�𝑖

subject to

1

𝑛𝐴=0 |𝐷=1

∑︁
𝑗 ∈𝑆0

𝑝 𝑗𝑑 𝑗 =
1

𝑛𝐴=1 |𝐷=1

∑︁
𝑗 ∈𝑆1

𝑝 𝑗𝑑 𝑗

1

𝑛𝐴=0 |𝐷=0

∑︁
𝑗 ∈𝑆0

𝑝 𝑗 (1 − 𝑑 𝑗 ) =
1

𝑛𝐴=1 |𝐷=0

∑︁
𝑗 ∈𝑆1

𝑝 𝑗 (1 − 𝑑 𝑗 ),

(8)

where the first constraint represents PPV parity and the second

constraint ensures FOR parity. Similar to our PPV parity solution,

we also proceed in two steps for optimal decision rules satisfying

sufficiency. First, we derive the optimal decision rules for a given

value of 𝑃𝑃𝑉 = 𝑃𝑃𝑉𝑡 . Second, we solve the optimization problem

by choosing a PPV-FOR combination that maximizes the decision

maker’s utility.

We start with an optimal decision rule satisfying PPV parity

(see Equation 7) and then add the second constraint (requiring

FOR parity). Recall that a decision rule splits this group into those

selected (𝐷 = 1) and those not selected (𝐷 = 0). Thus, we can write:∑︁
𝑖∈𝑆𝑎

𝑝𝑖 =
©«
∑︁
𝑖∈𝑆𝑎

𝑝𝑖 (1 − 𝑑𝑖 )ª®¬ + ©«
∑︁
𝑖∈𝑆𝑎

𝑝𝑖𝑑𝑖
ª®¬ . (9)

As we specified 𝑃𝑃𝑉𝐴=𝑎 = 𝑃𝑃𝑉𝑡 , PPV parity is satisfied. Thus, this

gives:

𝑛𝐴=𝑎𝐵𝑅𝐴=𝑎 = 𝑛𝐴=𝑎 |𝐷=0𝐹𝑂𝑅𝐴=𝑎 + 𝑛𝐴=𝑎 |𝐷=1𝑃𝑃𝑉𝑡 . (10)

With 𝑛𝐴=𝑎 |𝐷=0 = 𝑛𝐴=𝑎 − 𝑛𝐴=𝑎 |𝐷=1 and some reformulation, we

get:

𝐹𝑂𝑅𝐴=𝑎 =
𝑛𝐴=𝑎𝐵𝑅𝐴=𝑎 − 𝑛𝐴=𝑎 |𝐷=1𝑃𝑃𝑉𝑡

𝑛𝐴=𝑎 − 𝑛𝐴=𝑎 |𝐷=1

. (11)

Thus, for a given 𝑃𝑃𝑉𝑡 , the corresponding group-specific 𝐹𝑂𝑅𝐴=𝑎
just depends on 𝑛𝐴=𝑎 |𝐷=1, because 𝑛𝐴=𝑎 and 𝐵𝑅𝐴=𝑎 are given by

the group 𝑎’s population. For groups with different probability dis-

tributions, 𝐹𝑂𝑅𝐴=0 and 𝐹𝑂𝑅𝐴=1 are usually different if just PPV

parity is enforced. Hence, to satisfy sufficiency, at least one of the

two groups must deviate from their optimal solution (under PPV

parity) to ensure that the FORs of the two groups are equal. Most

importantly, this deviation must not change the group’s PPVs so

that the PPV parity constraint still holds (with 𝑃𝑃𝑉 = 𝑃𝑃𝑉𝑡 ). Let the

solution space consist of all combinations of 𝑃𝑃𝑉 and 𝐹𝑂𝑅 that can

be achieved by all groups, based on the groups’ probability distri-

butions. We now show how this solution space can be constructed

for one or for more groups.

As shown in Equation 10, the 𝑃𝑃𝑉 and the 𝐹𝑂𝑅 always lie on

different sides of the BR, because 𝑛𝐴=𝑎 = 𝑛𝐴=𝑎 |𝐷=0 + 𝑛𝐴=𝑎 |𝐷=1

and 𝐵𝑅𝐴=𝑎, 𝐹𝑂𝑅𝐴=𝑎, 𝑃𝑃𝑉𝑡 ∈ [0, 1]. Therefore, if 𝑃𝑃𝑉 > 𝐵𝑅𝐴=𝑎 , the

group’s 𝐹𝑂𝑅𝐴=𝑎 must take a value below 𝐵𝑅𝐴=𝑎 and vice versa. Let

𝐹𝑎 (𝑃𝑃𝑉𝐴=𝑎) be a group-specific function defined as a group 𝑎’s

𝐹𝑂𝑅𝐴=𝑎 that results from maximizing 𝑛𝐴=𝑎 |𝐷=1 for a specific value

of 𝑃𝑃𝑉 . As shown in the proof of Theorem 3, varying the number

of selected individuals without changing the group’s PPV lets us

specify the range of values a group’s FOR can take. In this way,

we can derive the range of values the 𝐹𝑂𝑅 can take for any 𝑃𝑃𝑉 ,

which will then allow us to construct the solution space.

In Figure 1a, the solution space is represented as a white area

and the function 𝐹𝑎 (𝑃𝑃𝑉𝐴=𝑎) is illustrated with a blue line. For

example, for a given 𝑃𝑃𝑉 ′
, point A is achieved by selecting just

one individuals with a probability 𝑝𝑖 = 𝑃𝑃𝑉 , point B is achieved

by maximizing 𝑛𝐴=𝑎 |𝐷=1. The green line in Figure 1a visualizes the

combinations resulting from applying optimal decision rules for

a specific 𝑃𝑃𝑉 : As we stated in Theorem 3, it is optimal to apply

a lower-bound threshold and if 𝑃𝑃𝑉 ∈ [𝐵𝑅𝐴=𝑎, 1] and an upper-

bound threshold is optimal if 𝑃𝑃𝑉 ∈ [𝑃𝑃𝑉0, 𝐵𝑅𝐴=𝑎], where 𝑃𝑃𝑉0
denotes the 𝑃𝑃𝑉 for which 𝛼𝑃𝑃𝑉 +𝛽 (1−𝑃𝑃𝑉 ) = 0. If 𝑃𝑃𝑉 < 𝑃𝑃𝑉0,

it is optimal to minimize the number of selected individuals (see

Section 3.4). The intuition to construct a solution that satisfies

sufficiency is the following: under PPV parity, for a given 𝑃𝑃𝑉 ′
, it is

optimal to apply a decision rule leading to a PPV-FOR combination

lying at point B. However, the FOR that this decision rule yields

might not lie within the other group’s solution space, making a

deviation in point A necessary.

Let us now generalize this to two (or more) groups. To construct

the joint solution space of several groups, the individual solution

spaces can be laid on top of each other. Figure 1b illustrates this for

two groups, 0 (blue) and 1 (orange). The two white areas include

all PPV-FOR combinations that are feasible for both groups. Inside

this resulting smaller solution space, the optimal 𝐹𝑂𝑅 for each

possible 𝑃𝑃𝑉 can be found (as visualized with the green line in

Figure 1b), which satisfies sufficiency. Enforcing PPV parity does not

result in a solution that also satisfies FOR parity simply by chance,

apart from one exceptional case: That is, only if 𝑃𝑃𝑉 = 𝑃𝑃𝑉 ∗
,

where 𝑃𝑃𝑉 ∗
denotes the specific 𝑃𝑃𝑉 for which the two groups’

lines representing their optimal decision satisfying PPV parity (i.e.,

𝐹0 (𝑃𝑃𝑉𝐴=0) and 𝐹1 (𝑃𝑃𝑉𝐴=1)) intersect, the decision rule satisfying

PPV parity also satisfies sufficiency. If 𝑃𝑃𝑉 ≠ 𝑃𝑃𝑉 ∗
, one of the two

groups must deviate from their optimal PPV-FOR combination in

order to match the other group’s 𝐹𝑂𝑅 and to ensure that not only

PPV parity but also FOR parity is satisfied. Visually, this deviation

(representing a change in the FOR for a remaining value of PPV)

can be perceived as a vertical move away from the optimal PPV-

FOR combination (satisfying PPV parity) towards the edge of the

solution space (see 𝐶 → 𝐷 or 𝐸 → 𝐹 in Figure 1b).

The construction of the solution space (as visualized in Figure 1b)

directly generalizes to cases with any number of groups, i.e., cases

in which the sensitive attribute is a set consisting of more than two
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(a) Solutions space: possible (white area) and optimal (green line)
PPV-FOR combinations for one group

(b) Overlying solutions spaces: possible (white area) and optimal
(green line) PPV-FOR combinations for two groups

Figure 1: PPV-FOR plot: utility-maximizing PPV-FOR combinations for specific values of 𝑃𝑃𝑉

different values. Theorem 4 shows that this makes a full satisfaction

of within-group fairness impossible.

Theorem 4. Optimal decision rules 𝑑∗ that satisfy sufficiency lead
to within-group unfairness in all but one of the groups if a solution
exists.

Proof. Let us first consider a binary protected attribute 𝐴.

The intersection of the group-specific solution spaces defines all

PPV-FOR combinations for which a solution exists. If the devi-

ating group’s 𝐹𝑂𝑅𝐴=𝑎 > 𝐵𝑅𝐴=𝑎 > 𝑃𝑃𝑉 , their 𝐹𝑂𝑅𝐴=𝑎 must

match the other group’s BR (𝐸 → 𝐹 in Figure 1b). Otherwise, if

𝐹𝑂𝑅𝐴=𝑎 < 𝐵𝑅𝐴=𝑎 < 𝑃𝑃𝑉 , their 𝐹𝑂𝑅 must match the other group’s

𝐹𝑎 (𝑃𝑃𝑉𝐴=𝑎) (𝐶 → 𝐷 in Figure 1b). This deviation is necessary

to satisfy sufficiency and can be achieved by adjusting 𝑛𝐴=𝑎 |𝐷=1.

This represents an equivalent problem as maximizing the utility

under PPV parity with case I – as we discussed it in Section 3.4.

Hence, the deviating group’s optimal decision rule can take many

forms – e.g., one could apply a stochastic decision rule that flips

a coin to set 𝐷 = 1 with probability 𝑞 for all individuals with

𝑝 > 𝜏𝑎 , where 𝜏𝑎 is a group-specific constant. However, instead

of a simple lower- or upper-bound threshold but, are more com-

plex decision rule is required in order to ensure that the correct

number of individuals are selected. Thus, this always leads to un-

fairness within this group to achieve sufficiency between the groups:
∃𝑖, 𝑗 ∈ 𝑆𝑎 (𝑝𝑖 > 𝑝 𝑗 ∧ 𝑑𝑖 = 0 ∧ 𝑑 𝑗 = 1). □

Notice that any PPV-FOR combination lying inside the solution

space but not at the edge is Pareto dominated because there is an-

other point with the same 𝑃𝑃𝑉 that results in a higher utility.
11

The

green line in Figure 1b represents the optimal PPV-FOR combina-

tions for specific values of 𝑃𝑃𝑉 . Any number of solution spaces can

11
If 𝐹𝑂𝑅𝐴=𝑎 < 𝐵𝑅𝐴=𝑎 < 𝑃𝑃𝑉 , this point lies on one of the groups’ 𝐹𝑎 (𝑃𝑃𝑉𝐴=𝑎) ,

else, this point is situated on one of the groups’ BR.

be laid on top of each other, which is why this finding extends di-

rectly to non-binary sensitive attributes. Though, the more groups

are considered (assuming that the groups’ 𝐹𝑎 functions and their

BRs differ), the smaller the solution space becomes. And, the smaller

the solution space, the bigger the required deviation, which pro-

duces more within-group unfairness. An area of size 0 is possible

and would imply that sufficiency cannot be satisfied.

Finally, as we can compute the utility resulting from applying

an optimal decision rule satisfying sufficiency for any value of

𝑃𝑃𝑉 , we can solve the constrained maximization problem stated in

Equation 8 by choosing the optimal PPV-FOR combination (i.e., the

optimal point lying on the green line in Figure 1b).

4 ILLUSTRATIVE EXAMPLES
We now illustrate the solutions (that we derived theoretically in

the previous section) to showcase the decisions that result from a

utility-maximizing decision maker who wants to satisfy different

fairness constraints (PPV parity, FOR parity, sufficiency). First, we

demonstrate the form that these optimal decision rules take for

different synthetic populations. Second, we apply the solutions to

real data.
12

To present our results, we use a simple tuple notation (𝜏1, 𝜏2)
(where 𝜏1 denotes the lower- and 𝜏2 the upper-bound), meaning

that any individuals with a probability 𝑝 ∈ [𝜏1, 𝜏2] is assigned the

decision 𝐷 = 1 and 𝐷 = 0 otherwise.

4.1 Synthetic Data Example
For three different populations, all of which are composed of two

groups (1 and 2) of individuals with probabilities drawn from a

Beta distribution, we investigate the form the optimal fair decision

rules take. Table 2 list the detailed parameters for all populations.

12
Data and code to reproduce our results are available at

https://github.com/joebaumann/fair-prediction-based-decision-making.

https://github.com/joebaumann/fair-prediction-based-decision-making
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Notice that the groups are equal in size in populations 1 and 2, but

in population 3, group 1 is much smaller (just 10% the size of group

0). In all populations, group 0 is disadvantaged, meaning that it has

a lower base rate (BR) than group 1: 𝐵𝑅𝐴=0 < 𝐵𝑅𝐴=1 (just slightly

lower in population 1, substantially lower in populations 2 and 3).

We present the solutions for decision rules that satisfy a fairness

constraint (PPV parity, FOR parity, or sufficiency) while optimizing

the decision maker’s utility
13
, which is defined as follows for all

three populations:

𝑈 =
∑︁
𝑖∈𝑆

𝑢𝑖 , for 𝑢𝑖 =

{
7𝑝𝑖 − 3(1 − 𝑝𝑖 ), for 𝐷 = 1

0, for 𝐷 = 0

(12)

Hence, an individual’s expected utility depends on the estimated re-

payment probability 𝑝 . Absent any fairness constraint, it is optimal

for the bank to grant a loan to all individuals whose 𝑝 > 𝑡0 = 0.3

(as indicated with the red dashed line in the Figures 2a-2c).

Figure 2 visualizes the probability densities of 𝑝 along with the

optimal decision rules under PPV parity, which are different for each

of the three populations. Applying a single threshold 𝑡0 results in

unequal 𝑃𝑃𝑉𝑠 for all of the three cases (see 𝑃𝑃𝑉𝑡0 in Figure 2). The

solid green lines indicate the thresholds 𝑡1 and 𝑡2 that correspond

to the optimal decision rule while satisfying PPV parity. With this

fairness constraint, 𝑃𝑃𝑉𝑠 are equalized (see 𝑃𝑃𝑉𝑡1,𝑡2 in Figure 2).

But, the optimal decision rule used to achieve this depends on the

population:

• Population 1: Compared to the optimal solution without

fairness (𝑡0), group 0’s threshold is decreased while group

1’s threshold is increased (𝑡
𝑔𝑟𝑜𝑢𝑝 0
1

< 𝑡0 < 𝑡
𝑔𝑟𝑜𝑢𝑝 1
1

) in order

to equalize the two groups’ 𝑃𝑃𝑉𝑠 .14

• Population 2: Unlike in population 1, in population 2, group

0’s 𝑃𝑃𝑉𝑡0 is lower than the one of group 1. This means

that the disadvantaged group 0 is held to a higher standard

(𝑡
𝑔𝑟𝑜𝑢𝑝 0
1

> 𝑡0 > 𝑡
𝑔𝑟𝑜𝑢𝑝 1
1

) to satisfy PPV parity while maxi-

mizing the utility. This result is likely to occur in practice

because, with the single threshold (𝑡0) rule that is used with-

out any fairness constraint, the disadvantaged group’s 𝑃𝑃𝑉𝑡0
is lower for groups with similar distributions.

• Population 3: Due to the mere difference in the group sizes

(all else equal to population 2), it is much more “costly” to

change group 0’s threshold (relatively to group 1). Thus, in

this situation, it is optimal to deviate less from group 0’s un-

constrained optimum. This results in an optimal 𝑃𝑃𝑉 = 0.56,

which is lower than 𝐵𝑅𝐴=1. For this reason, it is optimal to

apply an upper-bound threshold for group 1 (set 𝑡
𝑔𝑟𝑜𝑢𝑝 1
1

= 0

and 𝑡
𝑔𝑟𝑜𝑢𝑝 1
2

< 1), i.e., deliberately disregarding those in-

dividuals with the highest probability of belonging to the

positive class 𝑌 = 1. This leads to an extreme form of within-

group unfairness. It means that a utility-maximizing decision

maker would “sacrifice” the best individuals (with a proba-

bility between 𝑡
𝑔𝑟𝑜𝑢𝑝 1
2

and 1) of the smaller group 1 in favor

of “keeping” individuals with a probability slightly above

13
This hypothetical utility function represents a situation where a successful loan

makes 7, but a default costs the bank 3.

14
This result is not surprising as it is conceptually equivalent to solutions for other

group fairness metrics.

(a) Population 1

(b) Population 2

(c) Population 3

Figure 2: Utility maximization under PPV parity (synthetic)
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Table 2: Parameters and solutions of the synthetic data example. The acronyms stand for group size (𝑛), group distribution
(𝑃), base rate 𝐵𝑅 (which results from 𝑛 and 𝑃), optimal threshold (𝑡0) and resulting PPV (𝑃𝑃𝑉𝑡0) for unconstrained utility
maximization, optimal thresholds (𝑡1, 𝑡2) and resulting PPV (𝑃𝑃𝑉𝑡0,𝑡1) for utility maximization under PPV parity.

Population 1 Population 2 Population 3
Group 0 Group 1 Group 0 Group 1 Group 0 Group 1

parameters

𝑛 20,000 2,000

𝑃 Beta(1.9, 1.35) Beta(3, 2) Beta(2, 3) Beta(3, 2) Beta(2, 3) Beta(3, 2)

𝐵𝑅 0.58 0.60 0.39 0.60 0.39 0.60

solutions

unconstr. 𝑡0 0.30

𝑃𝑃𝑉𝑡0 0.65 0.63 0.51 0.63 0.51 0.63

PPV parity

(𝑡1, 𝑡2) (0.27, 1) (0.33, 1) (0.44, 1) (0.08, 1) (0.37, 1) (0, 0.84)

𝑃𝑃𝑉𝑡1,𝑡2 0.64 0.60 0.56

𝑡
𝑔𝑟𝑜𝑢𝑝 0
2

in the bigger group 0. In the loan granting scenario,

this would imply not granting a loan to those individuals

of group 1 that are most likely to repay. At the same time,

group 1’s individuals with the lowest repayment probability

(i.e., those with a high probability of default) are granted a

loan.

This example shows clearly that the optimal decision rules depend

on the groups’ probability distributions. In some cases, this can lead

to counter-intuitive solutions: it is possible that the disadvantaged

group is held to a higher standard or that the most promising

individuals of the advantaged group are omitted.

We present additional results (i.e., optimal decision rules under

FOR parity and under sufficiency) for the synthetic data example

in Appendix D.

4.2 Real-World Example: COMPAS
We now illustrate our results for the recidivism prediction case,

using the ProPublica recidivism dataset
15
, which includes data from

the COMPAS tool collected by [1]. We trained a logistic regression

(based on the implementation by scikit-learn [40]) to predict prob-

abilistic recidivism risk scores (achieving an overall accuracy of

0.69).

A decision maker has to transfer a risk score into a decision.

This involves weighing the severity of FP and FN in the utility func-

tion. We present the utility-maximizing solutions for three possible

settings, each one specified by different utility weights FP and FN,

while TP=TN=1 is kept constant. These different utility functions

are paired with different fairness requirements (no fairness con-

straint, PPV parity, and FOR parity) w.r.t. the protected attribute

race, which can take two values, Caucasian (𝑐) or non-Caucasian (𝑛𝑐).
The class𝑌 = 1 denotes a recidivist, and each individual must either

be detained (𝐷 = 1) or released (𝐷 = 0). Figure 3 shows the score

distributions of the two groups. The base rate of non-Caucasians

(0.49) is higher than the one of Caucasians (0.4), indicating that

non-Caucasians more likely to be predicted as being of high risk to

recidivate, on average. The specified utility weights and the result-

ing optimal decisions for the different fairness requirements are

15
We used the already pre-processed dataset named “propublica-

recidivism_numerical.csv,” which can be accessed here: https://github.com/algofairness/

fairness-comparison/tree/master/fairness/data/preprocessed. A detailed description of

the COMPAS dataset and the use case is provided by [17] and [1].

presented in Table 3. The (un)constrained optimal decision rules

differ largely across the three cases:

• Case 1 represents a situation where a decision maker is indif-

ferent about what is worse: incorrectly classifying an inno-

cent person as guilty or releasing a defendant who goes on to

recidivate. Thus, equal weights for FP and FN are chosen. For

such a case, a lower-bound threshold of 𝑡𝑢1 = 0.5 is optimal

from the decision maker’s perspective. However, the two

fairness metrics are not just satisfied by chance, because this

threshold leads to different FORs and PPVs for the the two

groups (𝑃𝑃𝑉𝐴=𝑐 < 𝑃𝑃𝑉𝐴=𝑛𝑐 and 𝐹𝑂𝑅𝐴=𝑐 < 𝐹𝑂𝑅𝐴=𝑛𝑐 ).

• Case 2 showcases decision rules representing a shift to-

wards protecting the innocent, therefore, using a much lower

weight (-10) for FP. For the unconstrained setting, this re-

sults in fewer detained individuals overall, with an optimal

lower-bound threshold of 𝑡𝑢2 = 0.85. As the two groups’

distributions are similar above this threshold, their PPVs are

almost the same, which is why just a slight adjustment of

the group-specific thresholds is needed to satisfy PPV par-

ity. In contrast, very different group-specific thresholds are

optimal to satisfy FOR parity. Due to the lower BR of the

non-Caucasian group (see the right-skewed distribution in

Figure 3), it is optimal to release all Caucasians with a risk

score below 0.98. This makes sure that released individuals

are equally likely to recidivate across groups.

• Case 3 resembles a decision maker who cares more about

punishing guilty than protecting innocent individuals, which

is represented with a large negative value for FN. Absent

any fairness constraint, this results in a lower optimal lower-

bound threshold (𝑡𝑢3 = 0.15), leading to more overall de-

tentions. As opposed to case 2, this results in almost equal

FORs (because the two groups’ distributions are similar be-

low the unconstrained threshold) but the two groups’ PPVs

differ largly. To satisfy PPV parity, it is optimal to detain

almost all non-Caucasians (those with a risk score above

𝜏1 = 0.0516) while detaining a much smaller fraction of Cau-

casians (𝜏1 = 0.27).

16
If the non-Caucasian group were much smaller, this would result in an upper-bound

threshold, i.e., the non-Caucasian with the highest recidivism risk would be released –

which is similar to group 1 in the population 3’s result in the synthetic example (see

Figure 2c).

https://github.com/algofairness/fairness-comparison/tree/master/fairness/data/preprocessed
https://github.com/algofairness/fairness-comparison/tree/master/fairness/data/preprocessed
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Figure 3: Score distributions by race and optimal unconstrained decision rules (𝑡𝑢 ) for different utility functions (COMPAS)

Table 3: Optimal decision rules (COMPAS) for utility functions with different weights (TP, FP, FN, TN) paired with different
fairness requirements (no fairness constraint, PPV parity, and FOR parity). The acronyms stand for base rate (BR), the optimal
threshold (𝑡𝑢 ) for unconstrained utility maximization, and the optimal thresholds (𝑡1, 𝑡2) for utility maximization under fairness.

Case 1 Case 2 Case 3
Caucasian non-Caucas. Caucasian non-Caucas. Caucasian non-Caucas.

BR 0.40 0.49 0.40 0.49 0.40 0.49

TP, FP, FN, TN 1, -1, -1, 1 1, -10, -1, 1 1, -1, -10, 1

unconstr.

𝑡𝑢 𝑡𝑢1 = 0.50 𝑡𝑢2 = 0.85 𝑡𝑢3 = 0.15

PPV 0.65 0.68 0.92 0.92 0.42 0.50

FOR 0.30 0.34 0.38 0.46 0.11 0.11

PPV parity

(𝑡1, 𝑡2) (0.52, 1) (0.49, 1) (0.84, 1) (0.85, 1) (0.27, 1) (0.05, 1)

PPV 0.67 0.92 0.49

FOR 0.30 0.33 0.38 0.46 0.18 0.03

FOR parity

(𝑡1, 𝑡2) (0.57, 1) (0.47, 1) (0.98, 1) (0.62, 1) (0.16, 1) (0.15, 1)

PPV 0.71 0.66 0.99 0.76 0.43 0.50

FOR 0.32 0.40 0.11

Without fairness-enforcing restrictions, the same prediction model

can turn out to be fair or unfair, w.r.t. a specific fairness metrics,

depending on the utility function. For example, in case 2, PPV parity

is met in the unconstrained case, whereas there is a huge difference

in PPVs in case 3. Note, however, that this cannot be generalized:

there is no guarantee that PPV parity or FOR parity are met in the

unconstrained case for a given utility function, as this depends on

the groups’ probability distributions. Thus, assuming that a predic-

tion model is fair if it meets PPV parity or FOR parity is misleading

because this only holds for specific utility functions and probability

distributions but not in general. This contradicts the approach sug-

gested by Northpointe, who claim that PPV and FOR are the only

relevant measures to determine the treatment disparity of such a

tool for different groups [11]. Interestingly, for the COMPAS exam-

ple, introducing fairness constraints (in the form of PPV parity or

FOR parity) leads to a lower group-specific threshold for the non-

Caucasians, resulting in a higher fraction of detained individuals

for the disadvantaged group – which is similar to the population

3’s result in the synthetic example (see Figure 2b).
17

Further, in

some cases, it is optimal to release almost all individuals of the

advantaged group or to detain almost all individuals of the disad-

vantaged group. This is counter-intuitive as one would expect that

introducing a fairness constraint should favor the disadvantaged

group.

5 CONCLUSIONS
In this paper, we analyze common group fairness metrics that have

been proposed to mitigate the unfairness of algorithmic decision

making systems.We formulate algorithmic fairness as a constrained

optimization problem representing a decision maker who wants to

maximize the total utility while also satisfying a fairness constraint.

A similar solution has been provided by [10, 20] for the group

fairness metrics (conditional) statistical parity, TPR parity, and FPR

parity – all leading to group-specific lower-bound thresholds. In

17
There is just one exception to this: enforcing FOR parity in case 2 leads to a slightly

higher threshold for the disadvantaged group, which is similar to the population 1’s

result in the synthetic example (see Figure 2a).
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contrast to these fairness metrics, we find that for the group fairness

metrics PPV parity and FOR parity, optimal decision rules take the

form of group-specific lower-bound or upper-bound thresholds.

This is counter-intuitive as it means that, in certain situations, it

can be optimal for decision makers to select the ‘worst’ individuals

of one group and omit the most promising ones. In the loan granting

scenario, for one of the groups, this would mean that individuals

who are most likely to default are granted a loan, whereas those

who are most likely to pay back their loan are not granted one.

Similarly, to achieve PPV parity in recidivism risk prediction, it

can be optimal to release defendants with the highest recidivism

risk in one of the groups. Additionally, our work shows that there

is a trade-off between the group fairness criterion sufficiency and

within-group fairness. Namely, to satisfy sufficiency, it is optimal

to sacrifice within-group fairness for all but one of the groups.

Experts increasingly call for fairer algorithms. Considering these

byproducts of the group fairness metrics PPV parity, FOR parity,

and sufficiency, we emphasize that these potential consequences

must be considered when imposing such fairness criteria on utility-

maximizing decision makers. We hope that our findings foster the

discussion of fair algorithmic decision making and, in particular,

support policymakers who find themselves in the position where

they need to choose a specific definition of fairness.
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A UTILITY-WEIGHTED CONFUSION MATRIX
Table 4 shows a confusion matrix with the parameters (𝑢11, 𝑢12,

𝑢21, and 𝑢22) used to weight the possible outcomes.

Table 4: Confusion matrix weighted with utilities

𝑌 = 1 𝑌 = 0

𝐷 = 1 𝑢11 𝑢12
𝐷 = 0 𝑢21 𝑢22

B PROOF OF LEMMA 2
Recall that the number of individuals that are assigned a positive

decision (𝑛𝐷=1) can be written as

∑
𝑖∈𝑆 𝑑𝑖 and that the positive

predictive value (PPV) is defined as:

𝑃𝑃𝑉 = 𝑃 [𝑌 = 1|𝐷 = 1] = 1

𝑛𝐷=1

∑︁
𝑖∈𝑆

𝑝𝑖𝑑𝑖 .

Suppose that 𝑛𝐷=1 is predefined and that the 𝑃𝑃𝑉 is given. For

binary group membership 𝐴, the total utility �̃� can be written as:

�̃� =
∑︁
𝑖∈𝑆

𝛽𝑑𝑖 + (𝛼 − 𝛽)
∑︁
𝑖∈𝑆

𝑝𝑖𝑑𝑖

= 𝛽𝑛𝐷=1 + (𝛼 − 𝛽) (𝑃𝑃𝑉𝑛𝐷=1)
= 𝛽𝑛𝐷=1 + 𝛼𝑃𝑃𝑉𝑛𝐷=1 − 𝛽𝑃𝑃𝑉𝑛𝐷=1

= (𝛼𝑃𝑃𝑉 + 𝛽 (1 − 𝑃𝑃𝑉 ))𝑛𝐷=1 .

Thus, for a given 𝑃𝑃𝑉 and a predefined selection capacity 𝑛𝐷=1,

the total utility is given, and any decision rule that satisfies the

constraint in Equation 5 is optimal.

C OPTIMAL DECISION RULES UNDER FOR
PARITY

In this section, we present the optimal solution for a utility-

maximizing decision maker that wants to satisfy the group fairness

metric false omission rate (FOR) parity. The FOR is defined as the

average probability of individuals with 𝐷 = 0 to have 𝑌 = 1, which

can be written as
1

𝑛𝐷=0

∑
𝑖∈𝑆

𝑝𝑖 (1 − 𝑑𝑖 ), where 𝑑𝑖 is a binary multi-

plier representing the decision that is made for an individual 𝑖 . The

fairness definition FOR parity requires this value to be the same

across groups. In the following, we interpret the decision problem

as a selection problem, however, this time denoting individuals with

𝐷 = 0 as “being selected.”

Again, the solution is also composed of two consecutive steps.

First, we derive the optimal decision rules 𝑑∗ for a simplified con-

straint: We assume that the FOR of both groups must be equal to a

predefined value 𝐹𝑂𝑅𝑡 ∈ [0, 1]. Then, we solve the full optimiza-

tion problem by maximizing the decision maker’s utility over all

possible values of 𝐹𝑂𝑅𝑡 .

We can translate this optimization problem into an equivalent

problem, defining 𝑢𝑖 as the relative utility gain when switching

the decision from 𝐷 = 1 to 𝐷 = 0. So, 𝑢𝑖 = 0 for 𝐷 = 1, and

𝑢𝑖 = −𝛼𝑝𝑖 − 𝛽 (1−𝑝𝑖 ) for 𝐷 = 0. Thus, the constrained optimization

problem has the form:

argmax

𝑑

𝑈 =
∑︁
𝑖∈𝑆

𝑢𝑖 (1 − 𝑑𝑖 )

subject to

1

𝑛𝐴=𝑎 |𝐷=0

∑︁
𝑗 ∈𝑆𝑎

𝑝 𝑗 (1 − 𝑑 𝑗 ) = 𝐹𝑂𝑅𝑡 , for 𝐹𝑂𝑅𝑡 ∈ [0, 1],

(C.13)

where 𝑆𝑎 is the set of all individuals of group 𝑎, 𝑛𝐴=𝑎 |𝐷=0 denotes

the number of individuals in group 𝑎 with 𝐷 = 0. Hence, the con-

straint describes a parity of the two groups’ FORs. Since the FOR

can only be defined if at least one individual is selected, we assume

𝑛𝐴=𝑎 |𝐷=0 ≥ 1 for each group. The solution for the optimal decision

rules while satisfying FOR parity across groups is analogous to the

one under positive predictive value (PPV) parity (see Lemma 2 and

Theorem 3 in the Section 3.4).

We first analyze case I with a simplified fairness constraint,

where we assume that the FOR of both groups must be equal to a
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predefined value between 0 and 1, denoted by 𝐹𝑂𝑅𝑡 . Suppose that

𝑛𝐷=1 is predefined, which is equivalent to 𝑛𝐷=0 being predefined.

Similar to Lemma 2 (along with its proof in Appendix A), the total

utility for an optimal solution satisfying FOR parity is:

𝑈 = (−𝛼𝐹𝑂𝑅𝑡 − 𝛽 (1 − 𝐹𝑂𝑅𝑡 ))𝑛𝐷=0 . (C.14)

Following similar reasoning as in the case of PPV parity, we end

up with a conceptually identical solution for case I, where 𝑛𝐷=1

is predefined. Namely, for a given 𝐹𝑂𝑅𝑡 , the total utility 𝑈 is the

same for any solution under FOR parity. Any decision rule 𝑑 (𝑝, 𝑎)
with 𝑛𝐷=1 that satisfies the constraint stated in Equation C.13 for

a given 𝐹𝑂𝑅𝑡 is optimal. We thus end up with two independent

selection problems, one for each group, which consists of finding a

selection of individuals characterized by the fact that their average

probability equals 𝐹𝑂𝑅𝑡 . For each group 𝑎, selections with different

numbers 𝑛𝐴=𝑎 |𝐷=0 are possible. As long as the predefined 𝑛𝐷=0 is

met, the group membership of the selected individuals does not

matter for the resulting total utility. Hence, there may be several

solutions to the optimization problem that differ regarding the

number of individuals selected per group (i.e., representing different

combinations of (𝑛𝐴=0 |𝐷=0, 𝑛𝐴=1 |𝐷=0)), with𝑛𝐴=0 |𝐷=0+𝑛𝐴=1 |𝐷=0 =

𝑛𝐷=0. Note that most of these solutions violate the group fairness

metric statistical parity while still meeting the fairness criterion of

FOR parity.

We now analyze case II, where 𝑛𝐷=1 is not predefined. Equa-

tion C.14 directly shows that for values 𝐹𝑂𝑅𝑡 for which −𝛼𝐹𝑂𝑅𝑡 −
𝛽 (1−𝐹𝑂𝑅𝑡 ) < 0, a decision maker who wants to maximize the total

utility should minimize 𝑛𝐷=0, thus assigning the decision 𝐷 = 0

only to one individual from each group, yielding a total utility of

𝑈 = 2(−𝛼𝐹𝑂𝑅𝑡 − 𝛽 (1 − 𝐹𝑂𝑅𝑡 )) for a binary protected attribute. In

the following, we thus assume that −𝛼𝐹𝑂𝑅𝑡 − 𝛽 (1 − 𝐹𝑂𝑅𝑡 ) > 0.

Again we assume that the size of both groups is large but finite.

Above we showed that, under these assumptions, the decision

maker’s goal is to find the selection that satisfies the constraint

𝐹𝑂𝑅 = 𝐹𝑂𝑅𝑡 with the maximum 𝑛𝐷=0. Similarly to the solution for

PPV parity (see Theorem 3), the total utility𝑈 is maximized with

decision rules 𝑑∗ of the following form when applying FOR parity

as a fairness constraint:

𝑑∗𝑖 =


0, for 𝑝𝑖 ≥ 𝜏𝑎

1, otherwise

}
for 𝐹𝑂𝑅𝑡 > 𝐵𝑅𝐴=𝑎

0, for 𝑝𝑖 ≤ 𝜏𝑎

1, otherwise

}
for 𝐹𝑂𝑅𝑡 < 𝐵𝑅𝐴=𝑎,

(C.15)

where 𝜏𝑎 denote different group-specific constants and 𝐵𝑅𝐴=𝑎 de-

notes group 𝑎’s base rate (BR) which is defined as the ratio of

individuals belonging to the positive class (𝑌 = 1): 𝐵𝑅𝐴=𝑎 = 𝑃 [𝑌 =

1|𝐴 = 𝑎] = 1

𝑛𝐴=𝑎

∑
𝑖∈𝑆𝑎 𝑝𝑖 . The only difference to the solution under

PPV parity (see Equation 7) is the fact that decision rules of this

form focus on the optimal selection of individuals with 𝐷 = 0.

Finally, we perform the second step of the solution: from a dis-

cretization of all 𝐹𝑂𝑅, for which a solution exists, we choose the

one that (in combination with the corresponding 𝑛𝐷=0) maximizes

the total utility. Thereby, every 𝑛𝐷=0 is composed of the optimal

selections 𝑛𝐴=𝑎 |𝐷=0 for all groups 𝑎 ∈ 𝐴, as elaborated in the first

step of the solution.

D ADDENDUM TO THE SYNTHETIC DATA
EXAMPLE

Here we present additional results for the synthetic data example.

Based on the three populations we introduced in Section 4.1, we

show the resulting PPV and FOR for a utility-maximizing decision

maker who want to satisfy PPV parity, FOR parity, or sufficiency.
18

Figure 4 visualizes the three populations’ solution spaces con-

taining possible PPV-FOR combinations and the solutions that max-

imize utility – with or without the (relaxed) fairness constraints.

Absent any fairness constraint, it is optimal for the bank to grant a

loan to all individuals whose 𝑝 > 𝑡0 = 0.3. This is indicated with a

group-specific cross (orange for group 0 and blue for group 1) in

the Figures 4a-4c.

In populations 1 and 2, 𝑃𝑃𝑉 > 𝑚𝑎𝑥 (𝐵𝑅𝐴=𝑎) and 𝐹𝑂𝑅 <

𝑚𝑖𝑛(𝐵𝑅𝐴=𝑎), thus, individuals with higher probability are preferred
to those with lower probability. However, in population 3, the upper-

bound threshold used for group 1 leads to 𝑃𝑃𝑉𝑡1,𝑡2 < 𝐵𝑅𝐴=1 and

𝐹𝑂𝑅𝑡1,𝑡2 > 𝐵𝑅𝐴=1 under PPV parity. The optimal combinations

of 𝑃𝑃𝑉 and 𝐹𝑂𝑅 lie on 𝐹0 (𝑃𝑃𝑉𝐴=0), representing optimal PPV-

FOR combinations as introduced in Section 3.5, for group 0 (on

𝐹1 (𝑃𝑃𝑉𝐴=1) for group 1), both for the solutions satisfying either

PPV parity or FOR parity and for the solution without any fairness

constraint. As we can clearly see in all three populations, one group

needs to deviate from their optimal PPV-FOR combination to sat-

isfy sufficiency, resulting in within-group unfairness. For all three

populations in Figure 4, the advantaged group 1 is the one that

deviates in order to maximize utility while satisfying sufficiency.

However, this is not always the case as it depends on the utility

function.
19

18
Data and code to reproduce our results are available at

https://github.com/joebaumann/fair-prediction-based-decision-making.

19
There are situations in which the disadvantaged group must deviate, as can be seen

with those parts of the solution space that are bounded by 𝐹1 (𝑃𝑃𝑉 ) .

https://github.com/joebaumann/fair-prediction-based-decision-making
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(a) Population 1 (b) Population 2 (c) Population 3

Figure 4: Utility maximization under sufficiency or one of its relaxations for three different populations (synthetic)
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