
Priority-Driven Task Processing in UAV-Assisted
Software-Defined Edge Networks

Onur Kalinagac⇤§, Gürkan Gür ⇤, Fatih Alagöz §
⇤ Zurich University of Applied Sciences (ZHAW) InIT, Winterthur, Switzerland, name.surname@zhaw.ch

§Dept. of Computer Engineering, Bogazici University, Istanbul, Turkey, name.surname@boun.edu.tr

Abstract—For providing wireless connectivity and facilitating
a capacity boost under transient high service load situations, a
substitute or auxiliary fast-deployable network is instrumental.
Unmanned Aerial Vehicle (UAV) networks are well suited for
such needs owing to their high mobility and agility. This paper
considers a software-defined edge network consisting of UAVs
equipped with wireless access points, which serve mobile users
with latency-sensitive workload in an edge-to-cloud continuum
setting. It investigates the task offloading paradigm to provide
prioritized services via this on-demand aerial network. Accord-
ingly, a task processing optimization model is defined to minimize
the overall penalty calculated based on priority-weighted delay
values against a priori defined task deadlines. Since the defined
assignment problem is NP-hard, tailored heuristic models are
proposed and evaluated to study how the system performs under
different operating conditions.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) can facilitate a local
network infrastructure when a quickly deployable solution is
required. That may happen in situations such as short-term ad-
ditional capacity requirements, post-disaster communications
and dynamic data collection use cases [1]. In that regard, they
have three critical characteristics which make them useful [2].
Firstly, located in the sky, they have a higher probability of
connecting ground nodes and other UAVs via Line-of-Sight
(LoS) links compared to terrestrial vehicles and infrastructure.
Secondly, contrary to stationary ground infrastructure, UAVs
can be dynamically deployed in response to emerging real-
time requirements. Thirdly, a swarm of UAVs can construct
scalable multi-UAV networks and provide ground users with
pervasive connectivity in a flexible setting.
Applicable use cases in 5G and future networks for UAV

networks also include novel intelligent mobility solutions such
as self-driving cars as well as mission-critical ones relying
on connected services, such as emergency communications
or cloud robotics for search&rescue [3], [4]. In that case,
UAVs can assist vehicular networks by providing cloud access,
packet relaying or edge computing services. In this paper, we
consider such a UAV integrated edge network and focus on
the use case in which UAVs create a network for vehicles
for emergency or ad hoc communications. Furthermore, net-
work softwarization allows our system to cope with network
management issues such as mobility-based frequent topology
changes and dynamic system states [5]. A post-disaster oper-
ations management scenario is designed in which the network

offers Vehicle-to-Vehicle (V2V) and Vehicle-to-Cloud (V2C)
task offloading services to users, e.g., search&rescue team
vehicles.
In such a time-sensitive and mission critical case, a key

challenge is how to decrease delays while considering re-
source constraints. In this work, we focus on this research
problem and develop a task offloading scheme entailing dif-
ferent heuristics in our UAV-assisted software-defined edge
network. Under the conditions of limited network and resource
availability, priority values are assigned to computational tasks
to prioritize urgent and critical ones over others. Also, a
processing deadline is introduced for each task as the key QoS
criterion for performance evaluation.
As a key contribution, we propose a mathematical model to

make decisions about centralized offloading of prioritized tasks
in an agile environment. The model’s objective function is to
minimize average penalty scores caused by task completion
time. Moreover, we implement three heuristic algorithms and a
branch&bound quasi-optimal task offloading algorithm for the
given objective function. We also investigate how such a sys-
tem performs under different task load levels by emulating the
system on the Mininet-Wifi [6]. As open-source contributions,
we made some crucial improvements on Mininet-Wifi and its
wireless medium simulation tool dependency wmediumd in
order to support independent and simultaneous Wi-Fi packet
transfers and contributed these developments to the open-
source domain.
The rest of the paper is organized as follows. In Section

II, we present an overview of related studies in UAV, task
offloading and SDN. In Section III, we introduce the system-
related models. Next, we formulate our problem in Section IV.
Then, we explain each of the proposed task offloading algo-
rithms in Section V. In Section VI, we introduce our simulation
environment and its components. Later on, simulation results
and performance measures are presented in the same section.
We conclude the paper in Section VII.

II. RELATED WORK

The current research works elaborate on different aspects
of UAVs, task offloading and SDN. Similar to our study,
Jia et al. [7] use UAVs as flying base stations to provide
communications to rescue vehicles in disaster-affected areas.
They look into the relationship between UAV altitude and
vehicle connectivity for a single UAV scenario. In the case

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

Fig. 1. The network model.

of many UAVs, they investigate the smallest number of UAVs
required to achieve a certain level of vehicle communication.
In [2], a case study on UAV-aided Vehicular Network (VN)
architecture is presented, in which vehicles drive along a bi-
directional two-lane straight highway while two mobile drones
are flying over them to form a relay platform. They compared
UAV-aided VN’s throughput and latency performance to an
802.11p-based vehicular network, demonstrating its effective-
ness. These studies focus on infrastructure level rather than
possible applications such as task offloading on the constructed
network.
Chen et al. [8] propose a post-disaster rescue computation

task offloading scheme for cooperative UAVs. UAV com-
putation tasks are offloaded to Unmanned Ground Vehicles
(UGVs) that have idle computation resources. Both UAVs
and UGVs seek their own maximum profits in its setting.
Specifically, the stable matching algorithm has been proposed
to transform the computation task offloading problem into
a two-sided matching problem, taking into account that the
algorithm iteratively solves the problem while maximizing the
utility of UAVs. In a multi-UAV-assisted road traffic scenario,
researchers [9] construct a three-player sequential game-based
computational offloading methodology for processing UAV
data. The computation delay, energy overhead, and commu-
nication&computation costs are all part of the utility function
being studied. Contrarily, task owners in our model are mobile
ground units and task offloading decisions are centralized
while UAVs only provide the network.
In [4], an SDN-enabled UAV-assisted vehicular computation

offloading cost optimization framework is defined. Vehicles
can offload computationally intensive and time-sensitive tasks
to reduce execution time and overall energy usage. Each
vehicle receives network traffic data from the SDN controller.
Vehicles make decentralized offloading decisions based on
their own interests and global data. The stated problem is very
similar to our work, but task offloading to other mobile ground
vehicles and UAV mesh network is not possible in the given
study contrary to ours.

TABLE I
SYSTEM PARAMETERS.

Symbol Definition
Ui The i

th UAV
Vi The i

th vehicle
Ki The i

th task
Oi,Vj If Vj is the owner of Ki, 1; otherwise 0
↵i The priority of Ki

Di The penalty point of Ki

Ci If Ki is completed, 1; otherwise 0
pheavy The probability of task offloaded to the cloud if pool is heavily occupied
pmedium The probability of task offloaded to the cloud if pool is moderately

occupied
plight The probability of task offload to the cloud if pool is lightly occupied
⇥heavy The threshold value to classify the controller pool as heavily occupied
⇥light The threshold value to classify the controller pool as lightly occupied
⇥medium The threshold value to classify the controller pool as moderately occupied
SKi The size of Ki

Pi The i
th processor

�i The processing speed of Pi

�cloud The processing speed of cloud
SQi The queue size of Pi

Qi The queue of Pi

NU The number of UAVs
NK The number of tasks
NP The number of processors
z The extra penalty point if the task deadline is missed

Time Related Parameters
T The number of time slots
ttotal,i The time elapsed to complete Ki

tpool,i The time elapsed to be assigned for Ki

ttx,i The time elapsed to transmit Ki

tqueue,i The time elapsed on processor queue for Ki

tprocess,i The time elapsed to process Ki

tdeadline,i The time budget for Ki to be processed without any QoS
violation, i.e., penalty

bVi The departure time slot of Vi

aKi The arrival time slot of Ki

cKi The completion time slot of Ki

LKi,Pj (t) The link capacity between the owner of Ki and Pj at t
LKi,cloud(t) The link capacity between the owner of Ki and the cloud server

at t

III. SYSTEM MODEL

Our network model consists of NU UAVs (Ui) which are
mounted with wireless Access Points (APs) and have multiple
Wi-Fi interfaces. For each UAV, one interface provides Wi-
Fi service to terrestrial vehicles, while the others create mesh
connections with nearby UAVs. One of the UAVs is connected
to a ground base station (BS) which has a backhaul link to
the Internet and relevant cloud services. One of the UAVs
also has a computational unit mounted which runs an SDN
controller on it and acts as the network controller which
manages flow control of APs. This controller is operated by a
service provider remotely. UAVs are not used to offload tasks;
instead, they are primarily used for communication, which
limits energy consumption. For the sake of simplicity, we do
not consider energy constraints in our system. The network
model and system parameters are shown in Fig. 1 and Table I,
respectively.
An SDN controller application, namely offloading orches-

trator, orchestrates all the task offloading decisions in a cen-
tralized way. There are two main types of terrestrial vehicles
in the system. The first type (rescue&emergency) vehicles,
which are task owners, signal their task information consisting
of a deadline, priority factor, and size to the task pool of

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

the offloading orchestrator on the controller. The orchestrator
application assigns these tasks to the second type (compute
station) of vehicles, also called task processors, and informs
both parties about the assignment. Only the identifier data for
tasks are stored on the controller’s task pool, not the task data
itself meaning the data transfers are made from the task owner
directly to the processor units.
The processor vehicles have their own limited-size queues to

store unprocessed tasks. A processor may be used to download
data of multiple tasks simultaneously according to the policy
of the active task offloading algorithm. The processing speed
and queue size are determined by the processor group (i.e.,
class-based processor capabilities). Similarly, the priority of a
task is determined by the owner vehicle’s group (i.e., class-
based task priority). If a task is not completed by the deadline,
the system receives a penalty proportional to the amount
of time that has passed between the deadline and the task
completion time. The mobility of vehicles is not linked to
the task processing operation, i.e., a vehicle may leave the
area, regardless of its tasks still being processed. The task is
also sent back to the pool if the assigned processor vehicle
leaves during packet transmission for that task. There are
two cases for the situation that the task owner leaves the
coverage area, depending on the deadline: The system receives
an extra penalty score z if the deadline has already been
missed; otherwise, it receives no penalty. To identify and
determine the network location of vehicles, the orchestrator
application listens for ARP packets. In addition, access points
also send their associated stations’ information periodically to
the controller for vehicle departure or disconnection detection.
The average inter-arrival time for the tasks generated by

the vehicles is exponentially distributed with rate �. Upon
a task arrival, if the task pool is not empty, the task can
be offloaded/migrated to the cloud processing server with a
probability (pheavy , pmedium, plight) depending on the occu-
pancy of the task pool (⇥heavy , ⇥medium, ⇥light). Essentially,
we consider minimizing average prioritization-based weighted
penalty points for task offloading management as a QoS Key
Performance Indicator (KPI) and thus propose algorithms for
that objective.

A. Channel Models

We chose two widely used path loss models [10]–[12]
and applied them in our network simulations since there is
no consensus on a proper path loss model for UAV-enabled
networks [13]. In our simulation environment, calculated Re-
ceived Signal Strength Indicator values (RSSI) are used to
get probabilistic data rates from the RSSI-transmission mode
matrix. The values in that matrix contain the probability of
the Wi-Fi rate at the given RSSI value, i.e., 6, 9, 12, 18, 24,
36, 48 and 54 Mbps for the IEEE 802.11g standard.
1) Air-to-Ground (A2G) Communication Channel Model:

This air-to-ground propagation model is based on the proba-
bility of line of sight and is used for our UAV-to-terrestrial-
vehicle connections.

2) Air-to-Air (A2A) Communication Channel Model: For
UAV-to-UAV communication, free-space channel model is
utilized.

B. Mobility Model
UAVs are assumed to be anchored to fixed locations. How-

ever, they have small-scale mobility where these aerial systems
are assumed to hover around these points in a limited space.
Specifically, they are assumed to be forming a small-sized 8
figure by moving around two fixed points at the same altitude
as the mobility model in [14].

IV. PROBLEM FORMULATION

The problem that we address is the minimization of the
average task penalty weighted by task priority in a software-
defined edge network with integrated UAVs. Due to departures,
some tasks may not be fulfilled even in the optimal scenario,
which prevent us to use deadline as a constraint. As a result,
we introduce penalty scoring system in which extra penalty
score is added for unfilled tasks in order to encourage the
completion of all tasks. The list of parameters that we utilize
in the problem formulation is given in TABLE I.
A task’s lifetime in our edge network is composed of various

components due to pool wait, transmission time, processor
queue wait and processing time. Ci variable represents if ith
task Ki is successfully processed. Parameter xij is equal to
one if Ki is decided to be offloaded to Pj and similarly, yi
is equal to one if Ki is decided to be offloaded to the cloud.
These decision variables are equal to zero otherwise. ttotal,i is
the total time needed to complete Ki and defined as follows
if and only if ($) the task is completed which is the case Ci

equals to 1:

Ci =
NPX

j=1

xij + yi 8i (1)

ttotal,i = tpool,i + ttx,i + tqueue,i + tprocess,i $ Ci = 1
(2)

tprocess,i = SKi/(
NPX

j=1

�ixij + �cloudyi) $ Ci = 1

(3)

ttx,i = SKi/(
NPX

j=1

LKi,Pj (t)xij + LKi,cloud(t)yi) $ Ci = 1

(4)

Di is the penalty for Ki and calculated as:

Di =

8
>>>>>>>>>><

>>>>>>>>>>:

max(ttotal,i � tdeadline,i, 0) if Ci = 1

0 if (Ci = 0) ^ (Oi,Vj = 1)
^(bVj < aKi + tdeadline,i)

bVj � aKi � tdeadline,i + z

if (Ci = 0) ^ (Oi,Vj = 1)
^(bVj > aKi + tdeadline,i)

(5)

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

Now, let us present the optimization problem, which will
be solved by the orchestrator application to decide on the task
offloading at each time slot as follows:

wi =↵i ·Di (6)

min
x,y

D(�,R) =
NKX

i=1

wi/NK (7)

subject to:
NPX

j=1

xij + yi  1 8i (8)

xij · cKi  bPj 8i (9)
xij 2 {0, 1} 8i, 8j (10)
yi 2 {0, 1} 8i (11)

Eq. 8 ensures that only one vehicle processor or cloud is
assigned to a task. There is inequality because some tasks may
not be completed due to the randomness of processor avail-
ability and task owner departure times. The task completion
time slot, cKi in the left hand side of Eq. 9 is the sum of
the task arrival time, aKi and ttotal,i. Eq. 9 guarantees that
the task should be completed before the processor departs.
Because the departure times are not known during the run-
time, only our quasi-optimal algorithm can use this constraint
to guide decisions. For heuristics, a task is sent back to pool,
if the constraint happens to be failed.
Task offloading decisions significantly affect each other’s

delay results, especially when related vehicles share the same
APs or links for connectivity since available data rates for
related vehicles drop. Thus each possible decision combination
should be evaluated. This multi-user, multi-task problem is
proved to be NP-hard [15] while the penalty scoring in our
system model increases the complexity due to its nonlinear
behavior upon task owner departures.

V. TASK OFFLOADING ALGORITHMS

In our algorithm design, the system time is discretized into
steps to perform offloading decisions on the generated time
steps. Obviously, the exact time a vehicle will arrive/depart
or a task arrives is unknown during the run-time. Performance
comparisons are made using four different algorithms. The first
three algorithms are greedy heuristics and are used during the
simulation experiments. They make decisions according to the
available data at each step, i.e., run in an online mode. They are
namely Aggressive-Wait, Aggressive Tx-Order, and Adaptive
offloading algorithms. The available data include vehicle-UAV
associations, existing links’ with their bandwidths and rough
vehicle departure time. The final algorithm is named as Quasi-
Optimal offloading algorithm and an oracle-type decision-
maker since it operates by extracting better solutions from
recorded past data for benchmarking. Since this algorithm
cannot process all the possible solutions from all the data

recorded due to combinatorial explosion, it is quasi-optimal
by processing events in time windows.

a) Aggressive Wait Offloading Algorithm (AGG-1): The
orchestrator application with the first greedy algorithm AGG-
1 tries to offload tasks until all the queues on the available
processors are full. New assignments to the same processor
can be made before the current assigned task’s data transfer is
completed. The task assignment order is also applied on pro-
cessing ordering in AGG-1 in order to complete the previously
assigned task, probably, the one closer to its deadline, earlier.
If the next assigned task is downloaded before the first one,
the second task will be processed after the first is completed.

b) Aggressive Tx-Order Offloading Algorithm (AGG-2):
The second greedy algorithm is similar to the first one, AGG-
1. The only difference is that the task transmission completion
order (Tx-Order), rather than the task assignment order as
it was in AGG-1, determines the order in which tasks are
processed; the earlier downloaded one is processed first. The
rationale is to avoid wasting processing resources.

c) Adaptive Offloading Algorithm (ADP): In ADP, dur-
ing an offloading decision, the processors with the tasks being
transmitted are skipped, avoiding multiple transfers for the
same processor. It aims to decrease the pressure on the limited
network resources and improve prioritization since it leads to
more tasks in the controller task pool TP and more processor-
task combinations upon arrival of new processor nodes.

d) Quasi-optimal Offloading Algorithm (Q-OPT): The
last approach is a branch&bound based algorithm that pro-
cesses the whole simulation data to produce a sub-optimal
yet close to optimal objective value for benchmarking our
heuristics. It analyzes the past simulation data and functions
as a oracle-type decision-maker. This processed data includes
task details (e.g., size, deadline), vehicle positions, vehicle
associated AP and RSSI values and task processor details.
In order to narrow down candidate solutions, first arrival

and departure times of vehicles and their connection status
per step are considered. For each task, possible processor
assignments are determined as lists. Two more decisions,
skipping, meaning failing on purpose, and offloading to the
cloud are also added to these lists. Even the most under-loaded
setup with meaningful results generates a huge candidate pool
from the Cartesian product of decision possibilities, which
cannot be handled due to combinatorial explosion. Thus, we
have developed a time-windowed quasi-optimal processing
approach. The solver processes and makes decisions on the
tasks in the given time interval. The algorithm starts with
the time window to check if the candidate solution pool can
be processed. The algorithm shrinks the window end time
(window length) until the number of decision combinations is
less than a predefined threshold, ⇥decision. The solver skips
some of the combinations by bounding. After finding the
optimal value for this interval, it saves the decision of the first
task in this window and moves to the second time window,
which is between the arrival time of the next task and the end
of the simulation. It applies the same principle until all tasks
are decided one by one.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

TABLE II
BASELINE SIMULATION PARAMETERS.

Parameter Value

� 0.1 1/s

NU 9
Task size (randomly distributed) 30-40MB

V 20 km/h
�cloud 3MB/s

tdeadline,i (randomly distributed) 50-120s
pheavy 0.9
pmedium 0.7
plight 0.3
⇥heavy 10
⇥medium 7
⇥light 3

⇥decision 10M
Ptx,Ui , Ptx,Vi 23dBm

Gtx,Ui , Gtx,Vi , Grx,Uj , Grx,Vj 3dBm
�
2 �91dBm
f 2.4GHz
⇢ 2

⌘LoS , ⌘NLoS 1dBm, 20dBm
z 60

VI. PERFORMANCE EVALUATION

We use a machine with Intel Core i7-10875H (2.30GHz ⇥
8), 16GB RAM, and 256GB SSD storage to run our tests.
We use ONOS [16] v2.8 on Ubuntu 21.04 as SDN controller.
Mininet-WiFi is used to create host devices, virtual stations
and APs. For virtual switch emulation, Open vSwitchv2.15
is utilized [17]. For traffic generation from vehicles in our
experiments, iPerf v3.10 is adopted [18]. The network control
and packet delivery applications were developed in Python
v3.9.5. For vehicle mobility simulation Eclipse SUMO v1.11.0
is used [19]. Table II lists the simulation parameters. Fig. 2
depicts a sample network topology in the simulations.
We have chosen an area of 1 square kilometer area in

Istanbul to reflect an urban traffic and road infrastructure in our
system. The selected region data is imported via the OSMWeb
Wizard, a utility application bundled with SUMO. On each
run, we obtained location data step by step from the Traffic
Control Interface (TraCI) of SUMO while tracking movements
on the GUI interface. UAVs and the BS are inserted as the
point of interest objects on the GUI and are updated on each
step to visualize the topology better. Also, their ranges are
highlighted with circles on the interface. Vehicle role and
type are randomized according to the predefined distribution,
which includes four types of vehicles with processor or task
owner roles and one type for private vehicles that our network
does not serve. Vehicle related simulation settings are listed
in Table III.
In our experiments to evaluate our proposed framework,

we have selected three different cases for task inter-arrival
time to investigate the proposed system and the efficiency of
our heuristic algorithms. For the evaluation of our algorithms,
we added an Only-Cloud baseline option in which all task
offloadings are done to the cloud. Each simulation run lasts for
15 minutes, including pre-population and cool-down periods.
All the cases are run ten times, and the results are presented in

TABLE III
VEHICLE PARAMETERS.

Role Type Proportion Shape Color Priority �i SQi

Owner A 0.1 Emergency White 0.7 - -
Owner B 0.2 Firebrigade Red 0.3 - -

Processor A 0.06 Trailer Purple - 2 MBps 100MB
Processor B 0.1 Trailer Cyan - 1.5 MBps 70MB

- - 0.54 Passenger Pink - - -

Fig. 2. A sample network topology in the simulations.

the following section. On each run, the UAV connected to the
BS is selected in round robin mode while the most centrally
located UAV is selected as the one hosting SDN controller.

A. Scenario : Task Inter-arrival Time (1/�)
The exponentially distributed expected time value between

consecutive tasks is 1/�. Task Inter-arrival Time scenario is
used to observe how the system reacts under varying loads
(varying task generation intervals). The different values for
the interval 1/� are 5 sec. s (Case 1), 10 sec.s (Case 2), and
15 sec.s (Case 3).

B. Experimental Results
We present the numerical results of our experiments in

this section and use them to investigate performance in our
scenarios under three subcategories. First, we begin by com-
paring the objective function D, the average of prioritization-
based weighted penalty points, of each algorithm. Then, we
consider the task failure and cloud offloading ratios along
with controller pool time (tpool) to determine the algorithms’
task processing characteristics. Lastly, we look at the averages
of the task completion (ttotal), transmission (ttx), processor
queue (tqueue) and processing (tprocess) time values to under-
stand the temporal results for task completion.
1) Impact of Task Inter-arrival Time: In our first scenario,

the system was challenged with various network loads by
changing the request interval with the same expected number
of vehicles. Request intervals may seem small, but the test
network uses 802.11g mode which has throughput up to 54
Mbps theoretically while it achieves much less due to overhead
and path loss. In our emulation environment, the maximum
achievable throughput was 36 Mbps and it is achievable for

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

a vehicle-to-UAV link under 150 meters distance. However,
many of the vehicles share the same interfaces which also
affect their share of the bandwidth, i.e., transmission bitrates.

Fig. 3. Impact of task inter-arrival time on the objective function D.

a) Penalty Results: These tests show how well the al-
gorithms perform in terms of the main objective function,
minimization of the average of prioritization-based weighted
penalty points when network load changes. In Fig. 3, the
impact of all three cases can be seen. Since the cloud side is
stationary, a cloud connection is more stable than a connection
between two moving vehicles. Also Only-Cloud has faster
processing and no queue waiting time advantages. Thus, Only-
Cloud option performs better under light load. On the other
side, as the load increases, there is an exponential increase
pattern of D for all the algorithms, but Only-Cloud option
is the most impacted one because backhaul link to cloud
becomes a bottleneck resulting slower packet transfers while
our heuristic can distribute load to different processors.
The main logic of AGG-1 for preserving download starting

order for task processing is to wait for tasks that are older
or chosen earlier due to their priority-deadline values, it does
not seem to be making a meaningful difference in terms of D
compared to non-preserving version, AGG-2. Having oracle-
type decisions and being theoretical output, Q-OPT seems to
give superior results compared to the rest, especially as the
load increases since it can make better decisions in advance
while the rest makes with much less limited data. Among the
online decision-makers, ADP outperforms the competition by
a significant margin in all three cases.

b) Task Processing Characteristics: In the experimental
results, eagerness of AGGs to fill their queues leads to having
shorter assignment times, but it does not guarantee the overall
processing will be quicker, too. It is observed that the opposite
situation is true. Completing tasks one by one without getting
the infrastructure congested provides better outcomes for ADP
and Q-OPT than the AGGs; even the tasks wait longer in
the controller queue. Another reason is that network load can
be more easily managed in Q-OPT and ADP by delaying
the decisions to get better assignment options from vehicles
arriving in the area or from previously non-available vehicles.

Fig. 4. Impact of task inter-arrival time on task delay composition.

c) Temporal Results for Task Completion: We can get
insights about the system operation by looking at the life-
cycle of tasks. In Fig. 4, stacked version of the component-
based average packet delays are presented. The labels on the
top of the bars refer to the inter-arrival time used for the
given test group. The first point to make is that the majority
of system delays are caused by transmission delays. Smarter
network congestion management and routing protocols could
be highly helpful for the performance of such a network. With
the current parameters, there is no big impact of the processing
time. Only on AGG-1, we see 5� 10% delay increase due to
the queue wait procedure.
The average time the vehicle spends in the area is 320

seconds in the current scenario. By combining this data
with the average system delay and task failure ratios, we
may comment on the inter-arrival time required for heavy
congestion levels. From this perspective, there is still room
for higher loads which would make ttotal over 300 seconds.

VII. CONCLUSION

In this paper, we elaborated on a critical use case for
UAVs in post-disaster rescue scenarios with an emulation
environment for a UAV-assisted software-defined edge net-
work architecture. In that environment, we considered how
task offloading can be flexibly used for efficient services
and developed a task offloading scheme entailing different
heuristics. A mathematical model has been proposed to make
centralized offloading decisions for incoming task processing
requests. For future work, the first direction is to extend our
framework for smart routing. The biggest problem we have
faced in our system is the limited capacity of the wireless links.
Routing can help us to improve the potential of the system
and mitigate this issue. It is also worth investigating how to
develop smarter heuristic approaches for task offloading.

REFERENCES

[1] O. Kalinagac, S. S. Kafiloglu, F. Alagoz, and G. Gur, “Caching and
D2D sharing for content delivery in software-defined UAV networks,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall),
pp. 1–5, 2019.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

[2] W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen, “Drone assisted
vehicular networks: Architecture, challenges and opportunities,” IEEE
Network, vol. 32, pp. 130–137, 5 2018.

[3] X. Wang, L. Fu, Y. Zhang, X. Gan, and X. Wang, “VDNet: an
infrastructure-less UAV-assisted sparse VANET system with vehicle
location prediction,” Wireless Communications and Mobile Computing,
vol. 16, pp. 2991–3003, 12 2016.

[4] L. Zhao, K. Yang, Z. Tan, X. Li, S. Sharma, and Z. Liu, “A novel cost
optimization strategy for SDN-enabled UAV-assisted vehicular com-
putation offloading,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, pp. 3664–3674, 6 2021.

[5] H. Selvi, G. Gür, and F. Alagöz, “Cooperative load balancing for hierar-
chical SDN controllers,” in 2016 IEEE 17th International Conference on
High Performance Switching and Routing (HPSR), pp. 100–105, 2016.

[6] R. R. Fontes, S. Afzal, S. H. B. Brito, M. A. S. Santos, and C. E. Rothen-
berg, “Mininet-WiFi: Emulating software-defined wireless networks,”
in Network and Service Management (CNSM), 2015 11th International
Conference on, pp. 384–389, Nov 2015.

[7] S. Jia and L. Zhang, “Modelling unmanned aerial vehicles base station
in ground-to-air cooperative networks,” IET Communications, vol. 11,
pp. 1187–1194, 2017.

[8] W. Chen, Z. Su, Q. Xu, T. H. Luan, and R. Li, “VFC-based cooperative
UAV computation task offloading for post-disaster rescue,” in IEEE
INFOCOM 2020 - IEEE Conference on Computer Communications,
pp. 228–236, 2020.

[9] A. Alioua, H. eddine Djeghri, M. E. T. Cherif, S. M. Senouci, and
H. Sedjelmaci, “UAVs for traffic monitoring: A sequential game-
based computation offloading/sharing approach,” Computer Networks,
vol. 177, 2020.

[10] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for
maximum coverage,” IEEE Wireless Communications Letters, vol. 3,
no. 6, pp. 569–572, 2014.

[11] S. Zhang, H. Zhang, B. Di, and L. Song, “Cellular UAV-To-X com-
munications: Design and optimization for multi-UAV networks,” IEEE
Trans. on Wireless Communications, vol. 18, pp. 1346–1359, 2 2019.

[12] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal LAP altitude
for maximum coverage,” IEEE Wireless Communications Letters, vol. 3,
no. 6, pp. 569–572, 2014.

[13] C. Liu, M. Ding, C. Ma, Q. Li, Z. Lin, and Y.-C. Liang, “Performance
analysis for practical unmanned aerial vehicle networks with LoS/NLoS
transmissions,” 2018 IEEE International Conference on Communica-
tions Workshops, ICC Workshops 2018 - Proceedings, pp. 1–6, 4 2018.

[14] O. Bouachir, A. Abrassart, F. Garcia, and N. Larrieu, “A mobility model
for UAV ad hoc network,” in ICUAS 2014, International Conference on
Unmanned Aircraft Systems, (Orlando, United States), pp. pp 383–388,
May 2014.

[15] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transactions
on Services Computing, vol. 12, pp. 726–738, 9 2019.

[16] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
HotSDN ’14, (New York, NY, USA), p. 1–6, Association for Computing
Machinery, 2014.

[17] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” in NSDI, 2015.

[18] NLANR (National Laboratory for Applied Network Research)/DAST,
“iPerf Tool.” Available at https://iperf.fr/, 2019.

[19] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner, “Micro-
scopic traffic simulation using SUMO,” in The 21st IEEE International
Conference on Intelligent Transportation Systems, IEEE, 2018.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. DOI: 10.1109/GIIS56506.2022.9936953

